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Abstract

One of challenges of artificial intelligence as a whole is ro-
bustness. Many issues such as adversarial examples, out of
distribution performance, Clever Hans phenomena, and the
wider areas of Al evaluation and explainable Al, have to do
with the following question: Did the system fail because it is
a hard instance or because something else? In this paper we
address this question with a generic method for estimating
IRT-based instance difficulty for a wide range of Al domains
covering several areas, from supervised feature-based clas-
sification to automated reasoning. We show how to estimate
difficulty systematically using off-the-shelf machine learning
regression models. We illustrate the usefulness of this estima-
tion for a range of applications.

Introduction

As no Al system can be perfect, robustness must be based
on knowing where and why it fails, avoiding highly unex-
pected failures. One key element in this understanding is in-
stance difficulty. This effect of difficulty on robustness could
be rephrased as follows: is it unexpected that a customary
system fails on this instance? Accordingly, difficulty is de-
fined as a metric A that decreases with the expected perfor-
mance R for a customary system. A good difficulty metric
would maximise the following expected probability:

Emi,mj,m[h(mi) < h(CC]) = R(m,a}z) > R(m, :Bj)] (1)

with x;, ; being feature vectors sampled from X and m
sampled from M, according to a reference distribution of
instances and systems respectively. Note that the choice of
M is key here. If M is a human population, our notion of
difficulty would be anthropocentric. If M is a collection of
representative Al techniques, our notion of difficulty would
be Al-centric. Difficulty is hence defined as a notion of con-
formity. If a capable system fails for an easy instance, we
could signal this as non-conformity.

Beyond the above definition, we impose several other
desiderata to a method for calculating difficulty:

* Attribute-based. Applicable to the observable features of
each instance, without the need of comparing it to other
instances. Many instance hardness metrics do not meet

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

7719

this property (Smith, Martinez, and Giraud-Carrier 2014)
and cannot explain difficulty based on the instance.

* System-independent. Many uncertainty or confidence es-
timation metrics are system-specific (Hendrycks and
Gimpel 2016; Jiang et al. 2018; Corbiere et al. 2019) or
particular to another encoding model’s latent variables.

* Domain-generic. Applicable to all kinds of tasks and ar-
eas in Al (from machine learning to reasoning), and not
only for those areas or tasks where specific instance hard-
ness or difficulty metrics exist.

The populational nature of Eq. 1 is convenient in many ar-
eas of Al since we have a wide range of techniques that are
usually applied before selecting the system we want to de-
ploy. All these discarded suboptimal systems can be reused
for the calculation of difficulty, as we will see in this paper.
However, the use of a population of systems entails some
risks as well. For instance, if the population contains a non-
conformant system (failing on the easy instances and suc-
ceeding in some of the hard ones), it may lead to very unsta-
ble difficulty metrics. This may happen if we just calculate
the average error of a set of systems for each instance as a
proxy for difficulty (Martinez-Plumed et al. 2019).

A solution to this problem was introduced several decades
ago, and it is known as item response theory (IRT), where
difficulty is inferred from a matrix of items (instances) and
respondents (systems), giving more relevance to conformant
systems. In addition, IRT gives a scaled metric of difficulty
that follows a normal distribution and can be compared di-
rectly against the ability of a system. However, IRT and
other difficulty metrics are derived from previous perfor-
mance results, but do not depend on the instance space,
so we cannot anticipate the difficulty of new instances. We
present a relatively straightforward solution for this impor-
tant issue: training regression models with the problem fea-
tures as input and difficulty as output.

This paper covers a range of problems in Al, derive
their IRT difficulties, and train a regression model for each
domain—a difficulty estimator—, which we evaluate sys-
tematically. For many domains, the estimates for IRT diffi-
culty are very good, according to RMSE and Spearman cor-
relation. We illustrate the explanatory power of these diffi-
culty models on a series of applications:

* Explainable AI: understanding what makes instances



hard, or groups of instances (e.g., classes), and explain-
ing whether an error is expected or unexpected.

* Robust evaluation: comparing systems using their char-
acteristic curves. Systems that are reliable on all (or
most) easy instances should be considered more robust.

* Al progress: analysing whether the increase of perfor-
mance has focused on the low-hanging easy instances or
more complex instances through specialisation.

e Distribution changes and perturbations: a very capable
system failing on a batch of very easy instances may sug-
gest a distributional shift or an adversarial attack. The in-
verse phenomenon may signal a Clever Hans effect.

The main contributions of this paper are: (1) the first general
methodology for training an estimator for IRT difficulties,
(2) comprehensive empirical results showing the wide range
of domains where it works, and (3) the evidence of its appli-
cability as a powerful explanatory tool.

