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Abstract

Graph neural networks (GNNs) and message passing neural
networks (MPNNs) have been proven to be expressive for
subgraph structures in many applications. Some applications
in heterogeneous graphs require explicit edge modeling, such
as subgraph isomorphism counting and matching. However,
existing message passing mechanisms are not designed well
in theory. In this paper, we start from a particular edge-to-
vertex transform and exploit the isomorphism property in the
edge-to-vertex dual graphs. We prove that searching isomor-
phisms on the original graph is equivalent to searching on
its dual graph. Based on this observation, we propose dual
message passing neural networks (DMPNNs) to enhance the
substructure representation learning in an asynchronous way
for subgraph isomorphism counting and matching as well
as unsupervised node classification. Extensive experiments
demonstrate the robust performance of DMPNNs by combin-
ing both node and edge representation learning in synthetic
and real heterogeneous graphs.

Introduction
Graphs have been widely used in various applications across
domains from chemoinformatics to social networks. The
isomorphism is one of the important properties in graphs,
and analysis on subgraph isomorphisms is useful in real
applications. For example, we can determine the proper-
ties of compounds by finding functional group informa-
tion in chemical molecules (Gilmer et al. 2017); some sub-
structures in social networks are regarded as irreplaceable
features in recommender systems (Ying et al. 2018). The
challenge of finding subgraph isomorphisms requires the
exponential computational cost. Particularly, finding and
counting require global inference to oversee the whole
graph. Existing counting and matching algorithms are de-
signed for some query patterns up to a certain size (e.g.,
5), and some of them cannot directly apply to heteroge-
neous graphs where vertices and edges are labeled with
types (Bhattarai, Liu, and Huang 2019; Sun and Luo 2020).

There has been more attention to using deep learning to
count or match subgraph isomorphisms. Liu et al. (2020) de-
signed a general end-to-end framework to predict the num-
ber of subgraph isomorphisms on heterogeneous graphs, and
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Ying et al. (2020) combined node embeddings and voting
to match subgraphs. They found that neural networks could
speed up 10 to 1,000 times compared with traditional search-
ing algorithms. Xu et al. (2019) and Morris et al. (2019)
showed that graph neural networks (GNNs) based on mes-
sage passing are at most as powerful as the WL test (Weis-
feiler and Leman 1968), and Chen et al. (2020) further an-
alyzed the upper-bound of message passing and k-WL for
subgraph isomorphism counting. These studies show that it
is theoretically possible for neural methods to count larger
patterns in complex graphs. In heterogeneous graphs, edges
play an important role in checking and searching isomor-
phisms because graph isomorphisms require taking account
of graph adjacency and edge types. However, existing mes-
sage passing mechanisms have not paid enough attention to
edge representations (Gilmer et al. 2017; Schlichtkrull et al.
2018; Vashishth et al. 2020; Jin et al. 2021).

In this paper, we discuss a particular edge-to-vertex
transform and find the one-to-one correspondence between
subgraph isomorphisms of original graphs and subgraph
isomorphisms of their corresponding edge-to-vertex dual
graphs. This property suggests that searching isomorphisms
on the original graph is equivalent to searching on its dual
graph. Based on this observation and the theoretical guar-
antee, we propose new dual message passing networks
(DMPNNs) to learn node and edge representations simul-
taneously in the aligned space. Empirical results show the
effectiveness of DMPNNs on all homogenerous and hetero-
geneous graphs, synthetic data or real-life data.

Our main contributions are summarized as follows:

1. We prove that there is a one-to-one correspondence be-
tween isomorphisms of connected directed heteroge-
neous multi-graphs with reversed edges and isomor-
phisms between their edge-to-vertex dual graphs.

2. We propose dual message passing mechanism and design
the DMPNN model to explicitly model edges and align
node and edge representations in the same space.

3. We empirically demonstrate that DMPNNs can count
subgraph isomorphisms more accurately and match iso-
morphic nodes more correctly. DMPNNs also surpass
competitive baselines on unsupervised node classifica-
tion, indicating the necessity of explicit edge modeling
for general graph representation learning.
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(d) Edge-to-vertex transform (directed)

Figure 1: Examples of the isomorphism, subgraph isomorphism, and edge-to-vertex transforms.

Preliminaries
To be more general, we assume a graph is a directed het-
erogeneous multigraph. Let G be a graph with a vertex set
VG and each vertex with a different vertex id, an edge set
EG ⊆ VG × VG , a label function XG that maps a vertex to
a vertex label, and a label function YG that maps an edge to
a set of edge labels. As we regard each edge can be associ-
ated with a set of labels, we can merge multiple edges with
the same source and the same target as one edge with mul-
tiple labels. A subgraph of G, denoted as GS , is any graph
with VGS

⊆ VG , EGS
⊆ EG ∩ (VGS

× VGS
) satisfying ∀v ∈

VGS
,XGS

(v) = XG(v) and ∀e ∈ EGS
,YGS

(e) = YG(e). To
simplify the statement, we letYG((u, v)) = ϕ if (u, v) ̸∈ EG .

