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Abstract
In this work we consider the problem of regret minimization
for logistic bandits. The main challenge of logistic bandits is
reducing the dependence on a potentially large problem de-
pendent constant κ that can at worst scale exponentially with
the norm of the unknown parameter θ∗. Prior works have
applied self-concordance of the logistic function to remove
this worst-case dependence providing regret guarantees like
O(d log2(κ)

√
µ̇T log(∣X ∣)) where d is the dimensionality,

T is the time horizon, and µ̇ is the variance of the best-arm.
This work improves upon this bound in the fixed arm setting
by employing an experimental design procedure that achieves
a minimax regret of O(

√
dµ̇T log(∣X ∣)). Our regret bound in

fact takes a tighter instance (i.e., gap) dependent regret bound
for the first time in logistic bandits. We also propose a new
warmup sampling algorithm that can dramatically reduce the
lower order term in the regret in general and prove that it can
replace the lower order term dependency on κ to log2(κ) for
some instances. Finally, we discuss the impact of the bias of
the MLE on the logistic bandit problem, providing an exam-
ple where d2 lower order regret (cf., it is d for linear bandits)
may not be improved as long as the MLE is used and how
bias-corrected estimators may be used to make it closer to d.

1 Introduction
Linear bandits, which have gained popularity since their suc-
cess in online news recommendation (Li et al. 2010), solve
sequential decision problems under limited feedback when
each action (or arm) to be taken has a known feature vector
deemed to predict the reward. Specifically, at each time step
t, the learner chooses an arm xt ∈ Rd from an available pool
of arms X , and then receives a reward yt = x

⊺
t θ∗ + ηt, where

θ∗ is unknown and η is usually assumed to be zero-mean
subGaussian noise. The goal of the learner is to maximize
the total cumulative rewards over the time horizon T by ju-
diciously balancing between efficiently learning θ∗ (explo-
ration) and using the learned knowledge on θ∗ to accumulate
large rewards (exploitation). Since the pioneering studies
by Abe and Long (1999) and Auer (2002), there have been
significant developments in both theory (Dani, Hayes, and
Kakade 2008; Abbasi-Yadkori, Pal, and Szepesvari 2011;
Foster and Rakhlin 2020) and applications (Li et al. 2010;
Sawant et al. 2018; Teo et al. 2016).
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Many real-world applications, however, have binary re-
wards and are not captured by the additive noise setting.
For example, the seminal work by Li et al. (2010) for con-
textual bandits considers a binary reward of click/no-click,
yet they apply bandit algorithms based on linear models –
this is comparable to applying linear regressions to a bi-
nary classification task. For binary rewards, the logistic lin-
ear model is natural when rewards are assumed to follow
yt ∼ Bernoulli(µ(x⊺t θ∗)) where µ(z) = 1/(1 + exp(−z))
is the logistic function. While the link function µ can be
changed, the logistic function is worth more attention for
two reasons: (i) it is extensively used in practice, even in
state-of-the-art deep architectures whose last layer is the
negative log likelihood of the logistic linear model, and (ii) if
we were to use a trained network to compute the input to the
last layer and take it as the feature vector for bandit tasks,
the features are likely optimized to excel with the logistic
model.

The first work on logistic bandits due to Filippi et al.
(2010) showed a regret bound of Õ(dκ

√
T ) where κ =

max∥x∥2≤1 µ̇(x
⊺θ∗)

−1 and Õ ignores polylogarithmic fac-
tors for all variables except for κ. Since κ can be exponen-
tial in ∥θ∗∥2, the key challenge in developing bandit algo-
rithms in the logistic setting both theoretically and practi-
cally is to overcome this worst-case scaling. In the last few
years, there has been a flurry of activity on this problem
that exploits the self-concordance of the logistic loss with
the seminal work of Faury et al. (2020). Recently, Abeille,
Faury, and Calauzènes (2021) proposed a UCB style algo-
rithm called OFULog, establishing a regret bound with the
leading term of Õ(d log2(κ)

√
µ̇(x⊺∗θ∗)T+κd

2∧(d2+∣X−∣))
where X− ⊂ X is a set of detrimental arms. In the finite
armed contextual bandit setting, Jun et al. (2021) propose
an improved fixed design confidence interval and adapted
a SupLinRel style algorithm (Auer, Cesa-Bianchi, and Fis-
cher 2002) called SupLogistic to establish a regret scal-
ing like Õ(

√
dT ). SupLogistic achieves a better depen-

dence on d and κ. However, it has a worse dependence with
µ̇(x⊺∗θ∗) due to the changing arm set setting and makes a
strong assumptions of stochastic contexts and bounded min-
imum eigenvalues. The regret bound of OFULog is free of
these assumptions, but the leading term is suboptimal. We
discuss key related work throughout the paper and postpone
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detailed reviews to our supplementary.
Motivated by the gaps in the regret bounds, we make the

following contributions.
Improved Logistic Bandit Algorithm (Section 2): We

take an experimental design approach to propose a new ban-
dit algorithm called HOMER (H-Optimal MEthod for Re-
gret) that achieves the best of the two state-of-the-art algo-
rithms above: Õ(

√
dµ̇(x⊺∗θ∗)T log(∣X ∣)+d2κ) in the fixed-

arm setting where the lower order term matches the state-
of-the-art OFULog in the worst case. In fact, we prove an
even tighter instance-dependent (i.e., gap-dependent) regret
bound of O(dµ̇(x

⊺
∗θ∗) log(∣X ∣T )

∆
+d2κ) for the first time to our

knowledge where ∆ is the reward gap between the best arm
among the suboptimal arms and the overall best arm.