Related Work

Difficult instances may cause problems during Al system
development, especially for models that are trained. These
instances (e.g., usually associated with noise, outliers or de-
cision boundaries) have been blamed for overfitting, lack
of convergence or both. For instance, Smith, Martinez, and
Giraud-Carrier (2014) identify instances that are hard to
classify through instance hardness metrics, which are in-
ferred from measures of density and overlapping.

In computer vision, there are global image properties such
as salience, memorability, photo quality and the importance
of objects, but there is limited work in extracting image diffi-
culty. We find intrinsic measures of difficulty based on vari-
ous image features such as clutter (Russakovsky et al. 2015),
tone, colour, gradient and texture (Liu et al. 2011). There are
also extrinsic (anthropomorphic) approaches, such as esti-
mating the difficulty of an image based on the time needed
by a human to segment it (Vijayanarasimhan and Grauman
2009).

Natural language processing inherits some metrics of dif-
ficulty from linguistics based on lexical readability and rich-
ness. Flesch-Kincaid lexical readability is based on tradi-
tional features of text such as word and sentence length (Kin-
caid et al. 1975). A widely used lexical measure is the Type-
Token Ratio (Richards 1987), which is the ratio of the num-
ber of unique word tokens to the total number of word tokens
in a text. Another related measure of lexical richness is Ha-
pax richness (Hoover 2003), defined as the number of words
that occur only once divided by the number of total words.

All the approaches above are specific to a domain and
in many cases also anthropocentric. A completely different
approach is Item Response Theory, a well-developed sub-
discipline in psychometrics (Embretson and Reise 2000),
only recently brought to AI (Martinez-Plumed et al. 2016;
Lalor 2020). IRT has been used in several areas of Al,
where the Al systems are treated as respondents and the
tasks as items, including classification (Martinez-Plumed
et al. 2016; Martinez-Plumed et al. 2019; Chen and Ahn
2020), regression (Moraes et al. 2020), multi-agent scenar-
ios (Chmait et al. 2017), XAI (Kline et al. 2020) and other Al
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benchmarks (Martinez-Plumed and Herndandez-Orallo 2017;
Martinez-Plumed and Herndndez-Orallo 2018, 2020).

In IRT, the probability of a correct response for an item
is a function of the respondent’s ability and some item’s pa-
rameters. The respondent solves the problem and the item
is the problem instance itself. We focus on the dichotomous
models where the response can be either correct or incorrect.
Let Uj; be a binary response of a respondent j to item ¢, with
U;; = 1 for a correct response and Uj; = 0 otherwise. The
most widely used functions are of logistic form:

_ 1

- 1 =+ exp(fai(t‘)j — (2)

PU;; =116;

( J | J) bz))
For each item, the above model provides an Item Character-
istic Curve (ICC) (see Fig. 1, left), characterised by difficulty
(b;), which is the location parameter of the logistic function.
If ability 6; equals item difficulty b;, then there are even odds
of a correct answer (cutting the curve as exactly 0.5, as the
light blue dashed shows in the figure).
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Figure 1: Left: Example of a 2PL IRT ICC curve, with slope

a = 2 in red and location parameter b = 3 in blue. Right:
Example of SCC curves with different abilities.
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Items can also be characterised by their discrimination
(a;): the steepness of the function at the location point. It
represents the degree to which the item discriminates be-
tween respondents in different regions on the latent contin-
uum. An item having a; 1.0 discriminates fairly well
since small increases in ability substantially increase the ca-
pacity to respond correctly. IRT models that assume a;
1.0 are known as 1PL, and only need to inferability ; and
difficulty b;. Models estimating ¢; and both a; and b; are
known as 2PL, leading to better fit on some occasions but
also some overfitting. As all IRT models assume one single
parameter for the respondent, their dual plots (known orig-
inally as person characteristic curves, here renamed as sys-
tem characteristic curves (SCC), also follow a logistic func-
tion (see Fig. 1, right).

Respondents who tend to correctly answer the most diffi-
cult items will be assigned to high values of ability. Difficult
items in turn are those correctly answered only by the most
proficient respondents. From this understanding and some
common assumptions (ability and difficulty following some
particular normal distributions), the latent variables can be
inferred from a table of item-respondent pairs Uj;. Some
two-step iterative variants of maximum-likelihood estima-
tion (MLE), such as Birnbaum’s method (Birnbaum 1968),
can be used to infer all the IRT parameters. Further coverage
of IRT can be found in the appendix (Martinez Plumed et al.
2022).



