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Abstract

Multi-view deep learning is performed based on the deep fu-
sion of data from multiple sources, i.e. data with multiple
views. However, due to the property differences and inconsis-
tency of data sources, the deep learning results based on the
fusion of multi-view data may be uncertain and unreliable. It
is required to reduce the uncertainty in data fusion and im-
plement the trusted multi-view deep learning. Aiming at the
problem, we revisit the multi-view learning from the perspec-
tive of opinion aggregation and thereby devise a trusted multi-
view deep learning method. Within this method, we adopt
evidence theory to formulate the uncertainty of opinions as
learning results from different data sources and measure the
uncertainty of opinion aggregation as multi-view learning re-
sults through evidence accumulation. We prove that accumu-
lating the evidences from multiple data views will decrease
the uncertainty in multi-view deep learning and facilitate to
achieve the trusted learning results. Experiments on various
kinds of multi-view datasets verify the reliability and robust-
ness of the proposed multi-view deep learning method.

Introduction
In real-world applications, data is usually represented with
different views, including multiple modalities or various
types of features, which leads a growing interest in multi-
view learning. With the development of the deep learning,
most of the existing multi-view learning methods tend to in-
tegrate multi-view information with deep neural networks
to achieve state-of-the-art performance in various applica-
tion domains (Wang et al. 2015a; Andrew et al. 2013; Wang
et al. 2018; Tao et al. 2019; Tian, Krishnan, and Isola 2019;
Bachman, Hjelm, and Buchwalter 2019; Sun, Liu, and Mao
2019; Zhang et al. 2019, 2020; Sun, Dong, and Liu 2020).
However, due to the property differences and inconsistency
of multiple data sources, the results learned from multi-view
deep learning method may be uncertain and unreliable, be-
cause the traditional convolutional neural networks focus on
the accuracy of the classifications but ignore the credibil-
ity of the results, which makes a great limitation in various
kinds of applications, especially safety-critical applications
(e.g., medical diagnosis or autonomous driving).
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To address this limitation, an uncertainty-aware trusted
Multi-view Classification (TMC) method (Han et al. 2021)
was proposed recently. TMC focuses on combining different
views at an evidence level in terms of the Dempster’s rule of
combination to produce a reliable classification result. How-
ever, it does not guarantee the decrease of the overall uncer-
tainty when integrating the uncertain information extracted
from multi-view data and does not consider the “consis-
tency” in multi-view learning for avoiding the conflict across
information captured from different views. Moreover, the
fusion with Dempster’s rule will produce counter-intuitive
results (Zadeh 1984). Therefore, this has motivated us to re-
visit the multi-view learning from the perspective of opinion
aggregation and thereby develop a trusted multi-view deep
learning method.

Opinion aggregation aims at aggregating multiple opin-
ions within a group in support of group decision making,
which is the same as the fusion process for multi-view learn-
ing. However, the opinions from multiple views about the
same domain are always unreliable because of the various
sensor qualities or environmental factors, which adds more
uncertainty to the decision-making process. A good opinion
aggregation process should consist of two necessary parts:
1) a trusted aggregation strategy, which can reduce the over-
all uncertainty after aggregation, 2) maximization of con-
sistency across views for avoiding conflict between mul-
tiple opinions. Therefore, from the perspective of a good
opinion aggregation structure, we devise a trusted multi-
view deep learning method. Within this method, we adopt
the evidence theory to represent opinions as beliefs about
the truth of propositions under degrees of uncertainty. In
this opinion representation, the beliefs mean the evidences
support for those class probabilities and uncertainty means
the vacuity of evidence, which allows explicit expression of
level of trust for the results learned from different views.
Then, guided by the mapping between opinions and Dirich-
let PDFs, we integrate the opinions in terms of the evidence
accumulation, which can increase the evidences support for
class probabilities and decrease the vacuity of evidence and
thereby increase the reliability of multi-view deep learning
results. In summary, our contributions of this paper are:

(1) We construct a trusted multi-view deep learning method
through simulating opinion aggregation mechanism to
achieve trusted learning results. The proposed method
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adopts the evidence theory to formulate the opinions as
learning results from different data sources and repre-
sents the integrated opinion as multi-view learning re-
sult through opinion aggregation with evidence accumu-
lation, which can precisely estimate the uncertainty of
results in multi-view deep learning.