Isomorphisms and Subgraph Isomorphisms
Definition 1 (Isomorphism). A graph G1 is isomorphic to
a graph G2 if there is a bijection f : VG1 → VG2 such that:

• ∀v ∈ VG1 ,XG1(v) = XG2(f(v)),
• ∀v′ ∈ VG2 ,XG2(v

′) = XG1(f
−1(v′)),

• ∀(u, v) ∈ EG1 ,YG1((u, v)) = YG2((f(u), f(v))),
• ∀(u′, v′) ∈ EG2 ,YG2((u

′, v′)) = YG1((f
−1(u′), f−1(v′))).

We write G1 ≃ G2 for such isomorphic property and name
f as an isomorphism. For example, there are two different
isomorphisms between the two triangles in Figure 1a. As a
special case, the isomorphism f between two empty graphs
without any vertex is {} → {}.

In addition, if a subgraph of G1 is isomorphic to another
graph, then the corresponding bijection function is named as
a subgraph isomorphism. The formal definition is:
Definition 2 (Subgraph isomorphism). If a subgraph G1S of
G1 is isomorphic to a graph G2 with a bijection f , we say
G1 contains a subgraph isomorphic to G2 and name f as a
subgraph isomorphism.

Subgraph isomorphism related problems commonly re-
fer to two kinds of subgraphs: node-induced subgraphs and
edge-induced subgraphs. In node-induced subgraph related
problems, the possible subgraphs require that for each ver-
tex in GS , the associated edges in G must appear in GS , i.e.,
VGS

⊆ VG , EGS
= EG ∩ (VGS

× VGS
); in edge-induced

subgraph related problems, the required subgraphs are re-
stricted by associating vertices that are incident to edges,

i.e., EGS
⊆ EG , VGS

= {u|(u, v) ∈ EGS
} ∪ {v|(u, v) ∈

EGS
}. Node-induced subgraphs are specific edge-induced

subgraphs when G is connected. Hence, we assume all sub-
graphs mentioned in the following are edge-induced for bet-
ter generalization. Figure 1b shows an example of subgraph
isomorphism that a graph with four vertices is subgraph iso-
morphic to the triangle pattern.

Edge-to-vertex Transforms
In graph theory, the line graph of an undirected graph G is
another undirected graph that represents the adjacencies be-
tween edges of G, e.g., Figure 1c. We extend line graphs to
directed heterogeneous multigraphs.

Definition 3 (Edge-to-vertex transform). A line graph
(also known as edge-to-vertex dual graph) H of a graph
G is obtained by associating a vertex v′ ∈ VH with each
edge e = g−1(v′) ∈ EG and connecting two vertices
u′, v′ ∈ VH with an edge from u′ to v′ if and only if
the destination of the corresponding edge d = g−1(u′)
is exact the source of e = g−1(v′). Formally, we have:

• ∀e = (u, v) ∈ EG ,YG(e) = XH(g(e)),
• ∀v′ ∈ VH,XH(v′) = YG(g−1(v′)),
• ∀d, e ∈ EG , u′ = g(d) ∈ VH, v′ = g(e) ∈ VH,
(d.target = e.source = v)→ (YH((u′, v′)) = XG(v))),

• ∀e′ = (u′, v′) ∈ EH, d = g−1(u′) ∈ VG , e = g−1(v′) ∈ VG ,
(d.target = e.source) ∧ (YH(e′) = XH(d.target)).

We call the bijection g : EG → VH as the edge-to-vertex
map, and writeH as L(G) where L : G → H corresponds to
the edge-to-vertex transform. There are several differences
between undirected line graphs and directed line graphs.
As shown in Figure 1c and Figure 1d, except directions of
edges, an edge with its inverse in the original graph will in-
troduce two corresponding vertices and a pair of reversed
edges in between in the line graph.

There are many properties in the edge-to-vertex graph. As
the vertices of the line graph H corresponds to the edges of
the original graph G, some properties of G that depend only
on adjacency between edges may be preserved as equiva-
lent properties in H that depend on adjacency between ver-
tices. For example, an independent set in H corresponds to
a matching (also known as independent edge set) in G. But
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Figure 2: Non-isomorphic graphs and their line graphs.

the edge-to-vertex transform may lose the information of the
original graph. For example, two different graphs may have
the same line graph. We have one observation that if two
graphs are isomorphic, their line graphs are also isomorphic;
nevertheless, the converse is not always correct. We will dis-
cuss the isomorphism and the edge-to-vertex transform in
the next section.

Isomorphisms vs. Edge-to-vertex Transforms
The edge-to-vertex transform can preserve adjacency rele-
vant properties of graphs. In this section, we discuss iso-
morphisms and the edge-to-vertex transform. Particularly,
we analyze the symmetry of isomorphisms in special situ-
ations transforming edges to vertices, and we further extend
all graphs into this particular kind of structure for searching.
Proposition 4. If two graphs G1 and G2 are isomorphic with
an isomorphism f : VG1 → VG2 , then their line graphs
H1 and H2 are also isomorphic with an isomorphism f ′ :
VH1 → VH2 such that ∀v ∈ VH1 ,XH1(v) = XH2(f

′(v))
and ∀v′ ∈ VH2 ,XH2(v

′) = XH1(f
′−1(v′)).