IRT fulfils two of the desiderata that we outlined in
the introduction, and it will be our choice for a system-
independent domain-generic difficulty metric. It also has
some advantages over using average performance as a met-
ric of difficulty, in terms of distribution, stability and pre-
dictability, as has been studied in the literature of IRT, and
as we will corroborate here (more details in the appendix).
However, there is an important limitation of IRT difficulty
(and other metrics of difficulty based on average error). For
anew instance that has never been evaluated for a set of sub-
jects or systems, how can we estimate its difficulty? Should
we run the instance through all the systems that were used
in the IRT estimation? Is this realistic and practical? First,
we may not have access to all these systems in deployment
time, and even if we do, this may be a slow process. In-
stead, we use the instances for which we have previously
calculated the IRT difficulties to train a difficulty estimator

h(x), a regression model, with the instance features as input
and difficulty value as output. IRT ignores the features alto-
gether, the estimator does not, as it is attribute-based. Given
a new, previously unseen, instance in its input feature repre-
sentation x (a feature vector, an image or a piece of text), we
just apply hi to it. In this way, no previous systems are longer
needed and no IRT re-estimation required.

Methodology

This section presents the choice of datasets and difficulty
metrics, and the procedure to build the difficulty estimators'.

Benchmarks In our study, we address a set of 18 illustra-
tive benchmarks from different AI domains, including su-
pervised learning, perception, natural language processing,
and reasoning (see Table 1). We put a special emphasis on
classification problems, since the difficulty of instances usu-
ally depends on neighbouring instances, and we want to ex-
plore if an attribute-based estimation model predicting dif-
ficulty from a single instance can circumvent this situation.
Although some of these benchmarks are not based on ma-
chine learning models, we will use the term Al system or
model indistinctly. The selection is guided by comprehen-
siveness but also constrained by those benchmarks where
there is a sufficiently large number |I| of examples (items)
and |J| models (respondents). In IRT, it is recommended to
have at least 10-20 responses per item (Wright and Stone
1979). More importantly, we need the instance-wise results,
i.e., a |J| x |I| matrix with the performance of each sys-
tem for each instance. Finding experiments that were not
reported in an aggregated way was not an easy task. In the
appendix we give further details about how we found or gen-
erated the datasets for the 18 benchmarks.

Reference difficulty metrics: AvE and IRT nPL For
each benchmark, we first check there is at least |J| = 10
systems or models that are sufficiently diverse (different ar-
chitectures or technologies). Next, we obtain their responses
for unseen instances (e.g., in machine learning scenarios we

'All the code and results can be found in https:/github.
com/nandomp/Aldifficulty. Further details in the appendix
(Martinez Plumed et al. 2022).
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will be using the test folds, so it is actually test performance,
even if we cover the whole dataset). This will be our |.J| x |I|
matrix U with all binary responses U;;. When original per-
formance is not binary, we will convert it to binary responses
by comparing them with the median result for that item (see
benchmarks with 2 superindex in Table 1).

One simple populational way of deriving a metric of dif-
ficulty is average error: hayg(i) = 1 — ﬁ Elj‘]:ll Uj;. Be-
cause of the many advantages of IRT we also use the 1PL
and 2PL models. For instance, A1 p1,(7) = b; denotes a diffi-
culty metric for ¢ that is simply the b; parameter for instance
1 as obtained by a 1PL IRT model on U.

We follow the recommendations from (Martinez-Plumed
et al. 2019) for the application of IRT in. The specific details
are explained in the appendix. We will use two further ap-
proaches, AVE (—abs) and 2PL (—abs), which are similar to
AvE and 2PL, respectively, but the abstruse instances (those
with negative discrimination) are eliminated.

Training and evaluating the difficulty estimator For
each benchmark, once a difficulty metric /() has been cal-
culated for each instance ¢ in the whole dataset, we now
focus on the problem of building a difficulty estimator for
other instances. For each instance ¢ we recover their features
x;, and we create a supervised dataset D = (x;, i(4));. As
IRT difficulties are built to approximately follow a normal
distribution with standard deviation 1 but different locations
depending on the dataset (but usually with means around —3
and 3 (Martinez-Plumed et al. 2019)), we finally chose to
remove those instances whose difficulty is out of the range
[—6, 6], which are considered outliers. This happened in half
of the benchmarks for very easy instances for which all tech-
niques are correct, never affecting more than 0.5% of the
instances in the 1PL case.