Novel Warmup Algorithm (Section 3): While HOMER
achieves the best worst-case regret guarantee, it must be
equipped with a warmup sampling procedure. Using a naive
sampling procedure, HOMER will incur d2κ regret during the
warmup. This stems from having to use fixed design confi-
dence bounds (Jun et al. 2021, Theorem 1)– without them
there is no known ways to achieve the factor

√
d in the lead-

ing term of the regret bound when there are finitely many
arms – that require the observed arms and their rewards to
satisfy so-called “warmup” condition (see (2) below). In or-
der to improve its practical performance, we propose a novel
adaptive warmup algorithm called WAR (Warmup by Ac-
cepts and Rejects), which performs the warmup with much
fewer samples than κd2 in general. We prove its correctness
guarantee, show that for 1d it never spends more samples
than the naive warmup, and present an arm-set dependent
optimality guarantee.

Conjectures on the Dimension Dependence of the
Fixed Design Inequalities (Section 4): Omitting the κ de-
pendence and logarithmic factors in this paragraph, all exist-
ing regret bounds for logistic bandits have an d2 dependence
in the lower order term, which is in stark contrast to an d de-
pendence in linear bandits (Auer 2002). The consequence
is that logistic bandit algorithms suffer a linear regret until
T = d2 in the worst case. Does this mean logistic bandits
are fundamentally more difficult than linear bandits in high
dimensional settings? While we do not have a complete an-
swer yet, we provide a sketch of an argument that, when the
MLE is used, such a d2 dependence might be unimprovable.
The argument starts from the classical fact that the MLE of
generalized linear models (GLMs) are biased, e.g., (Bartlett
1953). Based on this fact, we observe that in order to obtain
tight fixed design confidence bounds we need to perform
oversampling of arms as a function of d until the squared
bias gets smaller than the variance. Furthermore, based on
the known fact that in 1d the KT estimator (Krichevsky and
Trofimov 1981) is much less biased than the MLE (Cox and
Snell 2018), which we verify numerically as well, we pro-
pose a new estimator and conjecture that it may lead to the
lower order regret term of O(d4/3).

2 Regret Minimization for Logistic Bandits
Let us formally define the problem. We assume access to a
finite and fixed set of arms X ⊂ {x ∈ Rd ∶ ∥x∥2 ≤ 1}. At each

time t ≥ 1 the learner chooses an arm xt ∈ X and observes a
Bernoulli reward yt ∈ {0,1} with

E[yt∣xt] = µ(x
⊺
t θ∗) .

Let x∗ = argmaxx∈X x⊺θ∗. For ease of notation, we assume
that x∗ is unique though this condition can be relaxed. The
goal of the learner is to minimize the cumulative (pseudo-
)regret up to time T : RT ∶= ∑

T
t=1 µ(x

⊺
∗θ∗) − µ(x

⊺
t θ∗).

Notations Let Ft be the sigma algebra generated by
the set of rewards and actions of the learner up to time t,
i.e., σ(x1, y1, . . . , xt−1, yt−1). We assume that the learner
has knowledge of an upper bound S on ∥θ∗∥. Define κ ∶=
max∥x∥≤1 µ̇(x

⊺θ∗)
−1 and κ0 ∶= maxx∈X µ̇(x⊺θ∗)

−1, the in-
verse of the smallest derivative of the link function among
elements of X . Denote by △A the set of probability distri-
butions over the set A. Let Supp(λ) with λ ∈ △A be the
subset of A for which λ assigns a nonzero probability. We
use A ≲ B to denote A is bounded by B up to absolute con-
stant factors.

Logistic Regression We review logistic regression. As-
sume that we have chosen measurements x1, . . . , xt to ob-
tain rewards y1, . . . , yt. The maximum likelihood estimate
(MLE), θ̂ of θ∗ is given by,

θ̂ = argmax
θ∈Rd

t

∑
s=1

ys log(µ(x
⊺
sθ)) + (1 − ys) log(1 − µ(x

⊺
sθ))

(1)

The Fisher information of the MLE estimator is Ht(θ∗) ∶=

∑
t
s=1 µ̇(x

⊺
sθ∗)xsx

⊺
s . Obtaining (near-)optimal regret hinges

on the availability of tight confidence bounds on the means
of each arm. For technical reasons, tight confidence bounds
(i.e., without extra factors such as

√
d in the confidence

bound like (Faury et al. 2020)) require the data to observe
the fixed design setting: for each s ∈ [t], ys is condition-
ally independent of {xs}

t
s=1 ∖ {xs} given xs. Recent work

by Jun et al. (2021) provide a tight finite-time fixed design
confidence interval on the natural parameter of x⊺θ∗ for any
x ∈ X . For regret minimization, we instead require estimates
of the mean parameter µ(x⊺θ∗) each arm x ∈ X . Define
γ(d) ∶= max{d + log(6(2+teff)/δ),6.1

2 log(6(2+teff)/δ)}
where teff is the number of distinct vectors in {xs}

t
s=1. We

refer to the following assumption on our samples as the
warmup condition:

ξ2t ∶= max
1≤s≤t

∥xs∥
2
Ht(θ∗)−1 ≤

1

γ(d)
. (2)

Lemma 1. Fix δ ≤ e−1. Let θ̂t denote the MLE estimate for
a fixed design {x1, . . . , xt} ⊂ X . Under the warmup condi-
tion (2), with probability 1 − δ, we have, ∀x ∈ X ,

∣x⊺(θ̂t − θ∗)∣ ≤ 1 and ∣µ(x⊺θ̂t) − µ(x⊺θ∗)∣ (3)

≤ 4.8µ̇(x⊺θ∗)∥x∥Ht(θ∗)−1
√
log(2(2 + teff)∣X ∣/δ).