(2) We theoretically prove that accumulating the evidences
from multiple data views will decrease the overall uncer-
tainty and prediction error of multi-view learning results,
which facilitates to produce trusted and accurate learning
results. Moreover, we further extend our method by mini-
mizing the opinion entropy across views for guaranteeing
the consistency across multiple views.

(3) We conduct extensive experiments over various kinds of
real-world data to validate the effectiveness of the pro-
posed model in accuracy, reliability and robustness.

Related Work
Multi-View Learning: Multi-view learning receives in-
creasing interest in recent years to analyze complex data.
The traditional representative methods are canonical corre-
lation analysis (CCA) (Harold 1936) and its variants (Bach
and Jordan 2002; Hardoon and Shawe-Taylor 2011; Wang
2007). CCA maximizes the correlation between different
views to find a common representation. Kernel CCA (Bach
and Jordan 2002) develops CCA to nonlinear conditions,
which makes the CCA more robust. Sparse CCA (Hardoon
and Shawe-Taylor 2011) learns sparse representation to re-
duce the effect of noisy data. BCCA presents (Wang 2007)
a Bayesian model selection algorithm for CCA based on
a probabilistic interpretation. Different from CCA, some
methods (Zhao, Ding, and Fu 2017; Zhang et al. 2018; Liu
et al. 2015) obtain hierarchical representation from multi-
view data through matrix factorization. Multi-view dimen-
sionality co-reduction (MDcR) (Zhang et al. 2016) applies
the kernel matching to regularize the dependence across
views. Nonparametric sparse learning method (NSMD) (Liu
et al. 2017) develops an effective sparse learning method
for cross-view dimensionality reduction. Consensus and
complementarity based maximum entropy discrimination
(MED-2C) (Chao and Sun 2016) proposes a multi-view clas-
sification based on the two principles consensus and com-
plementarity. Furthermore, Self-representation is also in-
troduced to better incorporate multi-view information (Xie
et al. 2018, 2020). Kernelized version of tensor-based multi-
view subspace clustering (Kt-SVD-MSC) (Xie et al. 2018)
jointly learns self-representation coefficients in mapped
high-dimensional spaces. Moreover, with the development
of the deep learning, some works (Andrew et al. 2013; Wang
et al. 2015a, 2018; Tao et al. 2019; Tian, Krishnan, and Isola
2019; Bachman, Hjelm, and Buchwalter 2019; Sun, Liu, and
Mao 2019; Sun, Dong, and Liu 2020) combine deep learn-
ing with multi-view learning. Deep CCA (DCCA) (Andrew
et al. 2013) is more powerful to capture nonlinear relation-
ships. Deep canonically correlated autoencoder (DCCAE)
(Wang et al. 2015a) learns compact representation by com-
bining deep CCA and autoencoder, which is more useful to
extract nonlinear relationships. In addition, generative ad-

versarial network is applied to handle missing view problem
(Wang et al. 2018) or impose prior information (Tao et al.
2019). However, these methods achieve a great performance
on multi-view classification, but they rarely consider the re-
liability of the classification result. Recently, a trusted multi-
view classification method (Han et al. 2021) has been pro-
posed, which focuses on the uncertainty estimation problem
and produces a reliable classification result. Nonetheless, it
does not guarantee the decrease of overall uncertainty after
fusion of different views and does not consider the consis-
tency across views. Moreover, the fusion with Dempster’s
rule in TMC will produce counter-intuitive results (Zadeh
1984). In contrast, our method explores the consistency be-
tween different views from the perspective of opinion aggre-
gation and reduces the overall uncertainty after fusing differ-
ent opinions, which guides an accurate, robust and trusted
result.
Opinion Aggregation: Decision making is a pervasive part
of life. Every day we are confronted with deciding between
multiple choices. Opinion aggregation aims at aggregating
multiple opinions within a group, which is very useful for
group decision making. Due to its effectiveness, opinion
aggregation has been widely used in various applications
(Zadeh 1986; Ding and Liu 2007; Liu et al. 2007; Sprenger
and Martini 2017; Iso et al. 2021; Belluti et al. 2013).

