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Abstract

In multi-view multi-label learning (MVML), each instance
is described by several heterogeneous feature representations
and associated with multiple valid labels simultaneously. Al-
though diverse MVML methods have been proposed over
the last decade, most previous studies focus on leveraging
the shared subspace across different views to represent the
multi-view consensus information, while it is still an open is-
sue whether such shared subspace representation is necessary
when formulating the desired MVML model. In this paper,
we propose a DeepGCN based View-Specific MVML method
(D-VSM) which can bypass seeking for the shared subspace
representation, and instead directly encoding the feature rep-
resentation of each individual view through the deep GCN
to couple with the information derived from the other views.
Specifically, we first construct all instances under different
feature representations into the corresponding feature graphs
respectively, and then integrate them into a unified graph by
integrating the different feature representations of each in-
stance. Afterwards, the graph attention mechanism is adopted
to aggregate and update all nodes on the unified graph to form
structural representation for each instance, where both intra-
view correlations and inter-view alignments have been jointly
encoded to discover the underlying semantic relations. Fi-
nally, we derive a label confidence score for each instance by
averaging the label confidence of its different feature repre-
sentations with the multi-label soft margin loss. Extensive ex-
periments have demonstrated that our proposed method sig-
nificantly outperforms state-of-the-art methods.

Introduction
Multi-View Multi-Label learning (MVML) learns from the
training data, where each instance is represented by several
heterogeneous feature representations and associated with
multiple valid labels simultaneously (Luo et al. 2013; Liu
et al. 2015; Zhang et al. 2018; Tan, Yu, and Wang 2019).
Recently, such learning paradigm has been widely used in
many real-world applications. For example, in film classifi-
cation (Figure 1), given the film of The Big Bang Theory,
which is represented by diverse channel information (audio,
cover picture, text description) and annotated with multiple
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Figure 1: An exemplar of multi-view multi-label learning.

labels (comedy movie, America, Mark Cendrowski), MVML
provides an effective framework to learn from such compli-
cate data and predicts proper labels for unseen instances.

The main challenge to deal with multi-view data lies in
how to integrate the multiple types of heterogeneities in an
efficient way. A general practice is to learn a shared sub-
space representation to excavate and exploit the consensus
and complementary information among different views. For
example, (Liu et al. 2015) employs matrix factorization to
seek a shared low-dimensional representation, which further
strengthens the complementarities across different views by
considering the different contributions of multiple views’ re-
construction. (Zhang et al. 2018) also learns a shared sub-
space representation under matrix factorization framework,
and it simultaneously employs Hilbert-Schmidt indepen-
dence criterion to further remain the consensus on the shared
representation. Although the above methods have achieved
competitive performance in many MVML tasks, they suffer
from the limitation of shared subspace inevitably, i.e., it is
hard for a single shared subspace to fully capture the global
structure of multi-view data and comprehensively character-
ize all the relevant labels, without exploring the distinctive
information hidden in individual views.

To tackle the above issue, in this paper, we bypass the
shared subspace strategy and propose a DeepGCN based
View-Specific MVML method named D-VSM, where each
individual view fused with other views’ complementarities
can directly contribute to the final discriminative model.
Specifically, we first construct all instances under differ-
ent views into different feature graphs respectively, i.e.,
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each view corresponds to a feature graph and each node
is described by one feature representation of an instance.
Then, the above graphs are integrated into a unified fea-
ture graph by connecting the different feature representation
nodes within each instance. Afterwards, we employ graph
attention mechanism to fuse both intra-view correlations and
inter-view alignments into each feature node to form struc-
tural representations for each instance. Here, the intra-view
correlations reflect the instance relationship under each in-
dividual view, while the inter-view alignments reflects the
view connections across each instance’s views. Finally, we
derive a label confidence score for each instance by averag-
ing the label confidence of its different feature representa-
tions with the multi-label soft margin loss.

In summary, the contributions of our paper lie in the fol-
lowing aspects:

• We propose a novel MVML method named D-VSM,
which unveils new opportunity to surpass the limitations
of shared subspace to better compromising of multi-view
consensus and complementary information.