With this data, we only need to choose appropriate re-
gression models to estimate i, so that for any new instance
feature vector & we simply get its difficulty as ﬁ(a:) The
learning algorithms will depend on the data representation
(feature-value, bitmap or text). In the case of those bench-
marks using a feature-value data representation, common
state-of-the art machine learning models will be used. We
followed 2 x 5-fold cross validation, so we will report aver-
age results for the test folds. The choice of techniques, pre-
processing and hyperparameters for feature-value, bitmap
and NLP problems can be found in the appendix.

We will use Normalised RMSE (Root Mean Squared Er-
ror divided by standard deviation), denoted by nRMSE, and
Spearman (rank) correlation, as loss functions to assess the
quality of our regression models. We normalise the RMSE to
facilitate the comparison between different benchmarks with
different scales and use Spearman correlation as a metric of

how well /i) ranks the difficulty of a set of instances.

Experimental questions Once the experimental setting is
clear, we now want to investigate what difficulty metric is
best, how to estimate it and how good the estimation is.
For this, we set five experimental questions. Q1: How do
difficulties distribute per benchmark for the different diffi-
culty metrics? Q2: What are the most appropriate regression



Domain Task Benchmark  |I| Features |J| Description
S ised Learni Classificati diabetes 768 8 353 Diabetes diagnostic
upervised Learning assification kel 2110 21 213 Software defect prediction

Regression

liver-disorders

345 6 74 Liver disorder status

Audio Processing Speaker recognition

japaneseVowels 9961 14 558 Records of nine male speakers

letter

Optical Character Recognition optdigits

20000 16 174 Letter image recognition Data
5620 64 305 Optical recognition of handwritten digits

Computer Vision pendigits 10992 16 455 Pen-based recognition of handwritten digits
satimage 6430 36 203 Multl—spectfral satellite images.
1 R iti segment 9901 19 2310 Database of outdoor images
mage Recognition vehicle 846 18 847 Silhouette information of vehicles
CIFAR-10 60000 3072 156 32x32 color images, 10 classes of objects
MNIST 70000 784 1000 Database of 28x28 handwritten digits

Fashion-MNIST 70000 784

449 Zalando’s 28x28 article images

UMIST 575 10304 53 Grayscale faces (views) of 20 different people.
Automated Reasonin Automated Theorem Proving _tptp” 500 9 17 The CADE ATP System Competition results
& Boolean Satifiability sat 452 21 16 The results for solvers of the SAT Competition
N 1L p ine Senti Analvsi IMDb 872 1253.85* 12 Movie reviews from IMDb platform
atural Language Processing Sentiment Analysis SST-2 872 1273.45* 10 Stanford Sentiment (analysis) Treebank.

* Average number of characters ~ Responses binarised

Table 1: Benchmarks used, categorised by the domain and task, their name, number of instances (|I|), number of features and
number of Al systems (|.J]) from which we obtained the matrix of |.J| x |I| responses over the individual instances.

models for difficulty estimation depending on the domain
and their representation (feature-based, bitmap or text)? Q3:
Does the difficulty estimation model use the same features
and representations than the original models? Q4: What is
the most reliable and predictable difficulty metric? Q5: How
well can we estimate difficulty from the instance attributes
and how good the new methodology works in general?

Results

Fig. 2 shows the 1PL difficulty distribution per benchmark,
with a standard deviation around 1 (as expected). Other ap-
proaches have similar distributions but more frequently mul-
timodal and with a higher number of outliers, as we show
for 2PL difficulty and especially AvE difficulty (Fig. 7 and
Fig. 8 in the appendix). In terms of location, we see that
all the methods agree in recognising those benchmarks with
more difficult instances (UMIST, CIFAR-10, TPTP, liver-
disorders) and those with less difficult instances (pendigits,
japaneseVowels and vehicle). In sum, 1PL seems to have
some distributional advantages.

UMIST (0%)
cifar-10 ———— e (0%)

tptp
liver-disorders (ng))
- — (7
IMDB 0°/°
sat — 0000000 (0%)

letter (0(.3;:;0)

diabetes
satimage e (0(.)%/%)
Fashion-MNIST (0%)
optdigits = (0.18%)
PryE— Egzg:f,;
ist 784 — ———— .59%
mglesgﬁwent T (8'2340@))
vehicle —— il 24%
japaneseVowels NN . (23%0)
pendigits B (2.71%)

-4 4

Diffigulty
Figure 2: 1PL difficulty distribution per dataset (percent-
age of difficulties outside the [—6, 6] range indicated in the
plots). Benchmarks sorted by average difficulty.