The proof relies on Theorem 1 of (Jun et al. 2021) and
the (generalized) self-concordance of the logistic loss (Faury
et al. (2020, Lemma 9)). While similar results were used
in the proof of SupLogistic in Jun et al. (2021), for our
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bandit algorithm below it is crucial to guarantee ∀x ∈
X , ∣x⊺(θ̂t − θ∗)∣ ≤ 1 as well. As far as we know, this is
the first non-trivial confidence bound on the mean param-
eter for logistic models. To contextualize this result, con-

sider that via the delta-method,
√
t(µ(x⊺θ̂) − µ(x⊺θ∗))

D
Ð→

N (0, µ̇(x⊺θ∗)
2∥x∥2Ht(θ∗)−1). Hence, Lemma 1 guarantees

an asymptotically tight normal-type tail bound up to con-
stant factors provided the warmup condition holds.

Experimental Design We leverage our tight confidence
widths on the means µ(x⊺θ∗) given in Lemma 1 to develop
a novel logistic bandit algorithm. Motivated by the form of
the confidence width on the mean parameter, we consider
the following experimental design problem:

h∗ ∶= min
λ∈△X

max
x∈X

µ̇(x⊺θ∗)
2
∥x∥2Hλ(θ∗)−1

where Hλ(θ) = ∑
x∈X

λxµ̇(x
⊺θ)xx⊺ ,

which we refer to as an H-optimal design. That is, we want
to find an allocation of samples overX minimizing the worst
case confidence-width of Lemma 1 for any x ∈ X . Note that
h∗ depends on the arm set X , though we omit it for brevity.
This experimental design is closely linked to the G-optimal
design objective for the MLE in an exponential family. In-
deed, in our setting, the G-optimal design is

g∗ ∶= min
λ∈△X

max
x∈X
∥x∥2Hλ(θ∗)−1 (4)

We point out that in the setting of linear bandits (i.e. the lin-
ear GLM), the celebrated Kiefer-Wolfowitz theorem states
that the optimal value of this objective is just d for any
choice of X (Kiefer and Wolfowitz 1960). Hence, for any
θ ∈ Rd, letting Y = {

√
µ̇(x⊺θ)x,x ∈ X} we see that

h∗ = min
λ∈△X

max
x∈X

µ̇(x⊺θ)2∥x∥2H(θ∗)−1

≤
1

4
min
λ∈△Y

max
y∈Y
∥y∥2(∑y∈Y λyyy⊺)−1 ≤

d

4

where we use µ̇(z) ≤ 1/4 for the first inequality and
the Kiefer-Wolfowitz theorem for the last inequality. Since
µ̇(x⊺θ) decays exponentially fast in ∣x⊺θ∣, this bound is
overly pessimistic and in practice the values of the H-
optimal will be much smaller. In contrast, for the logistic
setting, the G-optimal design objective may be large and we
only have a naive bound fG(X ) ≤ κ0d obtained by naively
lower bounding H(λ) ≥ κ0∑x∈X λxxx

⊺. In general these
two criteria can produce extremely different designs. We
provide an example where these designs are very different
in our supplementary.

Though experimental design for logistic models is an im-
portant and abundant topic, e.g., social science applications
where tight estimates on entries of θ are required for causal
interpretation (Erlander 2005), as far as we know, the de-
sign above has not previously been proposed. The clos-
est that we are aware of is Russell (2018) that considers
µ̇(x⊺θ)∥x∥2H(θ)−1 rather than µ̇(x⊺θ)2∥x∥2H(θ)−1 . Most ex-
isting studies on optimal design in nonlinear models study
theoretical properties of the design problem assuming the

knowledge of θ∗ and then uses a plugin estimate. However,
they hardly study under what conditions the plugin estimate
must satisfy for the plug-in design problem to closely ap-
proximate the true design problem and how one can effi-
ciently collect data for the plugin estimate. In contrast, we
address these in our paper for the H- and G-optimal design
problem for logistic models.

2.1 From Experimental Design to Regret
Minimization

We now introduce our primary algorithm, HOMER (H-
Optimal MEthod for Regret) which is centered around the
H-optimal design objective and the confidence bound on the
mean parameter given in Lemma 1. To build an initial esti-
mate θ̂0 of θ∗, the algorithm begins by calling a warmup
procedure WarmUp with the following guarantee:
Definition 1. A warmup algorithm A is said to be δ-valid
if it returns an estimator θ̂0 such that it is certified to have
P(∀x ∈ X ∶ ∣x⊺(θ̂0 − θ∗)∣ ≤ 1) ≥ 1 − δ.