The proof is shown in Appendix A. Furthermore, we con-
clude that the dual isomorphism f ′ satisfies ∀v ∈ VH1 ,
f ′(v) = g2((f(g

−1
1 (v).source), f(g−1

1 (v).target))). We de-
note G1 ≃ G2 → L(G1) ≃ L(G2) for Proposition 4.

The relation between the isomorphism f and its dual f ′

is non-injective: two line graphs in Figure 2a are isomor-
phic but their original graphs are not, which also indicates
f ′ may correspond to multiple different f (even f does not
exist). That is to say, the edge-to-vertex transform L cannot
remain all graph adjacency and guarantee isomorphisms in
some situations.
Theorem 5 (Whitney isomorphism theorem). For con-
nected simple graphs with more than four vertices, there is
a one-to-one correspondence between isomorphisms of the
graphs and isomorphisms of their line graphs.

Theorem 5 (Whitney 1932) concludes the condition for
simple graphs. Inspired by it, we add reversed edges asso-
ciated with special labels for directed graphs so that graphs
can be regarded as undirected (Figure 2b). Theorem 6 is the
extension for directed heterogeneous multigraphs.
Theorem 6. For connected directed heterogeneous multi-
graphs with reversed edges (the reverse of one self-loop is it-
self), there is a one-to-one correspondence between isomor-
phisms of the graphs and isomorphisms of their line graphs.

The detailed proof is listed in Appendix B. Moreover, we
have Corollary 7 for subgraph isomorphisms and their duals.

Corollary 7. For connect directed heterogeneous multi-
graphs with reversed edges more than one vertex, there
is a one-to-one correspondence between subgraph isomor-
phisms of the graphs and subgraph isomorphisms of their
line graphs.

Dual Message Passing Neural Networks
The edge-to-vertex transform and the duality property indi-
cate that searching isomorphisms on the original graph is
equivalent to searching on its line graph. Hence, we design
the dual message passing to model nodes with original struc-
ture and model edges with the line graph structure. More-
over, we extend the dual message passing to heterogeneous
multi-graphs.

Conventional Graph Convolutions
Kipf and Welling (2017) proposed parameterized conven-
tional graph convolutions as the first-order approximation
of spectral convolutions Θ ⋆ h = UΘU⊤h, where Θ
is the filter in the Fourier domain and h ∈ Rn is the
scalar feature vector for n vertices of G. In practice,
Θ is a diagonal matrix as a function of eigenvalues
of the (normalized) graph Laplacian. Considering the
computational cost of eigendecomposition is O(n3),
it is approximated by shifted Chebyshev polynomi-
als (Hammond, Vandergheynst, and Gribonval 2011):

Θ ≈
K∑

k=0

Tk(
2

λGmax
ΛG − In)θk

≈ T0(
2

λGmax
ΛG − In)θ0 + T1(

2

λGmax
ΛG − In)θ1

= θ0 + (
2

λGmax
ΛG − In)θ1, (1)

where ΛG is the diagonal matrix of eigenvalues,
In ∈ Rn×n is an identity matrix, λGmax is the
largest eigenvalue so that the input of Tk(·) is lo-
cated in [−1, 1]. Therefore, the convolution becomes to

Θ ⋆ h = UΘUTh

≈ U(θ0 + (
2

λGmax
ΛG − In×n)θ1)U

Th

= (θ0 − θ1)h+
2θ1

λGmax
LGh, (2)

where LG is the (normalized) graph Laplacian matrix. λGmax
is bounded by max{du + dv|(u, v) ∈ EG} if the Laplacian
LG = DG −AG or by 2 if the Laplacian is noramlzied as
D

− 1
2

G (DG −AG)D
− 1

2

G = In −D
− 1

2

G AGD
− 1

2

G , where AG
is the adjacency matrix, DG is the (out-)degree diagonal
matrix (Zhang 2011). Graph convolution networks have
shown great success in many fields, including subgraph
isomorphism counting. Xu et al. (2019) and Liu et al. (2020)
found that the sum aggregation is better at solving isomor-
phisms. Hence, we consider to use the unnormalized graph
Laplacian and set λGmax = max{du + dv|(u, v) ∈ EG}.
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Dual Message Passing Mechanism
This convolution can also apply on the line graph
H = L(G), then convolutional operation in H is

Γ ⋆ z ≈ (γ0 − γ1)z +
2γ1

λHmax
LHz, (3)

where Γ is the filter for H, z ∈ Rm is the scalar feature
vector for m vertices of H, and λHmax is the largest
eigenvalue of the Laplacian LH, which is no greater than
max{du + dv|(u, v) ∈ EH}. We can use Eq. (3) to acquire
the edge representations of G because Definition 3 and
Corollary 7 show the line graph H also preserves the
structural information of G for subgraph isomorphisms.