• D-VSM not only exploits the consensuses and comple-
mentarities across different views, but also focuses more
on view-specific information extraction, which signifi-
cantly improves the performance of the learning model.

• Enormous experimental results as well as comprehensive
ablation study have demonstrated the superiority of our
proposed D-VSM against state-of-the-art methods.

Related Work
Multi-view multi-label learning (MVML) is related to two
branches of studies: multi-label learning (MLL) and multi-
view learning (MVL). Due to page limit, we briefly review
some related works about the two studies and introduce
some recent works about MVML. For more details, please
refer to (Zhang and Zhou 2013; Zhao et al. 2017).

Multi-Label Learning (MLL)
Multi-Label Learning focuses on learning from data with
multiple labels, and existing MLL methods can be gener-
ally grouped into two categories: Problem Transformation-
based methods and Algorithm Adaption-based methods. 1)
Problem Transformation-based methods usually transfer the
MLL problem into some single-label problems, and adapt
existing single-label learning algorithms to handle multi-
label data, such as BR (Tsoumakas and Katakis 2007), ECC
(Read et al. 2011) and RakeLD (Tsoumakas, Katakis, and
Vlahavas 2011). 2) Algorithm Adaption-based methods usu-
ally convert the task of multi-label classification to some
well-established learning scenarios, and extend some off-
the-shelf algorithms to directly deal with multi-label data.
ML-KNN (Zhang and Zhou 2007), MLARAM (Benites and
Sapozhnikova 2015) and LIFT (Zhang and Wu 2015) are the
representative methods for such category.

Multi-View Learning (MVL)
Multi-view learning learns from examples with heteroge-
neous features, and its challenge lies in how to integrate

the different feature representations in an effective way. Re-
cently, (Nie, Cai, and Li 2017) proposes a parameter-free
multi-view model, which learns the local structure among
multi-view data to achieve semi-supervised classification.
(Li and He 2020) proposes a bipartite graph based multi-
view clustering method, where a unified bipartite graph ma-
trix is employed to fuse the consensus information across
different views and directly form the final clustering results.
Besides, there are also many other MVL methods for dif-
ferent tasks, such as clustering (Bickel and Scheffer 2004),
retrieval (Kludas, Bruno, and Marchand 2007) and classifi-
cation (Luo et al. 2015), etc.

Multi-View Multi-Label Learning (MVML)
Multi-view multi-label learning can be regarded as an inte-
gration of MLL and MVL, which aims to learn from train-
ing data with diverse representations and rich semantics. To
learn from such complicated data, (Xing et al. 2018) pro-
poses a predictive reliability measure, which selects exam-
ples that share label information with other views in an co-
training manner. (Tan, Yu, and Wang 2019; Zhang, Jia, and
Li 2020) focus on learning a shared subspace to fuse the
complementarities across different views, and directly ob-
tain the corresponding projection model between the shared
subspace and labels. (Zhang et al. 2018) leverages matrix
factorization to learn a shared subspace representation, and it
simultaneously employs Hilbert-Schmidt independence cri-
terion to further remain the consensuses on the shared repre-
sentation. Besides the above methods, some recent methods
have been proposed to learn from multi-view data with weak
labels, such as (Tan et al. 2018; Wu et al. 2019; Li and Chen
2021).

The Proposed Method
Formally speaking, we denote X = Rd1 ×Rd2 . . .×RdT as
the feature space with T views and Y = {c1, c2, . . . , cq} as
the label space with q class labels, where dt (1 ≤ t ≤ T )
is the feature dimension of t-th view. Given the MVML
training data D = {(Xi,yi)|1 ≤ i ≤ n} with n in-
stances, where Xi ∈ X is represented by T feature vec-
tors [x

(1)
i ;x

(2)
i ; . . . ;x

(T )
i ] and yi ∈ {0, 1}q×1 is the label

vector associated with Xi, our proposed D-VSM aims to in-
tegrate these diverse representations from different views to
construct a robust multi-label classifier f : X 7→ 2Y and
further predicts proper labels for unseen instances. Figure 2
illustrates the overview architecture of D-VSM, which con-
sists of three key components: Multi-View Feature Graph
Construction, Structural Feature Representation and Multi-
Label Classification.