Focusing on estimating 1PL with a regression model, Ta-

ble 2a shows nRMSE and Spearman correlation results for
those benchmarks in Table 1 following a feature-value rep-
resentation. As we can see, rf is the technique achieving the
best results for predicting difficulty. We also compute pair-
wise comparisons in the test set to identify significant differ-
ences between models using Wilcoxon test (Cuzick 1985),
showing the overwhelming dominance of rf. The results are
very good in terms of nRMSE and Spearman correlations.
The worst dataset in terms of correlations is tptp, which is
also the most difficult in this group as per Fig. 2.

For the datasets following an image-based representa-
tion (Table 2b), the results are also very good, especially
when using VGG16 to build the regression model, even bet-
ter than for the feature-based problems. The only exception
is CIFAR-10. We do not find an easy explanation for this
behaviour in terms of number of instances, features, dis-
tribution or location of difficulties. While it is a difficult
benchmark, the results are good with the most difficult one
(UMIST). We do not think it is due to a bad choice of hyper-
parameters either, as the results are poor for the three meth-
ods we tried (VGG16, ResNet-50 and Densenetl21).

Finally, for NLP problems, we see the results in Table 2c.
The results are poor for the two datasets we have analysed,
IMDb and SST-2, for all techniques (BERT is slightly bet-
ter than the rest, but the correlations are still too low). We
make the same considerations here as we did for CIFAR-10,
although in this case we have a small number of instances
(less than 900 instances available), which made the training
of our difficulty estimators a real challenge. Overall, we can
only say for certain that three of the six most difficult bench-
marks (CIFAR-10, IMDb and SST-2) are also those for which
difficulty estimations are poor. This may be a necessary but
not sufficient condition for difficulty estimation to fail, so it
needs further investigation as future work.

Important insights on this and other questions can come
from better understanding the difference between solving
the original problem and solving the difficulty estimation
problem. To this purpose, we have analysed how the original



(@)
elasticNet gbm knn Im rf
nRMSE r nRMSE r nRMSE r nRMSE r nRMSE r

diabetes .96+.04 .59 .93+.06 .631.01+.05.47 .97+.04 .57 .86+.05.73
kel .90+.05 .69 .90+.05 .69 .95+.06 .61 .91+.05 .68 .82+.05.79
liver-dis 1.00+.04.641.01+.05.691.10+.07.761.01+.04 .64 .94+.04 .89
japanese .90+.04 .72 .88+.04 .73 .96+.05 .56 .90+.04 .71 .63+.04 .86
letter ~ .87+.01 .57 .86+.01 .58 .65+.01 .89 .87+.01 .57 .62+.01 .90
optdigits .94+.05 .05 .96+.06 .09 .81+.06 .43 .94+.05 -.04 .81+.06 .65
pendigits .78+.06 .47 .77+.06 .41 .55+.06 .76 .78+.05 .47 .50+.07 .81
satimage .95+.02 .48 .90+.02 .49 .84+.02 .66 .96+.02 .48 .76+.02.75
segment .92+.05 .72 .89+.05 .68 .82+.07 .69 .92+.05 .71 .61+.05 .82
vehicle .80+.12 .49 .78+.15 .64 .84+.11 .84 .81+.11 .48 .65+.07 .82
tptp 1.13+.38.25 .91+.05 .33 .92+.08 .421.10+.33 .18 .82+.05 .69

Dataset

sat 75+.10 .74 74+.06 .74 .70+£.07 .72 .76+.08 .73 .54+.07 .86
(b)
VGG16 ResNet-50 Densenet121
Dataset
nRMSE r nRMSE r nRMSE r
CIFAR-10 1.98+.54.061.94+.11.121.91+.02 .11
MNIST .34+.01 .91 .36+.01 .91 .35+.08 .91
Fashion-MNIST .59+.06 .96 .73+.03 .92 .64+.01 .91
UMIST 40+.1 .83 .76+.17 46 .42+.27 .79

()
T5 (small) BERT (sent.)BERT (base)
nRMSE r nRMSE r nRMSE r

IMDb 1.86+.26 .01 1.48+.11 .18 1.73+.16 .03
SST-2  1.79 £.26-.011.50+.11 .01 1.60+.15 .00

Dataset

Table 2: Estimation of 1PL difficulties using the input fea-
tures (feature vector representation (a), pixels (b) and text
(c)) for those benchmarks in Table 1. Lower values are bet-
ter for nRMSE. Statistical significance denoted in bold.