One natural attempt would the aforemen-
tioned experimental design approach of solving
g∗ = minλ∈△X maxx∈X ∥x∥

2
Hλ(θ∗)−1 . We are guaran-

teed a solution λ∗ with a support of at most d(d + 1)/2 via
Caratheodory’s theorem; e.g., see Lattimore and Szepesvári
(2020, Theorem 21.1). We can then pull arm x exactly
⌈λ∗xg

∗γ(d)⌉ times to satisfy (2), which in turns makes the
MLE θ̂0 trained on these samples to perform a δ-valid
warmup. However, we do not know θ∗. Fortunately, when
an upper bound S on θ∗ is known, we can we consider the
following naive warm-up procedure:

gnaive = min
λ∈△X

max
x∈X
∥x∥2(Hnaive

λ
)−1

where Hnaive
λ =∑

x

λxµ̇(∥x∥S)xx
⊺ . (5)

Let λ̂naive be the solution to this problem. Since x⊺θ∗ ≤
∥x∥∥θ∗∥, we have gnaive ≥ g∗, so we can guarantee that
the warmup condition (2) is satisfied when pulling each arm
x exactly ⌈λ̂naive

x gnaiveγ(d)⌉ times. Computing the MLE θ̂0
with these samples leads to a δ-valid warmup with the sam-
ple complexity of O(gnaiveγ(d) + d2) which in the worse
case is O(κd2). We discuss a more efficient warmup al-
gorithm in Section 3; in this section, let us use this naive
warmup procedure.

The pesudocode of HOMER can be found in Algorithm 1.
In each round k, HOMER maintains an active set of arms Xk

and computes two experimental design objectives over Xk,
each using the MLE estimate from the previous round θ̂k−1.
The main experimental design, denoted λH

k , is the H-optimal
design in Line 5 which ensures the gap µ(x⊺∗θ∗) − µ(x

⊺θ∗)
is estimated to precision 2−k. This allows us to remove any
arm x whose gap is significantly larger than 2−k. The second
optimal design, denoted λG

k , is a G-Optimal design given in
Line 7. It is necessary to ensure that the warmup condition
holds in each round as samples are not shared across rounds.
In order to trade off these two, possibly competing design
criteria, HOMER computes a mixture of λH

k and λG
k (denoted
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Algorithm 1: HOMER: H Optimal MEthod for Regret
Require: ϵ, δ, X , κ0

k = 1,X1 = X , γ(d,n, δ) ∶= max{d + log(6(2 +
n)/δ),6.12 log(6(2 + n)/δ)}
θ̂0 ← WarmUp(X )
while ∣Xk ∣ > 1 do

δk = δ/(4(2 + ∣X ∣)∣X ∣k2)
λH
k = argminλ∈△Xk

ĥk(λ)
for ĥk(λ) ∶=maxx∈Xk µ̇(x⊺θ̂k−1)2∥x∥2Hλ(θ̂k−1)−1

λG
k = argminλ∈△Xk

(ĝk(λ) ∶=maxx∈Xk ∥x∥2Hλ(θ̂k−1)−1)
nH
k = ⌈6(1 + ϵ)6.123322kĥk(λH

k ) log(δ−1k )⌉
nG
k = ⌈6(1 + ϵ)γ(d, ∣Xk ∣, δk)ĝk(λG

k )⌉
λ̃k,i =max{ nH

k

nH
k
+nG

k

λH
k,i,

nG
k

nG
k
+nH

k

λG
k,i} ,∀i ∈ [n],

where λH
k,i and λG

k,i are the i-th entry of λH
k and λG

k

λk,i = λ̃k,i/∑n
j=1 λ̃k,j and nk =max{nH

k + nG
k , r(ϵ)}

x1, . . . , xnk ← Round(nk, λk, ϵ)
Observe y1,⋯, ynk , compute MLE θ̂k with {(xi, yi)}nk

i=1.

Xk+1 ← Xk∖{x ∈ Xk ∶ max
x′∈Xk

µ(x′⊺θ̂k) − µ(x⊺θ̂k) ≥ 2⋅2−k}

k ← k + 1
end while
Continue to play the unique arm in Xk for all time.

λk) with approximately 1 − 2−k of the mass being given
to the H-optimal design λH

k . Rather than sampling directly
from this distribution HOMER relies on an efficient rounding
procedure, Round. Given a distribution λ, tolerance ϵ, and
number of samples n, Round returns an allocation {xi}

n
i=1

such that Hn(θ) is within a factor of (1 + ϵ) H(λ, θ) for
any θ ∈ Rd provided n ≥ r(ϵ) for a minimum number of
samples r(ϵ). Efficient rounding procedures are discussed
in Fiez et al. (2019). Recent work (Camilleri, Katz-Samuels,
and Jamieson 2021) has shown how to avoid rounding for
linear bandits through employing robust mean estimators,
but it remains an open question for logistic bandits. HOMER
passes the mixed distribution to Round and samples accord-
ing to the returned allocation to compute an MLE estimate
θ̂k. Finally it removes suboptimal arms using plug in esti-
mates of their means µ(x⊺θ̂k).

Theoretical Guarantees We now present theoretical
guarantees of HOMER.

Theorem 2. Fix δ ≤ e−1 and suppose WarmUp draws at
most TB samples and incurs regret at most RB . Define T ′ ∶=
T − TB and assume T ′ > 0. Choose a rounding procedure
with r(ε) = O(d/ε2) (e.g., Fiez et al. (2019, Appendix B))
and set ε = O(1). Let ∆ ∶=minx∈X∖{x∗} µ(x

⊺
∗θ∗)−µ(x

⊺θ∗)
Then, with probability at least 1−2δ, HOMER obtains a regret
within a doubly logarithmic factor of

RB +min
ν≥0

⎛

⎝
Tν +

dµ̇(x⊺∗θ∗)

∆ ∨ ν
log(

∣X ∣

δ
) + d log(

1

∆ ∨ ν
)
⎞

⎠

+ dκ0

⎛

⎝
d + log(

∣X ∣

δ
)
⎞

⎠
.