However, Eq. (3) results in a new problem: the compu-
tation cost is linear to |EH| = 1

2

∑
v∈G d2v − n = O(m2)

where m = |EG | = |VH|. To tackle this issue, we combine
the two convolutions in an asynchronous manner in O(m).

Proposition 8. If G is a directed graph with n vertices and
m edges, then AG + A⊤

G = D+
G + D−

G − BGB
⊤
G , where

AG ∈ Rn×n is the adjacency matrix, D+
G ,D

−
G ∈ Rn×n are

the out-degree and in-degree diagonal matrices respectively,
and BG ∈ Rn×m is the oriented incidence matrix where
bve = 1 if vertex v is the destination of edge e, bve = −1
if v is the source of e, bve = 0 otherwise. In particular, if
G is with reversed edges, then we have BGB

⊤
G = 2(DG −

AG) = 2LG , where LG ∈ Rn×n is the Laplacian matrix.

Proposition 9. If G is a directed graph with n vertices and
m edges and H is the line graph of G, then AH + A⊤

H =

B̂
⊤
G B̂G−2Im, where AH ∈ Rm×m is the adjacency matrix

of H, Im ∈ Rm×m is an identity matrix, and B̂G ∈ Rn×m

is the unoriented incidence matrix where b̂ve = 1 if vertex v

is incident to edge e, b̂ve = 0 otherwise. In particular, if G is
with reversed edges, then H is also with reversed edges and
AH = 1

2B̂
⊤
G B̂G−Im. Furthermore, we have the Laplacian

matrix ofH, LH = DH −AH = DH + Im − 1
2B̂

⊤
G B̂G .

We use Proposition 8 to inspect the graph convolutions.
The second term of Eq. (2) can be written as θ1

λGmax
BGB

⊤
Gh,

and B⊤
Gh ∈ Rm corresponds to the computation {hv −

hu|(u, v) ∈ EG} in the edge space. We can design a
better filter to replace this subtraction operation so that
Θ ⋆ h ≈ (θ0 − θ1)h + θ1

λGmax
BGz, where z is the result

of some specific computation in the edge space, which is
straightforward to involve Eq. (3). We are able to general-
ize Eq. (3) by the same idea, but it does not help to reduce
the complexity. The second term of Eq. (3) is equivalent to
2γ1

λHmax
(DH + Im)z − γ1

λHmax
B̂

⊤
G B̂Gz obtained from Propo-

sition 9. Moreover, B̂Gz ∈ Rn corresponds to the com-
putation {

∑
(u,v)∈EG

zuv +
∑

(v,u)∈EG
zvu|v ∈ VG}. We

can also enhance this computation by introducing h, e.g.,
Γ ⋆ z ≈ (γ0 − γ1)z + 2γ1

λHmax
(DH + Im)z − γ1

λHmax
B̂

⊤
Gh.

We can get the degree matrix DH without constructing the
line graph H because it depends on the vertex degrees of G:
{d−g(e) = d−u , d

+
g(e) = d+v |e = (u, v) ∈ EG}. Thus, λHmax =

max{du + dv|(u, v) ∈ EH} = max{d−u + d+v |(u, v) ∈ EG}.
Finally, the asynchronous updates are defined as follows:

h(k) ← (θ
(k)
0 − θ

(k)
1 )h(k−1) +

θ
(k)
1

λGmax
BGz

(k−1), (4)

z(k) ← (γ
(k)
0 − γ

(k)
1 )z(k−1) +

2γ
(k)
1

λHmax
(DH + Im)z(k−1)

− γ
(k)
1

λHmax
B̂

⊤
Gh

(k−1), (5)

where θ(k)
: and γ

(k)
: indicate the parameters at the k-th

update and h(k) and z(k) are the updated results. The
computation of BGz

(k) and the computation of B̂
⊤
Gh

(k)

are linear to the number of edges m with the help of sparse
representations for BG and B̂G .

Heterogeneous Multi-graph Extensions

Different relational message passing variants have been
proposed to model heterogeneous graphs. Nevertheless,
our dual message passing is natural to handle com-
plex edge types and even edge features. Each edge not
only carries the edge-level property, but also stores the
local structural information in the corresponding line
graph. However, Eq. (5) does not reflect the edge di-
rection since B̂G regards the source and the target of
one edge as the same. Therefore, we extend Eqs. (4-
5) and propose dual message passing neural networks
(DMPNNs) to support the mixture of various properties:

H(k) = H(k−1)W
(k)
θ0
− (B̂G −BG)Z

(k−1)W
(k)

θ−
1

+ (B̂G +BG)Z
(k−1)W

(k)

θ+
1

, (6)

Z(k) = Z(k−1)W (k)
γ0

+ 2(DH + Im)Z(k−1)(W
(k)

γ−
1

−W
(k)

γ+
1

)

− (B̂G −BG)
⊤H(k−1)W

(k)

γ−
1

+ (B̂G +BG)
⊤H(k−1)W

(k)

γ+
1

, (7)

where H(k) ∈ Rn×l(k)

and Z(k) ∈ Rm×l(k)

are l(k)-dim
hidden states of nodes and edges in the k-th DMPNN layer.
H(0) and Z(0) are initialized with features, labels, and other
properties, B̂G−BG eliminates out-edges, B̂G +BG filters
out in-edges, and W

(k)
θ:

and W (k)
γ:
∈ Rl(k−1)×l(k)

are train-

able parameters that are initialized bounded by

√
6

l(k−1)+l(k)

λGmax

and

√
6

l(k−1)+l(k)

λHmax
, respectively. For the detailed explanations

and reparameterization tricks, see Appendix C.