Multi-View Feature Graph Construction
As depicted in Figure 2, we construct all instances under
different views into different graphs G(t) = (V(t),E(t)) re-
spectively, where t ∈ {1, 2, . . . , T}. The nodes V(t) in each
graph represent the feature representations under t-th view,
while the edges E(t) encode their similarity. Specifically, in
each graph G(t), we describe each instance node v(t)i by a dt-
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Figure 2: The framework of our proposed D-VSM, which consists of three components: (1) Multi-View Feature Graph Con-
struction, where each node is connected with k intra-view neighbors and V−1 inter-view aligned node(s); (2) Structural Feature
Representation, where each feature node consists of three different structural information, i.e., self-portraits, intra-view corre-
lations and inter-view alignments. (3) Multi-Label Classification, where the final label confidence of each instance is derived
by averaging the label confidences from different views with multi-label soft margin loss.

dimensional vector and then the edges e(t) ∈ E(t) between
each pair of nodes can be produced following:

e
(t)
ij =

{
1, where v

(t)
j ∈ N (v

(t)
i )

0, otherwise
, (1)

where N (v
(t)
i ) denotes the k-nearest neighbors (measured

by Euclidean distance) of v
(t)
i , and e

(t)
ij = 1 indicates an

undirected edge from v
(t)
i to v

(t)
j , e(t)ij = 0 otherwise.

After obtaining each individual feature representation
graph, we connect the different feature representation nodes
within each instance and integrate the above individual fea-
ture graphs into a unified multi-view feature representation
graph, where the edges between different types of feature
nodes (i.e., different views) encodes the view correlations
between their connected views.

Structural Feature Representation

Given the original features {x(t)
1 ,x

(t)
2 , . . . ,x

(t)
n } under t-th

view, we employ an attention-based DeepGCN architecture
(R-GCN) (Schlichtkrull et al. 2018) to compute the hidden
representation of each feature node {x(t)′

1 ,x
(t)′

2 , . . . ,x
(t)′

n }
by attending its intra-view k-nearest neighbors and inter-
view aligned feature representations.

Specifically, we first transform each original input fea-
ture vector {x(t)

i |ni=1} into higher-level feature h
(t)
i =

σ(H(t)x
(t)
i ) to obtain sufficient expressive power, where

H(t) ∈ Rd×dt is the shared linear transformation matrix
and σ(·) = max(0, ·) is the element-wise activation func-
tion. Then, each feature representation node in the unified
multi-view graph can be updated by

h
(t)′

i ⇐σ

W
(t)
0 h

(t)
i +

k∑
j=1

1

k
W

(t)
1 h

(t)
j +

T−1∑
o=1

1

T−1
W

(t)
2 h

(o)
i

 ,

(2)

where x
(t)
j is the k-nearest neighbors of x

(t)
i under t-th

view, W (t)
0 ,W

(t)
1 ,W

(t)
2 ∈ Rd×d encode the weight ma-

trices, k and V denote the number of neighbors and views
respectively. According to Eq. (2), we can observe that each
feature representation is coupled with three types of struc-
tural information, i.e., self-portraits (first term), intra-view
correlations (second term) and inter-view alignments (third
term). Here, the intra-view correlations integrate the con-
tributions of its k-nearest neighbors under the same view,
while the inter-view alignments fuse the complementarity
information across different views within the same instance,
which jointly strengthes its identification capacity of char-
acterizing instances and further improves the robustness of
final model.