Mechanism of Opinion Aggregation
Due to the property differences and inconsistency of data
sources, results from multiple views about the same do-
main may be unreliable, which adds more uncertainty to
the decision-making process. For reducing the uncertainty
in data fusion to obtain the trusted multi-view deep learn-
ing results, we revisit the multi-view deep learning from the
perspective of opinion aggregation and thereby implement a
trusted multi-view deep learning method. In this section, we
will describe the mechanism of opinion aggregation for the
proposed trusted multi-view deep learning, as shown in Fig-
ure 1. Within this mechanism, we first adopt the evidence
theory to formulate the information extracted from differ-
ent views with neural networks as corresponding opinions
(step (1) in Figure 1), which can precisely estimate the un-
certainty of results from different views. Then we integrate
multi-opinions to obtain a unified opinion with evidence ac-
cumulation (step (2) in Figure 1), which can decrease the
overall uncertainty. Furthermore, we measure the consis-
tency across opinions based on the opinion entropy (step (3)
in Figure 1), which can avoid the conflict between different
opinions. Details are described as following.

Opinion Representation under Evidence Theory
Traditional neural classification networks usually use the
softmax as the standard output. However, using the softmax
only obtains the class probabilities but ignores the reliability
of the results. To address this problem, the softmax layer is
replaced by an activation layer (i.e. ReLU) to obtain a non-
negative output, termed as evidence (Şensoy, Kaplan, and
Kandemir 2018) in this work. Then we adopt the evidence
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Figure 1: Illustration of proposed method. (1) The evidence extracted from a neural network is represented as an opinion. (2)
Opinion aggregation with evidence accumulation. (3) Maximization of the consistency based on the opinion entropy across
views. In this method, assume a 3-classification tasks, the opinion ω from this task is visualized as a point inside a tetrahedron,
which in fact is a barycentric coordinate system of four axes. The vertical elevation of the opinion point inside the tetrahedron
represents the uncertainty mass u; The distances from each of the three triangular side planes to the opinion point represent the
respective belief masses b = (b1, b2, b3)

T; The base rate distribution a is indicated as a point on the base triangular plane. The
line that joins the tetrahedron summit and the base rate point represents the director. The projected probability distribution P
point is geometrically determined by tracing a projection from the opinion point, parallel to the director, onto the base plane.

theory to formalize the evidence as opinion to explicitly ex-
press the uncertainty degree of deep learning result.

In evidence theory, for a K-classification problem, a
multinomial opinion ω = (b, u,a) is always a trinomial
opinion visualized as a barycentric polyhedron, as shown in
Figure 1 (in case of 3-classification problems), where u in-
dicates the overall uncertainty which represents the vacuity
of evidence, b = (b1, . . . , bk)

T represents the belief degree
for the kth class, a = (a1, . . . , ak)

T indicates the prior pref-

erence over class k and we have
K∑
k=1

bk + u = 1. Then the

probability that the data is assigned to class k is defined by
P (k) = bk + aku, for k = 1, ...,K . Typically, all values of
the a are set to 1/K when there is no preference over class.

Let the expected probability distribution derived from
Dirichlet distribution be equal with the projected probabil-
ity distribution derived from the opinion in evidence theory.
Then we have a mapping between opinion and Dirichlet dis-
tribution (Jøsang 2018),

ω = (b, u,a)↔ Dir (P |α ) , (1)

where P = (P1, ..., Pk)
T is the probability that the data

is assigned to kth class, α = (α1, ..., αk)
T represents the

Dirichlet parameters and we have α = e + aK, where
e = (e1, . . . , ek)

T indicates the amount of support evidence
collected from neural network in favor of a sample to be
classified into kth class. Noted that, when there is no prefer-
ence over class, the Dirichlet parameters α = e + 1. Then
the belief b and uncertainty mass u are calculated as

bk =
ek
S
=
αk − 1

S
, u =

K

S
, (2)

where S =
∑K
k=1 (ek+1) =

∑K
k=1 αk is the Dirichlet

strength. That is, the Dirichlet distribution parametrized over
evidence represents the density of such probability assign-
ment, it represents the predictions of the learner as a dis-
tribution over possible softmax outputs, which models the
second-order probabilities to indicate the uncertainty of the
neural network result.