Remark 1. Using the naive warmup (5), the one can show
that RB = O (d

2κ log(∣X ∣/δ)).

The OFULog algorithm of (Abeille, Faury,
and Calauzènes 2021) achieves a regret bound of
Õ(d log2(κ)

√
µ̇(x⊺∗θ∗)T + d2κ) where the lower or-

der term may be improved for the case where there are
few sub-optimal arms so the lower order term scales with
the number of arms without the factor κ. SupLogistic
of Jun et al. (2021) follows SupLinRel-type sampling
scheme to eliminates arms based on their natural parameter
estimates and achieves a regret of Õ(

√
dT + κ2d3).1 To

compare the leading term of the regret bound, SupLogistic
achieves a better dependence on d and κ. However, it has
a worse dependence with µ̇(x⊺∗θ∗) due to the changing
arm set setting and makes strong assumptions of stochastic
contexts and bounded minimum eigenvalues. The regret
bound of OFULog is free of these assumptions and have a
better lower-order terms, but the leading term is suboptimal.

In the following Corollary, we further upper bound the
result of Theorem 2 in order to compare to the results of
(Abeille, Faury, and Calauzènes 2021) and (Jun et al. 2021)
and show that HOMER enjoys state of the art dependence on
d, µ̇(x⊺∗θ∗), and log(κ) simultaneously and also matches the
state-of-the-art worst-case lower order terms d2κ.

Corollary 3. Suppose we run HOMER with δ = 1/T with the
naive warmup (5) in the same setting as Theorem 2. Then,
HOMER satisfies

E[RT ] =Ô ((
√
dT µ̇(x⊺∗θ∗) log(∣X ∣T )

∧
dµ̇(x⊺∗θ∗) log(∣X ∣T )

∆
) + d2κ log(∣X ∣T )

⎞

⎠

where Ô hides doubly logarithmic factors.

This highlights that HOMER simultaneously enjoys the op-
timal dependence on d exhibited by SupLogistic and the
state of the art dependence on µ̇(x⊺∗θ∗) seen in OFULog.
Furthermore, HOMER avoids a dependence on log(κ) in its
leading term.

3 Warmup by Accepts and Rejects (WAR)
We now describe our novel and efficient warmup procedure
that is δ-valid. The problem with the naive warmup (5) is that
when arms in the support of the design have norm close to 1,
then gnaive will scale with κd leading a to κd2 regret lower
order term. In this section, we propose a novel warmup algo-
rithm called Warmup by Accepts and Rejects (WAR) that can
significantly reduce the number of samples while provably
being never worse than the naive warmup.

Inuition from 1d. Before describing the method, we pro-
vide some intuition from the case of d = 1 with X = [−1,1].

1Jun et al. (2021) in fact have reported that the lower order term
is O(κ2d), but there is a hidden dependency on d. This is because
they assume that the expected minimum eigenvalue is at least σ2

0 ,
but σ2

0 is 1/d at best. Our reported rate is for the best case of σ2
0 =

1/d.
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In this case, the design problem is simplified because of the
fact that λ∗, the solution to the G-optimal problem 4, is sup-
ported on only one arm. Thus, it suffices to find x†:

x†
= argmax

x∈X
µ̇(xθ∗)x

2. (6)

Without loss of generality, assume that ∣θ∗∣ ≥

argmaxz∈R µ̇(z)z
2 = 2.399.. ( otherwise κ0 ≤ 13.103

is not too large and we can employ the naive warmup).
Then,

max
x∈[−1,1]

µ̇(xθ∗)x
2
=

1

(θ∗)2
max

x∈[−1,1]
µ̇(xθ∗)x

2
(θ∗)

2 (7)

=
1

(θ∗)2
max

z∈[−∣θ∗∣,∣θ∗∣]
µ̇(z)z2

(a)
=

0.439..

(θ∗)2

where (a) is by the assumption ∣θ∗∣ ≥ 2.399.. and numerical
evaluation, and x† = argmaxx∈[−1,1] µ̇(xθ∗)x

2 = ±2.399..
∣θ∗∣ .

!.#$$...
%∗ , &.'#$...%∗ "

Figure 1: The objective function of (6) with X = [−1,1].

We summarize the solution of the optimization problem
above in Figure 1. We make two observations from this 1d
example. Firstly, somewhat surprisingly the best design for
the warmup does not always choose the arm with the largest
magnitude unlike G-optimal design in the linear case. Sec-
ondly, in the best case, the number of samples needed to
ensure the warmup is O(θ2∗)γ(1). Thus, we speculate that,
for d > 1, only O(∥θ∗∥

2)dγ(d) samples may be needed for
the warmup, which is significantly smaller than κdγ(d).