Experiments

We evaluate DMPNNs on challenging subgraph isomor-
phism tasks. We also learn embeddings and classify nodes
without label or attribute on relational graphs to verify the
generalization and the necessity of explicit edge modeling.
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Subgraph Isomorphism Counting and Matching
DMPNNs are designed based on the duality of isomor-
phisms so that evaluation on isomorphism related tasks is the
most straightforward. Given a pair of pattern P and graph
G, subgraph isomorphism counting aims to count all dif-
ferent subgraph isomorphisms in G, and matching aims to
seek out which nodes and edges belong to those isomorphic
subgraphs. We report the root mean square error (RMSE)
and the mean absolute error (MAE) between global counting
predictions and the ground truth, and evaluate graph edit dis-
tance (GED) between predicted subgraphs and all isomor-
phic subgraphs. However, computing GED is NP-hard, so
we consider the lower-bound of GED in contiguous space.
We use DMPNN and baselines to predict the possible fre-
quency of each node or edge appearing in isomorphic sub-
graphs. For example, models are expected to return [2, 2, 2]
for nodes and [2, 2, 2] for edges given the pair in Figure 1a,
and return [1, 1, 1, 0] for nodes and [1, 1, 1, 0, 0] for edges
given Figure 1b. MAE between node predictions and node
frequencies or the MAE between edge predictions and edge
frequencies is regarded as the lower-bound of GED. We run
experiments on three different seeds and report the best.

Models We compare with three sequence models
and three graph models, including CNN (Kim 2014),
LSTM (Hochreiter and Schmidhuber 1997), TXL (Dai
et al. 2019), RGCN (Schlichtkrull et al. 2018), RGIN (Liu
et al. 2020), and CompGCN (Vashishth et al. 2020).
Sequence models embed edges, and we calculate the
MAE over edges as the GED. On the contrary, graph
models embed nodes so that we consider the MAE over
nodes. We jointly train counting and matching predic-
tion modules of DMPNN and other graph baselines:

J =
1

|D|
∑

(P,G)∈D

(
(cP,G − pP,G)

2
+

∑
v∈VG

(wP,v − pP,v)
2
)
, (8)

where D is the dataset containing pattern-graph pairs,
cP,G indicates the ground truth of number of subgraph
isomorphisms between pattern P and graph G, cP,v

indicates the frequency of vertex v appearing in isomor-
phisms, pP,G and pP,v are the corresponding predictions.
For sequence models, we jointly minimize the MSE of
counting predictions and the MSE of edge predictions.
We follow the same setting of Liu et al. (2020) to com-
bine multi-hot encoding and message passing to embed
graphs and use pooling operations to make predictions:

h(0)
v = Concat(MultiHot(v),MultiHot(X (v)))W vertex,

z(0)
e = MultiHot(Y(e))W edge,

H(K),Z(K) = DMPNN(K)(· · · (DMPNN(1)(H(0),Z(0)))),

p =
∑
v∈P

h
(K)
Pv , g =

∑
v∈G

h
(K)
Gv ,

pP,v = FCmatching(Concat(h(K)
Gv ,p,h

(K)
Gv − p,h

(K)
Gv ⊙ p)),

pP,G = FCcounting(Concat(g,p, g − p, g ⊙ p)),

where W vertex and W edge are trainable matrices to align
id and label representations to the same dimension. We
also consider the more powerful Deep-LRP (Chen et al.

Erdős-Renyi Regular Complex MUTAG

#Train 6,000 6,000 358,512 1,488
#Valid 4,000 4,000 44,814 1,512
#Test 10,000 10,000 44,814 1,512

Max Avg Max Avg Max Avg Max Avg
|VP | 4 3.8±0.4 4 3.8±0.4 8 5.2±2.1 4 3.5±0.5
|EP | 10 7.5±1.7 10 7.5±1.7 8 5.9±2.0 3 2.5±0.5
|XP | 1 1±0 1 1±0 8 3.4±1.9 2 1.5±0.5
|YP | 1 1±0 1 1±0 8 3.8±2.0 2 1.5±0.5
|VG | 10 10±0 30 18.8±7.4 64 32.6±21.2 28 17.9±4.6
|EG | 48 27.0±6.1 90 62.7±17.9 256 73.6±66.8 66 39.6±11.4
|XG | 1 1±0 1 1±0 16 9.0±4.8 7 3.3±0.8
|YG | 1 1±0 1 1±0 16 9.4±4.7 4 3.0±0.1

Table 1: Statistics of datasets on subgraph isomorphism ex-
periments. P and G corresponds to patterns and graphs.