Furthermore, in order to avoid the model falling into over-
fitting, inspired by (Schlichtkrull et al. 2018), we regularize
the weights W

(t)
0 , W (t)

1 and W
(t)
2 as linear combinations

for basis transformations Q(t)
c ∈ Rd×d with coefficients a(t)rc ,

i.e.,

W (t)
r =

∑
c

a(t)rc Q
(t)
c , where r, c ∈ {0, 1, 2}. (3)

In addition, to further consider the contributions of other
instances’ representations in different views and strength the
identification capacity of the learned structural feature repre-
sentations, in our experiments, we also exploit the outputs of
Eq. (2) as its inputs and repeat such propagation operation to
fuse more inter-view complementary information into each
feature node, then obtain desired structural feature represen-
tations h(t)′′

i for subsequent multi-label classification.

Multi-Label Classification
In our proposed D-VSM, we focus on bypassing the lim-
itations of shared subspace and directly employing each
individual structural feature representation h

(t)′′

i to derive
label confidence scores [p

(t)
i1 , p

(t)
i2 , . . . , p

(t)
iq ] for each in-

stance x
(t)
i . Afterwards, the final label confidence score
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Algorithm 1: The Training Process of D-VSM
Inputs:
D : multi-view multi-label training set {(Xi,yi)};
Im: the number of epoches;

Process:
1. Construct V individual feature graphs G(t) under dif-
ferent views, where each edge is defined by Eq. (1);
2. Integrate the V individual feature graphs into a unified
multi-view feature graph by connecting different feature
representation nodes within an instance;
3. for epoch = 1 to Im
4. // Forward Propagation
5. Transform the original feature x

(t)
i into higher-level

feature by h
(t)
i = σ(H(t)x

(t)
i );

6. Update h
(t)
i by Eq. (2);

7. Repeat Step 6 and obtain h
(t)′′

i ;
8. Obtain the label confidence vector p(t)

i of Xi under
t-th view and Calculate the final label confidence pi by
Eq. (4);
9. // Backward Propagation
10. Update the model parameters by minimizing multi-
label soft margin loss in Eq. (5);
11. end for
Output:
f : the classification model of D-VSM;

[pi1, pi2, . . . , piq] of each instance Xi is calculated by av-
eraging the label confidences from different views

pij =
1

T

T∑
t=1

p
(t)
ij , where i ∈ [n] and j ∈ [q], (4)

with the widely-used multi-label soft margin loss, i.e.,

L =
n∑

i=1

q∑
j=1

(−yij log(S(pij)) + (1− yij) log(1− S(pij))) ,

(5)
where S(pij) =

1
1+exp(−pij)

is the sigmoid function.

Experiments
Experimental Setup
To evaluate the performance of our proposed D-VSM, we
implement experiments on six benchmark data sets. Emo-
tions1 have 593 pieces of music described by two views: 8
rhythmic properties and 64 timbre properties. Scene1 com-
prises of 2407 images, where 294 features from two views
separately reflect the luminance and chromaticity of color.
Corel5k (Duygulu et al. 2002) and Espgame (Von Ahn and
Dabbish 2004) contain 4999 and 20770 images respectively,
all of which are represented by 4 different features: GIST,
HSV, HUE, DIFT. Pascal (Everingham et al. 2010) and Mir-
flickr (Huiskes and Lew 2008), besides the above four views,
add the textual views to describe their tag features. Table 1
summarizes the characteristics of the above data sets.

1http://mulan.sourceforge.net/datasets-mlc.html

Data sets Instances Views Dmin−max Labels

Emotions 593 2 8 - 64 6
Scene 2407 2 98 - 196 6

Corel5k 4999 4 100 - 4096 260
Pascal 9963 5 512 - 4096 20

Iaprtc12 19627 6 100 - 4096 291
Espgame 20770 4 100 - 4096 268
Mirflickr 25000 5 100 - 4096 38

Table 1: Characteristics of our employed data sets. And
Dmin−max is the smallest-largest dimensions of features.

Meanwhile, we employ six state-of-the-art methods from
two categories for comparative studies: 1) Multi-label learn-
ing methods including ML-KNN, RakeLD and LSPC,
which concatenate all view features as the input of the learn-
ing model; 2) Multi-view multi-label methods including Lr-
MMC, SIMM and FIMAN, which fuses the complemen-
tarities across different views for classification model induc-
tion. The configured parameters of the above methods are
set according to the suggestions in respective literature.