Finally, according to equations 1 and 2, we could translate
the output of neural network e = (e1, . . . , ek)

T into opinion
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ω = (b, u,a) (step (1) in Figure 1), which allows us flexibly
integrate multiple views for trusted decision making.

Opinion Aggregation with Evidence Accumulation
The opinion of single view has been formalized above,
which allows explicit expression of uncertainty degree.
Now, we begin to focus on the opinion aggregation with
multi-view deep learning. Particularly, we use the evidence
accumulation in evidence theory to combine multiple opin-
ions, which can reduce the overall uncertainty. The Defini-
tion of opinion aggregation with evidence accumulation is
described as below.
Definition 1. Opinion aggregation with evidence accumu-
lation. The opinion aggregation with evidence accumula-
tion simply consists of evidence parameter addition. Given
a data with M multiple views for the same K-classification
problem, we can obtain a set of evidences {em}Mm=1, col-
lected from M neural networks and a set of opinions
{ωm}Mm=1 in terms of the equation 2. Then we have an inte-
grated opinion

ω♦(M) = ⊕
m=1,...,M

(ωm) =
(
b♦(M), u♦(M),a♦(M)

)
. (3)

For k = 1, ...,K , we have

b
♦(M)
k =

e
♦(M)
k

S♦(M)
, u♦(M) = 1−

K∑
k=1

b
♦(M)
k , a

♦(M)
k =

1

K
. (4)

Where S♦(M) =
K∑
k=1

(
e
♦(M)
k + 1

)
is the Dirichlet strength,

e
♦(M)
k =

∑M
m=1 e

m
k represents the process of evidence ac-

cumulation.
Following the Definition 1, we can obtain the integrated

opinion ω♦(M) =
(
b♦(M), u♦(M),a♦(M)

)
. The corre-

sponding integrated parameters of the Dirichlet PDF are in-
duced as α♦(M)

k = e
♦(M)
k + 1.

Measure of Consistency across Opinions
Our method for multi-view fusion has been described, which
projects the outputs of neural networks to opinions at evi-
dence level and then combines these opinions in terms of ev-
idence accumulation. However, in some cases, the opinions
collected from multiple views are inconsistent. To avoid the
conflict between multiple opinions, we introduce a consis-
tency measure named opinion entropy in Definition 2, which
can guarantee the consistency across multiple views. The
definition of opinion entropy is described as follows.
Definition 2. Opinion Entropy across two opinions. Given
any view denoted by the opinion ω = (b, u,a) for K-
classification task, the entropy of the opinion (Jøsang 2018)
is defined as

H(ω) = −
∑K

k=1
Pklog2 (Pk), (5)

where Pk = bk + aku. Then the opinion entropy between
two opinions ω1 and ω2 is computed as

E
(
ω1,ω2) = H

(
ω1 + ω2

2

)
− 1

2
H
(
ω1)− 1

2
H
(
ω2) , (6)

where H
(
ω1+ω2

2

)
= −

∑K
k=1

P 1
k+P

2
k

2 log2

(
P 1

k+P
2
k

2

)
.

Trusted Multi-view Deep Learning with
Opinion Aggregation

In this section, we will discuss how to train our multi-
view deep learning network. The neural network can cap-
ture the evidence from input to induce a classification opin-
ion. Therefore, the traditional neural network can be nat-
urally transformed into the evidence-based neural network
(Şensoy, Kaplan, and Kandemir 2018) with minor changes
which only replace the softmax layer with an activation layer
(e.g., ReLU) to provide non-negative output, termed as the
evidence e = (e1, . . . , ek)

T. Accordingly, the parameters of
the Dirichlet distribution α = e+ 1 can be obtained.

Within the proposed method, for the ith sample xi, the
overall loss objective is

Loverall (αi) = Lacc (αi) + λLcon (αi) , (7)

where Lacc (αi) is the prediction loss term, Lcon (αi) is the
loss of the consistency regulation across views, λ is a weight
parameter with the range of [0, 1] to control the weight of
consistency loss function. The details of these two loss func-
tions are shown in the following subsection.