2020) and add local relational pooling behind dual mes-
sage passing for node representation learning, denoted
as DMPNN-LRP. For a fair comparison, we use 3-layer
networks and set the embedding dimensions, hidden sizes,
and numbers of filters as 64 for all models. We follow
the original setting of Deep-LRP to use 3-truncated BFS.
Considering the quadratic computation complexity of TXL,
we set the segment size and memory size as 128. All models
are trained using AdamW (Loshchilov and Hutter 2019)
with a learning rate 1e-3 and a decay 1e-5.

Datasets Table 1 shows the statistics of two synthetic ho-
mogeneous datasets with 3-stars, triangles, tailed triangles,
and chordal cycles as patterns (Chen et al. 2020), one
synthetic heterogeneous dataset with 75 random patterns, 1

and one mutagenic compound dataset MUTAG with 24 pat-
terns (Liu et al. 2020). We also conduct experiments on pat-
terns and graphs with reversed edges associated with specific
edge labels , which also doubles the number of edge labels.

Results Counting and matching results are reported in Ta-
ble 2. We find graph models perform better than sequence
models, and DMPNN almost surpasses all message pass-
ing based networks in counting and matching. RGIN ex-
tends RGCN with the sum aggregator followed by an MLP
to makes full use of the neighborhood information, and it
improves the original RGCN significantly. CompGCN is de-
signed to leverage vertex-edge composition operations to
predict the potential links, which is contrary to the goal of
accurate matching. On the contrary, DMPNN learns both
node embeddings and edge embeddings in aligned space but
from different but dual structures. We also observe local re-
lational pooling can significantly decrease errors on homo-
geneous data by explicitly permuting neighbor subsets. But
Deep-LRP is designed for patterns within three nodes and
simple graphs so that it cannot handle multi-edges in nature,
let along complex structures in randomly generated data and

1This Complex dataset corresponds to the Small dataset in the
original paper. But we found some ground truth counts are not cor-
rect because VF2 does not check self-loops. We removed all self-
loops from patterns and graphs and got the correct ground truth.
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Models
Homogeneous Heterogeneous

Erdős-Renyi Regular Complex MUTAG
RMSE MAE GED RMSE MAE GED RMSE MAE GED RMSE MAE GED

Zero 92.532 51.655 201.852 198.218 121.647 478.990 68.460 14.827 86.661 16.336 6.509 15.462
Avg 121.388 131.007 237.349 156.515 127.211 576.476 66.836 23.882 156.095 14.998 10.036 27.958
CNN 20.386 13.316 NA 37.192 27.268 NA 41.711 7.898 NA 1.789 0.734 NA
LSTM 14.561 9.949 160.951 14.169 10.064 234.351 30.496 6.839 88.739 1.285 0.520 3.873
TXL 10.861 7.105 116.810 15.263 10.721 208.798 43.055 9.576 98.124 1.895 0.830 4.618
RGCN 9.386 5.829 28.963 14.789 9.772 70.746 28.601 9.386 64.122 0.777 0.334 1.441
RGIN 6.063 3.712 22.155 13.554 8.580 56.353 20.893 4.411 56.263 0.273 0.082 0.329
CompGCN 6.706 4.274 25.548 14.174 9.685 64.677 22.287 5.127 57.082 0.300 0.085 0.278
DMPNN 5.062 3.054 23.411 11.980 7.832 56.222 17.842 3.592 38.322 0.226 0.079 0.244
Deep-LRP 0.794 0.436 2.571 1.373 0.788 5.432 27.490 5.850 56.772 0.260 0.094 0.437
DMPNN-LRP 0.475 0.287 1.538 0.617 0.422 2.745 17.391 3.431 35.795 0.173 0.053 0.190

Table 2: Performance on subgraph isomorphism counting and matching.

Models Complex MUTAG
RMSE MAE GED RMSE MAE GED

CNN w/o rev 41.711 7.898 NA 1.789 0.734 NA
w/ rev 47.467 10.128 NA 2.073 0.865 NA

LSTM w/o rev 30.496 6.839 88.739 1.285 0.520 3.873
w/ rev 32.178 7.575 90.718 1.776 0.835 5.744

TXL w/o rev 43.055 9.576 98.124 1.895 0.830 4.618
w/ rev 37.251 9.156 95.887 2.701 1.175 6.436

RGCN w/o rev 28.601 9.386 64.122 0.777 0.334 1.441
w/ rev 26.359 7.131 49.495 0.511 0.200 1.628

RGIN w/o rev 20.893 4.411 56.263 0.273 0.082 0.329
w/ rev 20.132 4.126 39.726 0.247 0.091 0.410

CompGCN w/o rev 22.287 5.127 57.082 0.300 0.085 0.278
w/ rev 19.072 4.607 40.029 0.268 0.072 0.266