The challenge is that we do not know θ∗. However, we can
use a halving procedure to find a constant factor approxima-
tion of ∣θ∗∣ in O(log(∣θ∗∣) sample complexity. The key idea
is that by choosing an arm x s.t. ∣x∣ ≈ 1/∣θ∗∣, the rewards con-
ditioned on x must have high variance, guaranteeing ∣xθ∗∣ is
sufficiently small. Thus, starting from the arm x = 1, we
can sample until verifying that the reward variance condi-
tional on x is either small enough (e.g., ∣xθ∗∣ ≥ 1) or large
enough (e.g., ∣xθ∗∣ ≤ 2), which can be done using confidence
bounds such as empirical Bernstein’s inequality. Once we
verify that the variance is small enough, it means that ∣x∣
is large enough, so we can then move on to the next arm
x = 1/2 (i.e., halving). We repeat this process until we iden-
tify an arm whose variance is large enough, which means
that we have approximately solved (6). It is easy to see that
this procedure terminates in ∼ log ∣θ∗∣ iterations, spending
total ∼ log ∣θ∗∣ samples.

Note that finding the arm x ≈ 1/∣θ∗∣ alone is not suf-
ficient because we need to certify that the warmup condi-
tion (2) holds. For this, we realize that the series of ac-
cept/rejects form a confidence bound on θ∗. Specifically if
x̂ is the arm that is accepted in the last iteration we have

that θ∗ ∈ C ∶= {θ ∈ R ∶ 1/(2∣x̂∣) ≤ ∣θ∗∣ ≤ 2/∣x̂∣} using
the fact that 2x̂ was rejected. We can then solve the de-
sign minλmaxx∈[−1,1],θ∈C ∥x∥

2
Hλ(θ)−1 and then sample to

certify (2) with high probability.
Warmup by Accepts and Rejects (WAR) The remain-

ing challenge is to extend the previous halving procedure
to generic discrete arm sets and also to the multidimen-
sional case. This leads to our algorithm WAR described in
Algorithm 2. Before describing the details, we introduce key
quantities. Assuming an arm x is pulled N times, let µ̂x be
the empirical mean of the observed rewards. We now con-
struct valid lower and upper confidence bounds Lx and Ux

on ∣x⊺θ∗∣ where Lx can be 0 and Ux can be∞. To do so, for
each arm x we will use an anytime version of the empirical
Bernstein inequality (Mnih, Szepesvári, and Audibert 2008)
which has the following confidence width:

Wx ∶=

√
µ̂x(1 − µ̂x)2 log(3/δN)

N
+
3 log(3/δN)

N

where δN = ∣X ∣N(N + 1)/δ.

Theorem 4 (Mnih, Szepesvári, and Audibert (2008)). De-
fine E = {∀x ∈ X ,∀N ≥ 1, µ(x⊺θ∗) ∈ [µ̂x −Wx, µ̂x +Wx}.
Then, P(E) ≥ 1 − δ.

We can then define Lx = µ
−1(0 ∨ (µ̂x −Wx)) and Ux =

µ−1(1 ∧ (µ̂x +Wx)).
The pseudocode of WAR can be found in Algorithm 2. Let

m be the stage index and define Hm be the set of arms that
were pulled up to (and including) the stage m. Let S be a
known upper bound on ∥θ∗∥ and let Bd(S) be the L2-ball of
radius S. We define a confidence set on θ∗:

Cm = {θ ∈ Bd(S) ∶ ∣x
⊺θ∣ ∈ [Lx, Ux],∀x ∈Hm}

Let µ̇opt
m (x) be the optimistic estimate and µ̇pes

m (x) be the
pessimistic estimate defined by

µ̇opt
m (x) = max

θ∈Cm

µ̇(x⊺θ) and µ̇pes
m (x) = min

θ∈Cm

µ̇(x⊺θ)

Define the accept and reject event on line 5 as

Accept(x) ∶= {Ux < U} and Reject(x) ∶= {Lx > L}

for some 0 < L < U . WAR consists of two parts. The first part,
which we call optimistic probing, is the halving idea above
extended to higher dimensions. The difference from 1d is
that we first find d arms that form a good basis, under the as-
sumption that their variances are not small. We then perform
accepts/rejects to filter out arms with small variances that
would likely introduce κ0 dependency in the planning. This
filtering is done using µ̇opt(x) because we do not want arms
whose variances are small even in the best case. Note we
use the threshold L/r rather than L in line 9 in order to get
the halving effect. The second part called Pessimistic Plan-
ning simply computes the design based on the pessimistic
estimate of the variances µ̇pes(x), which allows the result-
ing sample assignments to certify the warmup condition 2.
We provide a practical and detailed version of WAR in our
supplementary.
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Algorithm 2: Warmup by Accepts and Rejects (WAR)
Require: Arm set X , parameters L < R, r > 1.
1: Set S = X .
2: [Optimistic probing]
3: for m = 1,2, . . . do
4: Solve minλ∈△S maxx∈S ∥x∥2V −1

λ
where Vλ = ∑x∈S λxxx

⊺

to obtain a 2-approximate solution supported on
O(d log(log(d))) points; see Remark 2 below. Call
this solution λ̂(m).

5: For every arm x ∈ Supp(λ̂(m)), pull it until we either ac-
cept or reject (if it was pulled previously, skip sampling and
reuse the accept/reject result).

6: if all the arms in Supp(λ̂(m)) are accepted then
7: break
8: end if
9: S ← S∖{x ∈ S ∶ µ̇opt

m (x) ≤ µ̇ (Lr )}.
10: end for
11: [Pessimistic planning]
12: Let λ̂WAR and gWAR be the solution and the objec-

tive of argminλ∈△X maxx∈X ∥x∥2(Hpes
λ
)−1 where Hpes

λ =
∑x∈X λxµ̇

pes
m (x)xx⊺ so that the support size of λ̂WAR is at most

d(d + 1)/2.
13: Pull arm x exactly ⌈λ̂WARx ⋅ γ(d)gWAR⌉.
14: Return the MLE θ̂ computed from these samples.