• ML-KNN (Zhang and Zhou 2007): which concatenates
the features of all views as the model input, and induces
the model via k-NN scheme. [configuration: k = 10] ;

• RakeLD (Tsoumakas, Katakis, and Vlahavas 2011):
which randomly breaks the initial label set into several
small label subsets and employs LP strategy to train the
classifier. [configuration: k = q/10];

• LrMMC (Liu et al. 2015): which aims to learn a
low-dimensional shared subspace and leverages the ma-
trix completion for MVML classification. [configuration:
γ ∈ {10−4, 10−3, . . . , 103}];

• LSPC (Szyma¨½ski, Kajdanowicz, and Kersting 2016):
which divides the label space according to the label
co-occurrence graphs, and then obtains an ensemble of
multi-label classifier.;

• SIMM (Wu et al. 2019): which simultaneously leverages
the shared subspace exploitation and view-specific infor-
mation extraction, and induces MVML model via min-
imizing confusion adversarial loss and multi-label loss.
[configuration: α = 1, β ∈ {10−4, 10−3, . . . , 10−1}] ;

• FIMAN (Wu et al. 2020): which aims to learn from
multi-view data with partial multiple labels, where an ag-
gregate manifold structure is leveraged to adaptively fuse
feature representation from different views. [configura-
tion: k = 10, td = 0.4, tp = 0.6 and η = 1];

In addition, six popular multi-label metrics are employed
to evaluate each comparing method, including Hamming
Loss (H-L), Ranking Loss (R-L), One-Error (O-E), Cover-
age (Cov), Average Precision (A-P) and Micro-F1 (M-F1),
whose detailed definitions can be found in (Zhang and Zhou
2013) or (Sun and Zong 2021). Finally, we conduct exper-
imental comparison between our proposed D-VSM and all
comparing methods, where five-fold cross-validation is per-
formed on each data set.
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H-L Emotions Scene Corel5k Pascal Iaprtc12 Espgame Mirflickr

D-VSM 0.179±0.017 0.075±0.005 0.012±0.000 0.048±0.000 0.018±0.000 0.017±0.000 0.005±0.000
ML-KNN 0.311±0.001 0.153±0.009 0.033±0.000 0.181±0.001 0.055±0.000 0.050±0.000 0.022±0.000
RakeLD 0.250±0.019 0.155±0.012 0.085±0.002 0.248±0.003 0.193±0.002 0.177±0.001 0.172±0.001
LrMMC 0.196±0.011 0.082±0.006 0.013±0.000 0.073±0.000 0.029±0.000 0.028±0.000 0.006±0.000

LSPC 0.251±0.014 0.221±0.008 0.020±0.000 0.219±0.003 0.027±0.000 0.025±0.000 0.013±0.000
SIMM 0.307±0.004 0.179±0.002 0.013±0.000 0.060±0.001 0.019±0.000 0.017±0.000 0.006±0.000

FIMAN 0.231±0.013 0.195±0.005 0.018±0.000 0.116±0.002 0.026±0.000 0.028±0.000 -

R-L Emotions Scene Corel5k Pascal Iaprtc12 Espgame Mirflickr

D-VSM 0.137±0.015 0.058±0.007 0.084±0.004 0.077±0.001 0.090±0.004 0.133±0.003 0.170±0.001
ML-KNN 0.347±0.017 0.123±0.008 0.143±0.004 0.277±0.006 0.172±0.003 0.189±0.004 0.234±0.003
RakeLD 0.195±0.029 0.133±0.011 0.831±0.005 0.610±0.020 0.568±0.007 0.578±0.007 0.540±0.010
LrMMC 0.233±0.016 0.115±0.011 0.173±0.004 0.336±0.005 0.390±0.002 0.410±0.003 0.251±0.006

LSPC 0.185±0.022 0.233±0.023 0.860±0.005 0.868±0.003 0.996±0.000 0.993±0.000 0.702±0.005
SIMM 0.344±0.047 0.280±0.026 0.160±0.005 0.097±0.006 0.124±0.002 0.164±0.003 0.268±0.006