features are used for the letter benchmark (Frey and Slate
1991), whose goal is to identify 26 letters from a feature-
vector representation. If we look at most important features
of the best difficulty estimator in Table 2 (rf), in Fig. 3 (left),
we see that the variable y . ege (i.e., the mean edge count
left to right) is more than twice as important than the fol-
lowing ones: This means that the difficulty of a character
image heavily depends on the mean number of edges (at all
vertical positions). On the contrary, when analysing the vari-
able importance on the original task in Fig. 3 (right), the
sum of the vertical positions of edges (v .ege) is the most
important one. Also, it is noticeable that the differences be-
tween the first five variables by importance are not as promi-
nent as in the previous case. In general, discrepancies can be
found in machine learning benchmarks if we look at how the
most important features of the difficulty estimator compare
to those of the original task. This may partly explain why
in some cases the original task is easy but estimating diffi-
culty is hard and vice versa. For instance, the expression or
pose of a face may be a distinctive feature for estimating face
recognition difficulty but possibly less useful for classifying
images. More complete discussion in the appendix.

While we have been showing the results for the 1PL met-
ric, we also analysed the results for other difficulty metrics.
We did the comparison for the feature-value benchmarks
and rf, as these give good results consistently. The complete
nRMSE and correlation results for 2PL, AVE, 2PL (—abs)
and AvVE (—abs) are shown in Tables 5, 6, 7 and 8 in the ap-
pendix, respectively. nRMSE values are difficult to compare

Var. Imiortance iDiﬂiculg estimation) Var. Imﬁortance iCIass estimation)
y.ege x.ege

x.ege yege [N

onpix y2bar [

x2bar x2bar [

y2bar x2ybr

xybar xy2br

yegvx xybar

x2ybr y.bar

y.bar Xxegvy

y.box X.bar

xy2br yegvx

Xxegvy width

x.bar onpix

width x.box

X.box y.box

high g 25 50 75 100 Mg 25 50 75 100
Importance Importance

Figure 3: Variable Gini Importance (Breiman 2001) for letter
for 1PL prediction (left) and class prediction (right).

between each other and against Table 2a due to the differ-
ent magnitudes (limited to -6 and 6 for 1PL and 2PL and
variants, but between 0 and 1 for AVE). Instead, here we
only show the Spearman correlations of all metrics in Table
3. We see that 1PL shows better correlations in general than
the other difficulty metrics. This may be related to 1PL more
frequently generating unimodal distributions, as we saw in
Fig. 2. It may also due to 1PL having just one parameter
per instance and hence being less prone to overfitting. Given
these clear results, from now on we use and recommend the
use of the 1PL difficulty metric when estimating difficulty
from the original features, as we do in this paper.

Benchmark 1PL 2PL 2PL (—abs) AvE AvE (—abs)

diabetes 0.73 0.67 0.72 0.6 0.57
kel 0.79 0.7 0.63 0.63 0.6
liver-disorders  0.89 0.88 0.82 0.82 0.79
japaneseVowels 0.86 0.85 0.8 0.79 0.76
letter 09 09 0.83 0.83 0.8
optdigits 0.65 0.55 0.53 -0.02 -0.05
pendigits 0.81 0.81 0.74 0.74 0.71
satimage 0.75 0.69 0.62 0.62 0.59
segment 0.82 0.82 0.75 0.75 0.72
vehicle 0.82 0.88 0.82 0.75 0.72
tptp 0.69 0.59 0.44 0.44 0.41
sat 0.86 0.84 0.8 0.79 0.76
Average 0.79 0.76 0.71 0.65 0.62

Table 3: Spearman correlation values for each combination
of benchmarks and approach for difficulty estimation (in-
cluding the deletion of abstruse instances). Highest in bold.

Overall, given a task or benchmark, the first step is the col-
lection of results for a set of systems. Here, we have shown
that in cases with a low number of systems (e.g., 16 for
sat) we can have good results. Then, the construction of the
IRT difficulty metrics per instance is followed by the con-
struction of a regression model that estimates the difficulty
for new instances using the features as inputs. Whether this
could work was an open question, especially for classifica-
tion tasks, as the difficulty of an instance typically depends
on the location of the other instances. In general (15 out
of 18 benchmarks), we show that the procedure gives more
than satisfactory results, and suggests that more specific ef-
forts in the collection of data or the use of more powerful
models may improve the results in the future.



Applications

Here we will cover some areas where the mere existence of
a metric of difficulty is insightful (extended discussions in
the appendix).