Remark 2. Section 3 of Todd (2016) provides various al-
gorithms for solving the G-optimal design (line 4 of Al-
gorithm 2). For example, using the Kumar-Yildirim ini-
tialization (Kumar and Yildirim 2005) along with the
Khachiyan first-order algorithm (Khachiyan 1996) results
in a 2-approximate solution with the support size of
O(d log(log(d))) (see Lemma 3.7(ii) of Todd (2016)).

WAR enjoys the following correctness guarantee:

Theorem 5. Assume ∣θ∗∣ ≥ 2.399. Suppose U ≤ 2.399. Then,
with probability at least 1 − δ,

(i) WAR is a δ-valid warmup algorithm.
(ii) The sample complexity of the Pessimistic planning

phase of WAR is never worse than the naive warmup,
i.e., O(gnaiveγ(d)); see (5).

(iii) For d = 1, if XL ∶= {x ∈ X ∶ ∣xθ∗∣ ≤
L
r
} is nonempty,

then our algorithm finds a design λ whose multiplica-
tive approximation ratio w.r.t. the optimal continuous
design

min
λ∈△[−1,1]

max
x∈X
∥x∥2Hλ(θ∗)−1 =

(θ∗)2

0.439...
⋅max
x∈X
∣x∣

is 1
0.41

0.439..
µ̇(x0θ∗)(x0θ∗)2 where x0 ∶= argmaxx∈XL

∣xθ∗∣.

Theorem 5(iii) provides an interesting characterization in
1d of when we can guarantee that the warmup does not
scale with κ but rather scale with ∥θ∗∥2 ≈ log2(κ). When
L/r = 2, the approximation ratio is ≈ 18.23 in the best case
of x0 = L/r, and in general it degrades as ∣x0θ∗∣ decreases.
Theorem 5 reflects the importance of existence of arms with
large variances which makes sense given that the concentra-
tion bound scales like ∥x∥Ht(θ∗)−1 . Note that by reducing r

or increasing L we can guarantee that XL is nonempty, at
the cost of increasing the sample complexity.
Theorem 6. Let ∆w ∶= µ(U) − µ(L). In WAR, Pessimistic
planning assigns total O(γ(d)gWAR + d2) samples. Further-
more, under the same assumptions as Theorem 5 with prob-
ability at least 1 − 2δ, when d = 1 Optimistic probing takes
no more than 2 + logr(∣θ∗∣/L) iterations and each iteration
of optimistic probing takes no more than O(d log(log(d)) ⋅
∆−2w log(∆−2w ∣X ∣/δ)) samples.

Specifically, a smaller r prolongs the number of optimistic
probing iterations, and a larger L increases ∆−2w so the per-
iteration sample complexity increases as well. One can show
that gWAR is O(d) ignoring the dependence on ∥θ∗∥, so the
total number of samples assigned by pessimistic planning
O(d2). Proving the overall sample complexity of WAR for
multi-dimensional cases would likely require analyzing how
the volume of the confidence set evolve over optimistic prob-
ing iterations; we leave this as future work.

Numerical Evaluation To verify the performance of
WAR numerically, we have drawn 20 arms from the a three-
dimensional unit sphere. The unknown θ∗ was drawn the
same way but scaled to have the norm S ∈ {2,4,8}. We have
run the naive warmup (5), WAR (2), and the oracle warmup
that solves g∗ = minλ∈△X maxx∈X ∥x∥

2
Hλ(θ∗)−1 . We then

computed the total number of samples required to satisfy the
warmup condition (2) from each method, ignoring the inte-
ger effect for simplicity. We repeat this process 5 times and
report the result in Table 1 where WAR is significantly better
than the naive warmup and not far from the oracle warmup.

4 On Dimension Dependence in Warmup
In this section we discuss the tightness of the warm-up con-
dition in Theorem 1 of Jun et al. (2021) as well as Lemma 1.
Both confidence widths are tight asymptotically as they
match up to constant factors the Gaussian-like deviation ob-
served from the delta method. What is not immediately clear
is whether the condition that maxs∈[t] ∥xs∥

2
Ht(θ∗)−1 ≲

1
d

is
optimal (note we omit the factors involving δ for simplic-
ity).2. To satisfy this, one needs to pull at least Ω(d2) arms
even in the best case where µ̇(x⊺sθ∗) = Ω(1). This is quite
different from the standard linear model’s fixed design in-
equality (e.g., Lattimore and Szepesvári (2020, Eq (20.2)))
that requires us to pull d linearly independent arm. Requir-
ing only O(d) arm pulls corresponds to relaxing the warmup
condition to the following conjectured one:

max
s∈[t]
∥xs∥

2
Ht(θ∗)−1 ≲ 1 . (8)

which is likely necessary. Note, if we have to pull d2 arms
before using the concentration inequality, we will have to
pay the lower order term of d2 in regret, implying that the
regret bound is vacuous up to T = O(d2), the current best
known rate for logistic linear bandits. Again this is in con-
trast with the linear setting where the regret is vacuous up to
time T = O(d) only.