FIMAN 0.161±0.026 0.107±0.006 0.085±0.000 0.118±0.003 0.111±0.002 0.154±0.002 -

O-E Emotions Scene Corel5k Pascal Iaprtc12 Espgame Mirflickr

D-VSM 0.214±0.046 0.189±0.016 0.410±0.018 0.274±0.008 0.422±0.010 0.464±0.010 0.860±0.006
ML-KNN 0.535±0.038 0.331±0.017 0.707±0.018 0.626±0.012 0.714±0.008 0.737±0.003 0.955±0.001
RakeLD 0.325±0.039 0.362±0.012 0.831±0.005 0.864±0.009 0.953±0.003 0.918±0.005 0.939±0.006
LrMMC 0.338±0.032 0.272±0.019 0.776±0.015 0.596±0.005 0.944±0.003 0.992±0.001 0.944±0.003

LSPC 0.295±0.036 0.397±0.028 0.890±0.008 0.926±0.007 0.990±0.001 0.988±0.002 0.939±0.003
SIMM 0.501±0.092 0.603±0.039 0.614±0.012 0.391±0.009 0.528±0.007 0.536±0.004 0.888±0.004

FIMAN 0.258±0.042 0.280±0.018 0.489±0.017 0.313±0.011 0.511±0.002 0.628±0.004 -

Cov Emotions Scene Corel5k Pascal Iaprtc12 Espgame Mirflickr

D-VSM 1.624±0.038 0.372±0.051 53.21±1.947 2.342±0.044 75.08±1.833 86.75±1.634 137.6±1.690
ML-KNN 2.703±0.182 0.702±0.034 83.87±1.994 6.851±0.178 130.3±1.115 120.3±1.330 181.2±2.577
RakeLD 1.932±0.132 0.754±0.054 195.6±4.611 13.11±0.457 261.9±1.890 237.1±1.167 304.7±5.157
LrMMC 2.198±0.094 0.677±0.057 96.72±1.300 7.900±0.060 196.7±1.226 210.9±1.020 186.9±3.199

LSPC 1.905±0.138 1.252±0.109 257.3±0.499 17.08±0.065 289.9±0.061 266.8±0.078 335.9±2.740
SIMM 0.457±0.051 0.248±0.020 95.99±3.146 2.772±0.140 106.0±1.892 110.1±1.260 162.6±2.897

FIMAN 1.796±0.189 0.628±0.020 53.94±0.790 3.486±0.081 97.06±1.436 102.8±1.183 -

A-P Emotions Scene Corel5k Pascal Iaprtc12 Espgame Mirflickr

D-VSM 0.835±0.027 0.890±0.011 0.475±0.008 0.767±0.003 0.412±0.002 0.364±0.003 0.369±0.001
ML-KNN 0.620±0.014 0.801±0.009 0.303±0.010 0.432±0.010 0.238±0.004 0.225±0.002 0.302±0.005
RakeLD 0.764±0.030 0.760±0.025 0.121±0.008 0.179±0.005 0.056±0.002 0.063±0.003 0.266±0.011
LrMMC 0.763±0.020 0.852±0.012 0.215±0.010 0.422±0.004 0.219±0.003 0.170±0.003 0.053±0.001

LSPC 0.773±0.025 0.647±0.020 0.075±0.004 0.116±0.003 0.021±0.000 0.020±0.003 0.272±0.006
SIMM 0.634±0.043 0.608±0.027 0.292±0.004 0.685±0.010 0.326±0.003 0.308±0.002 0.119±0.003