Explainable AI The use of a domain-generic difficulty
metric A is very useful to understand where and how a sys-
tem fails, and can be applied to any area in Al, not only ma-
chine learning (Martinez-Plumed et al. 2019). For instance,
for problems such as tptp and sat, we can analyse, manu-
ally, what makes instances hard, and also see the evolution
of instances in different competitions or benchmarks. For
this application, it is important that the metric is system-
independent, i.e., we analyse the problem instances, not a

particular system. However, the use of an attribute-based h
increases the applications. First, there is no need to manually
extract what makes instances hard, we can inspect which at-
tributes make it hard (as we did with Fig. 3). With a difficulty
estimator based on the inputs, we can even play counterfac-
tually, asking questions such as “what would the difficulty
of this example be, if attribute x = v; changed to x = v2?”.
We can also explore this distributionally, e.g., how difficulty
would change for new distributions before receiving them,
so anticipating or explaining distributional shift. Mapping
the whole space of difficulty can also help to understand
where the problem is challenging.

Predicted
o

4
Observed

Figure 4: Class difficulty (average) for MNIST.

Understanding groups of instances is a direct application
of the difficulty estimator. For instance, Fig. 4 shows the ac-
tual % and estimated & for a sample in the MNIST dataset.
We show the mean location of the 10 classes (digits 0-9).
Because of the quality of hi for this dataset, the ten classes
appear in a straight unit line, which represents that hiis also
well calibrated per class. We can see that classes 1 and 0
are easiest, while 5 is the most difficult. While this is well-
known for this thoroughly-studied dataset, a similar analysis
can be done for other datasets, using classes, clusters or data
sources (e.g., if we expect a new dataset with 50% of 5s and
8s, then we can calculate the expected results using Eq. 2).

Robust evaluation and deployment One of the most
powerful visualisation tools that derives from difficulty is
what we call system characteristic curves (SCC) (Fig. 1,
right), showing the response probability (e.g., accuracy) of
a particular Al system as a function of the instance diffi-
culty. Illustratively, Figure 5 presents the SCC of a subset of
classifiers (Table 9 in the appendix) for the letter benchmark

7724

Test

Training

Accuracy
o
[$))
o

o
N
o

0 -2
Difficulty

Figure 5: (Left) SCC obtained with the 70% of the letter
benchmark and the observed difficulties 7. (Right) SCC ob-

tained with the test set (30%), using estimated difficulties .

using 1PL difficulty. We split the data into train (difficulty
estimated using /) and test (difficulty estimated using the
best /2 from Table 2a). For producing the SCC, we divide the
instances in bins according to difficulty. For each bin, we
plot on the x-axis the average difficulty of the instances in
the bin and on the y-axis we plot the accuracy.

In this particular example, while rf is the best model for
all difficulties, the rest have different behaviours: knn, jrip,
svm, nb and fda get good results for easy instances and their
performance decreases at different rates and levels when in-
stances become more difficult (with some crossings such as
those between jrip and svm). Looking at the highest slope
point, we can distinguish their abilities and see if some de-
grade sooner than others. Interestingly, Figure 5 also shows
overfitting between train and test for the difficult examples.
In fact, up to a difficulty of 1.75, the results in both SCCs are
very similar, so there is no overfitting for the easy instance.
The most striking thing happens in the test set: svm, nb and
fda improve for high difficulty instances (while this is not
the case for the other techniques).

In general, we would need to inspect the test SCCs as an
exercise before selecting and deploying models. For a new
dataset, we will first use the difficulty estimator to calcu-
late the average difficulty and choose the best model in that
range.

Analysing Al progress Progress in many benchmarks is
reported as an increase of overall performance for the best
method, setting the SOTA for it. But is the performance in-
crease distributed equally among difficulties? Or is research
focusing on low-hanging fruits first and sacrificing robust-
ness (failing on easy instances) to get better results for some
specific hard instances. We can analyse this using difficulty.
Figure 6 presents the SCCs for a subset of CNN architec-
tures ranging from 2012 to 2019 applied to CIFAR-10.

We see different strategies. For instance, Googlenet im-
proves on the difficult instances and has a different curve
from Alexnet, even if the average performance is similar.
The next generation of techniques improved more system-
atically on the range of difficulties, but the latest two tech-
niques, EfficientNet and Densenet, have again very different
behaviours. While Densenet is very robust on the easy in-
stances, its performance is poor for difficult instances. On
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Figure 6: Empirical SCCs of CNN architectures (coloured
by their year of development) addressing CIFAR-10.

the contrary, EfficientNet is the flattest of all. Apart from im-
portant insights of what kinds of instances they are putting
the effort on, and the interpretations in terms of overfitting,
these plots also open the discussion of whether we would
like Al progress to focus on more logistic-shaped curves, be-
ing very robust on the easy examples and then falling more
sharply on the difficult examples, as expected.