2When this condition is not true, one can use the confidence
bound of Faury et al. (2020), which comes with a factor of

√
dS in

the width (can also be tuned to
√
dS).
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Warmup S = 2 S = 4 S = 8
Naive 8,377± 0.3 49,794± 0.1 2,623,477± 3.0
WAR 6,536±237.9 19,701± 805.0 122,405±30815.5
Oracle 4,970± 69.0 11,720±1094.2 50,258± 4052.5

Table 1: Numerical evaluation of the naive warmup, WAR, and the oracle warmup. Each cell contains the average amount of
samples required to satisfy the warmup condition and the standard deviation.

We claim that the conjecture (8) cannot be true for the
MLE. We provide a sketch of our counterexample. Let θ∗ =
(c, c, . . . , c), c ∈ R be the true underlying parameter and
assume that X = {e1, . . . , ed}, the canonical basis in Rd,
and we sample each arm N times. Denote by v(i) the i-
th component of a vector v. In this setup, if θ̂ is the MLE,
then θ̂(i) is just the one-dimensional MLE considered for
each dimension i independently. Let x be the target arm.
We are interested in controlling the high probability devi-
ation of x⊺(θ̂ − θ∗), which we call the prediction error, by
O(∥x∥Ht(θ∗)−1) where Ht is computed by dN samples. The
key observation is that the MLE is biased in GLM’s ex-
cept for special cases like linear models; quantifying and
correcting the bias has been studied since Bartlett (1953),
though the corrections often rely on a plug-in estimate or
are asymptotic in nature and do not have precise mathemati-
cal guarantees for finite samples. We now show that the pre-
diction error may be dominated by the bias, rather than the
variance, and so we are forced to oversample to correct this
bias. Specifically, consider the following decomposition of
the prediction error in the setting above:

d

∑
i=1

x(i) ⋅ (θ̂(i) − θ∗(i))

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=∶ (prediction error)

=
d

∑
i=1

x(i) ⋅ (E[θ̂(i)] − θ∗(i))
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=∶ (A)

+
d

∑
i=1

x(i) ⋅ (θ̂(i) −E[θ̂(i)])

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=∶ (B)

.

The bias term (A) is the bias that is incurred per co-
ordinate. In this setting, critically, the magnitude of the
coordinate-wise bias clearly does not depend on the di-
mension.3 By choosing x = (h1/

√
d, . . . , hd/

√
d) with

hi ∶= sign(E[θ̂(i)] − θ∗(i)), one can see that the bias
term (A) will grow with d. Consequently, even if the devia-
tion (B) is controlled, i.e. (B) is bounded by ∥x∥Ht(θ∗)−1 =√

∑
d
i=1

(hi/
√
d)2

µ̇(c)N =
√

1
µ̇(c)N (which does not grow with d),

the bias will be the bottleneck in controlling the LHS. This
means that, for large enough d, one cannot aim to control
the prediction error by O(∥x∥Ht(θ∗)−1) unless we choose the
number of samples N as a function of d. This is effectively

3In fact, the bias of the MLE is not well-defined since the ob-
servations can be all 1s or all 0s from an arm. One can go around
it by setting a suitable for those special cases; e.g., when observing
all 1s (or all 0s), set θ̂i = log( p̂

1−p̂) where p̂ = n−.5
n

.

the role of the warmup condition (2) – it is requiring an over-
sampling w.r.t. d so the bias is controlled.

We conjecture that the warmup condition (2) is tight for a
concentration inequality on the MLE. To explain our reason-
ing, consider the same setup as above. Suppose the deviation
(B) behaves like ∥x∥Ht(θ∗)−1 =

√
1

µ̇(c)N . Using the formula
by Cordeiro and McCullagh (1991), the bias of order 1/N
for each coordinate is 1

2N
⋅
µ(c)−µ(−c)

µ̇(c) (through a second or-
der Taylor series expansion); we also confirm it numerically
in our supplementary. Thus, as long as c is bounded away
from 0, we have that the first order bias is Θ ( 1

Nµ̇(c)). Let
us set N = qµ̇(c)−1 for some q ≥ 1. Then, the bias (A) is
d ⋅ 1√

d
⋅ 1
q
=
√
d
q

and the deviation term (B) is
√

1
q

. To con-
trol the bias term to be below the deviation term, we must
have q ≥ d. This means that we need to sample at least
d ⋅N = dqµ̇(c)−1 = d2µ̇(c)−1, which matches the warmup
condition (2).

Note that the result above is specific to the MLE. For the
special case of the canonical basis arm set, one can use an al-
ternative estimator per coordinate such as the KT estimator
θ̂(i) = log(H+1/2

T+1/2 ) where H is the number of successes and
T = N−H (Krichevsky and Trofimov 1981), which is equiv-
alent to the bias correction method by Cox and Snell (2018).
The effect is that the bias now scales like 1/N2, which can
potentially improve the warmup condition (2). In our supple-
mentary, we empirically verify this and provide a conjecture
that an extension of the KT estimator may admit O(d4/3)
sample complexity for the warmup.

Finally, we emphasize that the fixed design inequalities
capture the fundamental aspects of the prediction error with-
out distributional assumptions on the covariates x besides
conditional independence. The warmup conditions for these
inequalities indicating Gaussian tails with the asymptotic
variance are closely related to the question of ‘when the
predictive distribution can be approximately Gaussian’. Yet,
we do not know what the fundamental limits are for these
warmup conditions beyond the standard linear case nor how
to correct the bias of the MLE with precise mathematical
guarantees. Just as our discussion above naturally motivated
new estimators, research surrounding these inequalities is
likely to impact not only bandits but also design of exper-
iments, uncertainty quantification, and improving prediction
accuracy in supervised learning.
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