FIMAN 0.806±0.027 0.827±0.010 0.430±0.007 0.721±0.003 0.348±0.002 0.284±0.002 -

M-F1 Emotions Scene Corel5k Pascal Iaprtc12 Espgame Mirflickr

D-VSM 0.700±0.034 0.777±0.015 0.399±0.004 0.636±0.004 0.385±0.003 0.332±0.003 0.055±0.002
ML-KNN 0.154±0.003 0.113±0.001 0.030±0.001 0.074±0.001 0.031±0.000 0.027±0.000 0.002±0.000
RakeLD 0.615±0.035 0.635±0.015 0.153±0.007 0.199±0.011 0.091±0.002 0.086±0.001 0.020±0.001
LrMMC 0.685±0.018 0.772±0.017 0.273±0.009 0.283±0.015 0.281±0.003 0.209±0.003 0.032±0.003

LSPC 0.653±0.022 0.544±0.019 0.153±0.004 0.084±0.003 0.004±0.001 0.008±0.001 0.052±0.002
SIMM 0.034±0.051 0.001±0.002 0.038±0.010 0.343±0.011 0.047±0.005 0.047±0.003 0.000±0.000

FIMAN 0.671±0.014 0.616±0.008 0.361±0.009 0.008±0.002 0.289±0.001 0.242±0.002 -

Table 2: Experimental comparisons of D-VSM with other comparing methods on six evaluation metrics, where the best perfor-
mances on each metric are shown in bold face. “-” indicates that FIMAN needs over 256G of RAM on Mirflickr data set.
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Figure 3: Experimental Comparisons of our proposed D-VSM against other comparing algorithms with the Bonferroni-Dunn
test. Algorithms not connected with D-VSM are significantly inferior to D-SVM (CD = 3.046 at 0.05 significance level).

Emotions Hamming Loss Ranking Loss One Error Coverage Average Precision Micro-F1

D-VSM-v0k0 0.194±0.016 0.148±0.007 0.237±0.033 1.708±0.132 0.817±0.015 0.661±0.046
D-VSM-v0k1 0.186±0.020 0.139±0.012 0.234±0.018 1.644±0.106 0.824±0.016 0.687±0.025
D-VSM-v1k0 0.181±0.013 0.140±0.017 0.229±0.037 1.651±0.134 0.826±0.022 0.698±0.026

D-VSM 0.179±0.017 0.137±0.015 0.214±0.046 1.624±0.038 0.835±0.027 0.700±0.034
Corel5k Hamming Loss Ranking Loss One Error Coverage Average Precision Micro-F1

D-VSM-v0k0 0.012±0.000 0.096±0.004 0.486±0.038 60.54±1.689 0.420±0.016 0.220±0.021
D-VSM-v0k1 0.012±0.000 0.089±0.004 0.440±0.013 56.49±3.220 0.456±0.006 0.322±0.020
D-VSM-v1k0 0.012±0.000 0.103±0.007 0.450±0.014 61.65±3.541 0.440±0.012 0.357±0.010

D-VSM 0.012±0.000 0.084±0.002 0.410±0.018 53.21±1.947 0.475±0.008 0.399±0.004
Mirflickr Hamming Loss Ranking Loss One Error Coverage Average Precision Micro-F1

D-VSM-v0k0 0.007±0.001 0.206±0.006 0.933±0.016 158.3±2.215 0.328±0.003 0.045±0.003
D-VSM-v0k1 0.005±0.000 0.185±0.003 0.885±0.008 146.2±1.735 0.346±0.001 0.052±0.002
D-VSM-v1k0 0.006±0.000 0.193±0.005 0.908±0.010 150.5±1.766 0.330±0.001 0.049±0.002

D-VSM 0.005±0.000 0.170±0.001 0.860±0.006 137.6±1.690 0.369±0.001 0.055±0.002

Table 3: The experimental results of our proposed D-VSM and its three degenerated methods over all employed evaluation
metrics on Emotions and Corel5k data sets, where D-VSM-v0k1, D-VSM-v1k0 and D-VSM-v0k0 do not consider the inter-
view alignments, intra-view correlations and both of them, respectively.

Evaluation Metric τF critical value

Hamming Loss 7.629
Ranking Loss 8.806

One Error 5.710 2.365
Coverage 15.550 Methods: 7, Data sets: 7

Average Precision 7.108
Micro-F1 9.954

Table 4: Friedman statics τF in terms of each evaluation met-
ric (at 0.05 significance level).