Prediction Loss Term
For training example xi, let yi encodes the ground-true
class label k by setting yik = 1 and yij = 0, ∀j 6=
k. Let Cat

(
_
y i = k |Pi

)
be the likelihood, where Pi ∼

Dir (Pi |αi ), P i = (Pi1, ..., Pik)
T and the parameters

αi = ei + 1. The expected sum of squares loss after the
aggregation of a set of opinions {ωm}Mm=1 is defined as

Lacc (αi) = Lacc

(
α
♦(M)
i

)
= E

Pi∼Dir
(
Pi

∣∣∣α♦(M)
i

) ‖yi − Pi‖22
=

K∑
j=1

(
y2ij − 2yijE [Pij ] + E

[
P 2
ij

])
, (8)

where α♦(M)
i = e

♦(M)
i + 1 and e♦(M)

i = e1i + · · · + eMi
is the process of evidence accumulation, which can increase
the amount of support in favor of sample xi to be classi-
fied into kth class and decrease the overall uncertainty. In-
tuitively, E

[
P 2
ij

]
= E[Pij ]2 + Var (Pij), then we get the

following easily interpretable form

Lacc (αi) =
K∑
j=1

(yij − E [Pij ])
2
+Var (Pij)

=
K∑
j=1

(
yij −

_
p ij

)2
︸ ︷︷ ︸
Lerr

(
α

♦(M)
ij

)
+

_
p ij

(
1− _

p ij

)
(
S
♦(M)
i + 1

)
︸ ︷︷ ︸
Lvar

(
α

♦(M)
ij

)
, (9)

where S
♦(M)
i =

∑K
k=1 α

♦(M)
ik is the Dirichlet strength,

_
p ij = α

♦(M)
ij

/
S
♦(M)
i is the expectation of the Dirichlet

7588



distribution. It is obvious that the loss aims to achieve the
joint goals of minimizing the prediction error Lerr

(
α♦(M)

i

)
and the varianceLvar

(
α♦(M)

i

)
of the integrated opinions by

decomposing the first and second terms. In addition, our loss
objective has the following propositions.

Proposition 1. By integrating the evidence of the correct
label from different views in terms of opinion aggrega-
tion with evidence accumulation, the prediction error loss
Lerr

(
α♦(M)

i

)
will be smaller than the prediction error loss

from a single view Lerr
(
αm

i

)
, for m = 1, ...,M .

Proof 1. Let emij > 0 be the evidence of the jth class ex-
tracted from the mth view classifier for the ith sample with
correct label j, e♦(M)

ij > 0 be the integrated evidence from
evidence accumulation of M views. After the opinion ag-
gregation, Lerr

(
α
♦(M)
i

)
is updated as

(
1−

α
♦(M)
ij

S
♦(M)
i

)2

︸ ︷︷ ︸
yij=1

+
∑
k 6=j

(
α
♦(M)
ik

S
♦(M)
i

)2

︸ ︷︷ ︸
yik=0

, (10)

which is equal with1−
αm
ij +

∑
v 6=m

evij

Sm
i +

∑
v 6=m

evij


2

+
∑
k 6=j

 αm
ik

Sm
i +

∑
v 6=m

evij


2

. (11)

Obviously, Lerr
(
α
♦(M)
i

)
is smaller than Lerr (αmi ) since1−

αm
ij +

∑
v 6=m

evij

Sm
i +

∑
v 6=m

evij


2

<

(
1−

αm
ij

Sm
i

)2

(12)

and

∑
k 6=j

 αm
ik

Sm
i +

∑
v 6=m

evij


2

<
∑
k 6=j

(
αm
ik

Sm
i

)2

. (13)

Proposition 2. By integrating the evidence from multi-view
in terms of opinion aggregation with evidence accumulation,
we guarantee the decrease of the overall uncertainty.