Distributional and perturbational phenomena When a
high-quality system fails on a very easy instance this is a
sign that something strange may be happening. There are
many scenarios to be studied here: distributional shift, prob-
lem shift, adversarial attacks, distortion and Clever Hans
phenomena. As a kind of distributional shift has been cov-
ered by looking at the changes of difficulty for different
classes in Fig. 4, we study problem shift first. How does
the difficulty estimator changes when we apply it to in-
stances that come from a different problem (but shared fea-
tures)? We can analyse this with 1000 instances from MNIST
compared to 1000 instances from Fashion-MNIST (Table 10
in the appendix). The estimator for MNIST, when applied
to Fashion-MNIST gives higher difficulty (from -3.10 to -
2.75).The comparison of the same estimator for the two
problems indicates that if these new 1000 instances were to
be labelled with the original MNIST labels, they would be
slightly more difficult than the original ones.

Let us now study several kinds of perturbations. To study
this problem, we also take the MNIST dataset. We take 1000
examples away randomly (S,ri4), and we make a 70%-30%
train-testsplit with the remaining 69000 examples, building
a ResNet50 classifier (He et al. 2916). We estimate the dif-
ficulty for S, (from the best A in Table 2(b)) and pre-
dict their class using the trained classifier. We transform the
1000 examples into adversarial examples (S,4,;) and esti-
mate their difficulty. We follow a similar procedure for the
generation of a sample S5, Where we introduce water-
marks that help the classifier, and several samples Slow

blur>
high _ .1 . . .
Smed and S, with increasing degrees of distorsion (see

the details for all these modifications in the appendix).
Table 4 sows the results. The original mean difficulty is
-3.13, and the estimated mean difficulty is -3.07 for Sopg.
Examples become just slightly more difficult for the adver-
sarial variants (S,4.1), which means that the adversarial at-
tack has little effect on the difficulty estimator, despite the
classifier failing for all examples. The difficulty is almost un-
changed by the watermark (Sp ) despite the classifier suc-
ceeding for all of them. These discrepancies are so clear that
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h (mean) -3.13 = = = = =
h (mean) -3.07 -2.77 -3.09  -3.05 -2.75 -2.45
Error (mean) 0.20% 100.00% 0.00% 0.80% 17.03% 76.50%

Table 4: Difficulties of a sample of 1000 original MNIST ex-
amples (Sorig) and the same examples altered in different
ways: Sqq,1 are adversarial versions of the examples, Shqns
are added a watermark that easily discloses the class (Clever
Hans) and Sy, are modified with different degrees of blur.

can be used to detect these situations (adversarial attacks and
Clever Hans phenomena). Only the levels of blur have an ef-
fect that translate on the estimated difficulties and the error.
More blur makes images more difficult (from -3.05 to -2.45),
as expected, and the classifier has higher error (from 0.80%
to 76.5%). In general, if the difficulties change in the new
samples as does the performance, we can calculate whether
the performance corresponds to expected response given the
ability of the model as per Eq. 2. If this deviates from the ob-
served performance significantly, then we can fire an alarm.

While a discrepancy between the expected correct re-
sponse and actual accuracy may be caused by many reasons,
a difficulty-informed discrepancy discards situations where
a low or high accuracy is just explained by a batch of diffi-
cult or easy instances respectively (as seen in Fig. 5).

Discussion and Future Work

Estimating instance difficulty in a domain-generic, attribute-
based and system-independent way, as we do in this paper
for the first time, can have a significant impact on and broad
applicability in almost any area of Al It is of utmost impor-
tance to determine, for a new instance —and only from the
information in that instance—, whether the system failure or
success is in conformity with the difficulty of the instance.
This can be extended to groups, classes or distributions to
explain or anticipate important phenomena and situations.

Given the extent of a single first paper introducing this
methodology, we have performed a systematic coverage of
domains and tasks, analysed when the estimators work and
how they work best, and suggested potential applications.
There are many avenues of future work stemming from this
paper. We encourage other researchers to improve the results
of our difficulty estimators, and especially those for CIFAR-
10, IMDDb and SST-2. It is also important to understand those
cases where the original task is easy but difficulty estimation
is not. Our analysis of feature relevance goes in that direc-
tion, but further studies on latent features and representa-
tions can shed more light on this issue.

Finally, we would like to end with a recommendation. In
many domains, it was not easy for us to find instance-wise
results. Experiments with dozens of techniques and hyper-
parameters are usual with approaches such as AutoML (He,
Zhao, and Chu 2021) and the widespread popularity of com-
petitions, but unfortunately the associated papers and the
data repositories only report the aggregated results. We need
more initiatives such as OpenML (Vanschoren et al. 2014),
from which we were able to extract the necessary informa-
tion for a good proportion of our benchmarks.
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