DMPNN w/o rev 18.974 3.922 56.933 0.232 0.088 0.320
w/ rev 17.842 3.592 38.322 0.226 0.079 0.244

Deep-LRP w/o rev 27.490 5.850 56.772 0.260 0.094 0.437
w/ rev 26.297 5.725 61.696 0.290 0.108 0.466

DMPNN-LRPw/o rev 20.425 4.173 42.200 0.196 0.062 0.210
w/ rev 17.391 3.431 35.795 0.173 0.053 0.190

Table 3: Performance comparison after introducing reversed
edges on heterogeneous data.

real-life data. One advantage of DMPNN is to model het-
erogeneous nodes and edges in the same space. We can see
the success of DMPNN-LRP in three datasets with the max-
imum pattern size 4. But it struggles on the Complex dataset
where patterns contain at most 8 nodes.

We also evaluate baselines with additional reversed edges
on Complex and MUTAG datasets. From results in Table 3,
we see graph convolutions consistently reduce errors with
reversed edges, but sequence models usually become worse.
LRP is designed for simple graphs so that it cannot han-
dle heterogeneous edges in nature, but DMPNN makes it
generalized. This observation also indicates that one of the
challenges on neural subgraph isomorphism counting and
matching is the complex graph local structure instead of the
number of edges in graphs; otherwise, revised edges were
toxic. We compare the efficiency in Appendix D.

In the joint learning, we hope models can learn the mutual

Models MUTAG Regular Complex
RMSE MAE RMSE MAE RMSE MAE

LSTM MTL 1.285 0.520 14.169 10.064 30.496 6.839
STL -0.003 +0.030 +0.159 -0.029 -1.355 -0.096

TXL MTL 1.895 0.830 14.306 10.143 37.251 9.156
STL -0.128 -0.041 +1.487 +1.211 -5.671 -2.067

RGCN MTL 0.511 0.200 14.652 9.911 26.359 7.131
STL +0.202 +0.090 +0.348 -0.269 +1.686 +0.460

RGIN MTL 0.247 0.091 13.128 8.412 20.132 4.126
STL +0.053 +0.004 +1.119 +1.019 +1.804 +0.068

CompGCN MTL 0.268 0.072 14.174 9.685 19.072 4.607
STL +0.088 +0.086 +0.252 +0.738 +3.625 +0.260

DMPNN MTL 0.226 0.079 11.980 7.832 17.842 3.592
STL +0.011 +0.001 +0.318 +0.097 +3.604 +0.865

Deep-LRP MTL 0.260 0.094 1.275 0.731 26.297 5.725
STL +0.099 +0.044 +0.036 +0.035 +3.753 +0.886

DMPNN-LRPMTL 0.173 0.053 0.617 0.422 17.391 3.431
STL +0.040 +0.020 +0.513 +0.252 +4.263 +0.928

Table 4: Performance comparison in multi-task training
(MTL) and single-task training (STL) on subgraph isomor-
phism counting. We report best results of whether adding
reversed edges or not, and error increases are underlined.

supervision that node weights determine the global count
and the global count is the upper bound of node weights. We
also conduct experiments on single task learning to examine
whether models can benefit from this mutual supervision.
As shown in Table 4, graph models consistently achieve fur-
ther performance gains from multi-task learning, while se-
quence models cannot. Moreover, improvement is more no-
table if the dataset is more complicated, e.g., patterns with
more edges and graphs with non-trivial structures.

Unattributed Unsupervised Node Classification
Unattributed unsupervised node classification focuses on lo-
cal structures instead of node features and attributes. Node
embeddings are learned with the link prediction loss, then
linear support vector machines are trained based on 80% of
labeled node embeddings to predict the remaining 20%. We
report the average Macro-F1 and Micro-F1 on five runs.
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Models We follow the setting of RGCN and CompGCN:
graph neural networks first learn the node representations,
and then DistMult models (Yang et al. 2015) take pairs of
node hidden representations to produce a score for a triplet
⟨u, y, v⟩, where u, y, v are the source, the edge type, and the
target, respectively. Eq. (9) is the objective function, where
D = {⟨u, y, v⟩|(u, v) ∈ EG , y ∈ YG((u, v))} is the triplet
collection of graph G, sy(u, v) is the score for ⟨u, y, v⟩,
and ⟨u′

t, y, v
′
t⟩ is one of the T negative triplets sampled

from G by replacing u with u′
t or v with v′t uniformly:

J = − 1

|D|
∑

⟨u,y,v⟩∈D

(
log σ(sy(hu,hv))

− 1

T

T∑
t=1

log(1− σ(sy(hu′
t
,hv′

t
)))

)
. (9)

We report the results of KG embedding models, proximity-
preserving based embedding methods, graph convolutional
networks, and graph attention networks for comparison. We
use the same parameter setting as Yang et al. (2020).

Yang et al. (2020) processed two heterogeneous net-
works to evaluate graph embedding algorithms. PubMed is a
biomedical network constructed by text mining and manual
processing where nodes are labeled as one of eight types of
diseases; Yelp is a business network where nodes may have
multiple labels (businesses, users, locations, and reviews).