Proof 2. Let emi be the evidence captured from the mth

view classifier for the ith sample. e♦(M)
i be the integrated

evidence from the evidence accumulation of M views. Af-
ter the opinion aggregation, the overall uncertainty u♦(M) is
updated as

u♦(M) = 1−
K∑

j=1

e
♦(M)
ij

S
♦(M)
i

=
K

S
♦(M)
i

=
K

Sm
i +

∑
v 6=m

∑K
j=1 e

v
ij

(14)

which is smaller than the uncertainty of single view result
um = K

Sm
i

since Smi +
∑
v 6=m

∑K
j=1 e

v
ij > Smi .

These two propositions theoretically guarantee the predic-
tion error and uncertainty of multi-view learning results will
decrease with increasing views, which can produce accurate
and trusted learning result. Our experimental results can also
verify these propositions to validate the effectiveness of pro-
posed method.

Consistency Regulation
We further extend the proposed method by adding a consis-
tency regulation loss which minimizes the opinion entropy
across opinions to guarantee the consistency of results be-
tween different views (step (3) in Figure. 1). The consistency
loss is computed as

Lcon (αi) =

M∑
m=1

(∑M

v 6=m
E(ωm

i ,ωv
i )
/
(M − 1)

)
, (15)

where 1/(M − 1) is used for normalization andE(ωmi ,ω
v
i )

is the opinion entropy described in previous subsection.

Experiments
In this section, we evaluate the proposed method on real-
world multi-view datasets and compare it with existing
multi-view learning methods. Furthermore, we also provide
the uncertainty estimation analysis on noisy data.

Datasets
We conduct experiments on six real-world multi-view
datasets as follows: CUB (Wah et al. 2011): Caltech-UCSD
Birds dataset contains 11788 images and text descriptions
from 200 categories of birds. Food-101 (Wang et al. 2015b):
UMPC Food-101 dataset consists of 86796 images and text
descriptions from 101 classes of food. HMDB (Kuehne et al.
2011): This dataset is one of the largest human action recog-
nition dataset, which consists of 6718 images of 51 cate-
gories of actions with two views. Handwritten (van Breuke-
len et al. 1998): This dataset consists of handwritten nu-
merals (’0’-’9’) from a collection of Dutch utility maps,
the handwritten digits are represented with six views. Cal-
tech101 (Fei-Fei, Fergus, and Perona 2004): This dataset
consists of 8677 images from 101 classes, which contains
two views. Scene15 (Fei-Fei and Perona 2005): Scene15
dataset contains 4485 images from 15 indoor and outdoor
scene categories with three views. Details of each dataset
are presented in the Technical Appendix A.

Compared Methods
We compare our method with several state-of-the-art multi-
view learning methods as follows:

• DCCA: Deep Canonically Correlated Analysis (Andrew
et al. 2013) obtains the correlations through deep neural
networks, which maximizes the correlation among two
views.

• DCCAE: Deep Canonically Correlated AutoEncoders
(Wang et al. 2015a) employs autoencoders for seeking
the common representation.
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Figure 2: Prediction error with different epoches.

• CPM-Nets: Cross Partial Multi-view Networks (Zhang
et al. 2020) focuses on learning a complete thus versa-
tile representation to handling the complex correlation
among different views.

• DUA-Nets: Dynamic Uncertainty-Aware Networks
(Geng et al. 2021) employs Reversal networks to inte-
grate intrinsic information from different views into a
unified representation.

• TMC: Trusted Multi-view Classification (Han et al.
2021) focuses on the uncertainty estimation problem and
produces a reliable classification result.