Experimental Results

Table 2 illustrates the experimental comparisons between
our proposed D-VSM and other six comparing methods on

all evaluation metrics, where the mean metrics results and
standard deviations are recorded respectively. Out of 252 (7
data sets × 6 methods × 6 metrics) statistical comparisons,
the following observations can be made:
• Among all comparing methods, D-VSM is superior to

ML-KNN, RakeLD, LrMMC, LSPC and FIMAN in
all cases, and it also outperforms SIMM in 95.2% cases.

• D-VSM achieves the best performance on all metrics ex-
cept for Coverage. And on Coverage metric, it is also
superior to other comparing methods over 95% cases.

• The improvements of D-VSM against other methods are
quite significant, especially it ranks first in almost all
comparisons and is well ahead of the second.

In order to comprehensively evaluate the superiority of the
proposed D-VSM, Friedman test (Demšar 2006) is utilized
as the statistical test to analyze the relative performance
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Figure 4: The parameter analysis [top] and convergence [bottom] analysis of D-VSM on Emotions [left], Corel5k [mid] and
Mirflickr [right] data sets respectively, where the Coverage results are normalized by the number of class labels (q) so as to
make all metric results be characterized in a unified figure.

among the comparing algorithms. According to Table 4, the
null hypothesis of distinguishable performance among the
comparing algorithms is rejected at 0.05 significance level.
Therefore, we further employ the post-hoc Bonferroni-Dunn
test (Demšar 2006) to show the relative performance among
the comparing algorithms. Figure 3 illustrates the CD di-
agrams on each evaluation metric, where the average rank
of each comparing algorithm is marked along the axis. Ac-
cording to Figure 3, it is observed that D-VSM ranks 1st on
all evaluation metrics and it performs significant superiority
against most comparing methods.

Further Analysis

Ablation Study

In order to evaluate the effect of the employed intra-view
correlations and inter-view alignments, we conduct the Ab-
lation Study between D-VSM and its three degenerated al-
gorithms D-VSM-v0k1, D-VSM-v0k1 and D-VSM-v0k0,
where each degenerated algorithm ignores the inter-view
alignments, intra-view correlations and both of them, re-
spectively. Table 3 records the experimental results on Emo-
tions, Corel5k and Mirflickr data sets. According to Ta-
ble 3, D-VSM-v0k1 outperforms D-VSM-v1k0 in most
cases, which indicates that intra-view correlations may have
greater contributions than inter-view alignments to the ro-
bustness of model. Meanwhile, D-VSM significantly outper-
forms its three degenerated algorithms, which also strongly
demonstrates the superiority of employing both of two rela-
tionships simultaneously when learning from MVML data.

Sensitivity Analysis
We study the sensitivity analysis of D-VSM with respect to
its employed parameter k: the number of intra-view neigh-
bors. Figure 4 show the performance of D-VSM as k in-
creases from 3 to 15 on Emotions [left], Corel5k [mid] and
Mirflickr [right] data sets. As illustrated in Figure 4, the per-
formance of D-VSM improves slightly and become stable
shortly as k increases. In our experiments, we set k = 5.

Convergence Analysis
We conduct the convergence analysis of D-VSM on both
Emotions [left], Corel5k [mid] and Mirflickr [right] data
sets, where experimental results are illustrated in Figure 4.
According to Figure 4, we can easily observe that the per-
formance of D-VSM gradually improves and soon reaches
stability as the number of epoches increases. Therefore, the
convergence of D-VSM is empirically demonstrated.

Conclusion
In this paper, we proposed a DeepGCN based View-Specific
MVML method named D-VSM, which fuses the comple-
mentarities across different views into each individual view,
and directly employs these individual views to induce the
final model. Compared with previous methods, D-VSM sur-
passes the limitations of shared subspace, and improves the
model performance by exploiting both the complementary
information across different views and the view-specific in-
formation within individual view simultaneously. Enormous
experimental results have verified that our proposed D-VSM
has significant superiority against state-of-the-art methods
when learning from MVML data.
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