Results In Table 5, we observe low F1 scores on both
datasets and the difficulty of this task. Traditional KG em-
bedding methods perform similarly, but graph neural net-
works vary dramatically. RGCN and RGIN adapt the same
relational transformations, but RGIN surpasses RGCN be-
cause of sum aggregation and MLPs. HAN and MAGNN
explicitly learn node representations from meta-paths and
meta-path neighbors, but these models are evidently easy to
overfit to training data because they predict the connectivity
with leaky edge types. On the contrary, CompGCN and HGT
obtain better scores since CompGCN incorporates semantics
by node-relation composition, and HGT captures semantic
relations and injects edge dependencies by relation-specific
matrices. Our DMPNN outperforms all baselines by asyn-
chronously learning node embeddings and edge representa-
tions in aligned space. Even for challenging multi-label clas-
sification, DMPNN also works without any node attributes.

Related Work
The isomorphism search aims to find all bijections between
two graphs. The subgraph isomorphism search is more chal-
lenging, and it has been proven to be an NP-complete prob-
lem. Most subgraph isomorphism algorithms are based on
backtracking or graph-index (Ullmann 1976; He and Singh
2008). However, these algorithms are hard to be applied to
complex patterns and large data graphs. The search space of
backtracking methods grows exponentially, and the latter re-
quires a large quantity of disk space to index. Some methods
introduce weak rules to reduce search space in most cases,
such as candidate region filtering, partial matching enumer-
ation, and ordering (Carletti et al. 2018). On the other hand,
there are many approximate techniques for subgraph count-

Models PubMed Yelp
Macro Micro Macro Micro

TransE‡ (Bordes et al. 2013) 11.40 15.16 5.05 23.03
DistMult‡ (Yang et al. 2015) 11.27 15.79 5.04 23.00
ConvE‡ (Dettmers et al. 2018) 13.00 14.49 5.09 23.02
metapath2vec‡ (Dong et al. 2017) 12.90 15.51 5.16 23.32
HIN2vec‡ (Fu, Lee, and Lei 2017) 10.93 15.31 5.12 23.25
HEER‡ (Shi et al. 2018) 11.73 15.29 5.03 22.92
RGCN‡ (Schlichtkrull et al. 2018) 10.75 12.73 5.10 23.24
RGIN (Liu et al. 2020) 12.22 15.41 5.14 23.82
CompGCN (Vashishth et al. 2020) 13.89 21.13 5.09 23.96
HAN‡ (Wang et al. 2019) 9.54 12.18 5.10 23.24
MAGNN‡ (Fu et al. 2020) 10.30 12.60 5.10 23.24
HGT‡ (Hu et al. 2020) 11.24 18.72 5.07 23.12
DMPNN 16.54 23.13 12.74 29.12

Table 5: F1 scores (%) on unattributed unsupervised node
classification. Results of ‡ are taken from (Yang et al. 2020).

ing, such as path sampling (Jha, Seshadhri, and Pinar 2015)
and color coding (Bressan, Leucci, and Panconesi 2019).
But most approaches are hard to generalize to complex het-
erogeneous multi-graphs (Sun and Luo 2020).

In recent years, graph neural networks (GNNs) and
message passing networks (MPNNs) have achieved suc-
cess in graph data modeling. There are also some dis-
cussions about isomorphisms. Xu et al. (2019) and Mor-
ris et al. (2019) showed that neighborhood-aggregation
schemes are as stronger as Weisfeiler-Leman (1-WL) test.
Chen et al. (2020) proved that k-WL cannot count all pat-
terns more than k nodes accurately, but the bound of T it-
erations of k-WL grows quickly to (k + 1)2T . These con-
clusions encourage researchers to empower message pass-
ing and explore the possibilities of neural subgraph count-
ing. Empirically, Liu et al. (2020) combined graph encod-
ing and dynamic memory networks to count subgraph iso-
morphisms in an end-to-end way. They showed the mem-
ory with linear-complexity read-write operations can sig-
nificantly improve all encoding models. A more challeng-
ing problem is subgraph isomorphism matching. Neural-
Match (Ying et al. 2020) utilizes neural methods and a vot-
ing method to detect subgraph matching. However, it only
returns whether one pattern is included in the data graph in-
stead of specific isomorphisms. Neural subgraph matching
is still under discussion. Besides, graph learning also applies
on maximum common subgraph detection (Bai et al. 2021),
providing another possible solution for isomorohisms.

Conclusion
In this paper, we theoretically analyze the connection be-
tween the edge-to-vertex transform and the duality of iso-
morphisms in heterogeneous multi-graphs. We design dual
message passing neural networks (DMPNNs) based on the
equivalence of isomorphism searching over original graphs
and line graphs. Experiments on subgraph isomorphism
counting and matching as well as unsupervised node classi-
fication support our theoretical exposition and demonstrate
effectiveness. We also see huge performance boost in small
patterns by stacking dual message passing and local rela-
tional pooling. We defer a better integration as future work.
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