Implementation Details
For our algorithm, we conduct the fully connected networks
for all datasets. The Adam optimizer (Kingma and Ba 2014)
is used to train the network, where l2-norm regularization
is set to 1e−5. We then use 5-fold cross-validation to se-
lect the learning rate from

{
1e−4, 3e−4, 1e−3, 3e−3

}
. For

all datasets, 20% samples are used as test set. We run 10
times for each method to report the mean values and stan-
dard deviations. The model is implemented by PyTorch on
one NVIDIA TITAN Xp with GPU of 12GB memory.

Performance Evaluation
In this subsection, we conduct two tests to evaluate the per-
formance of our method. The first test is to verify the effec-
tiveness of our method and the second is to overall evaluate
the superiority of our method.

Effectiveness evaluation. To validate the effectiveness of
our multi-view learning method, we first compare the aver-
age prediction error for multi-view learning results (shown
as red line, termed as V) with average prediction error for
each single-view learning result (termed as V1-V6) on all
datasets. The experimental results are shown in Figure 2,
where the y-coordinate represents the average prediction

error of data, the x-coordinate indicates the current epoch
in training. On all datasets, the prediction error for multi-
view (red line) are always smaller than each single-view
in proposed method, which proves our method can effi-
ciently reduce the prediction error after integration of mul-
tiple views to produce more accurate results. We also theo-
retically prove this conclusion in the Proposition 1. Further-
more, Figure 2 also demonstrates the convergence of pro-
posed method. Typically, the optimization process is stable,
where the loss decrease quickly and converges within a num-
ber of iterations.

Comparison with the methods. Then we overall evalu-
ate our algorithm by comparing it with state-of-the-art multi-
view learning methods in terms of accuracy metric. The de-
tailed experimental results are shown in Table 1. We find
that, on all datasets, our method consistently achieves better
performance. Taking the results on HMDB as examples, our
method improves the accuracy by about 20% compared to
the second-best model (TMC) in terms of accuracy, which
verifies the improved performance of the proposed method.

Uncertainty Estimation Analysis

Due to the property differences and inconsistency of data
sources, the uncertainty estimation becomes more important
for the multi-view learning. Therefore, in this subsection, we
conduct qualitative experiments to provide some insights for
the estimated uncertainty, which can evaluate the uncertainty
estimation performance of our method.

Ability of capturing uncertainty. Due to the limitation
of pages, in this part, we just show the uncertainty estima-
tion ability of our method on Caltech101 dataset with two
views. We first add noise to half of the test samples in one
view. Similarly to the work of (Geng et al. 2021), the noise
vectors (denoted by ε) are sampled from Gaussian distribu-
tion N (0, I). Then we add these noise vectors multiplied
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Data DCCA DCCAE CPM-NetS DUA-Nets TMC Ours

CUB 82.12±3.03 85.39±1.28 89.32±0.38 81.13±1.67 91.00±2.36 95.43±0.20
HMDB 46.83±0.77 49.12±1.00 63.32±0.43 62.73±0.23 65.98±2.92 88.20±0.58
Scene15 54.77±1.13 55.03±0.34 67.29±1.01 68.23±0.11 67.79±0.21 75.57±0.02

Caltech101 89.00±0.15 90.11±0.21 90.35±2.12 93.83±0.34 92.93±0.20 94.63±0.04
Handwritten 97.55±0.38 97.25±0.42 94.55±1.36 98.10±0.32 98.51±0.13 99.75±0.00

Food-101 81.68±2.23 85.30±0.31 86.45±1.51 87.73±2.27 90.21±1.20 93.75±0.32

Table 1: Comparison with state-of-the-art multi-view learning methods based on accuracy (%).

(a) η = 0.1 (b) η = 0.5

(c) η = 1.0 (d) η = 2.0

Figure 3: Investigation of our model in capturing data noise.
The curves in green and red correspond to distributions of
clean and noisy data respectively.

with intensity η to pollute half of the original test samples,
i.e., the ith sample x̃i = xi + ηεi. Then we obtain a Gaus-
sian kernel density estimation (Scott 2015) of learned un-
certainty shown in Figure 3. We find that the distribution
curves of noisy samples (red curves) are nearly overlapped
with the curves of clean samples (green curves) when the
noise intensity is small (η = 0.1). Then uncertainty of noisy
samples grows with increasing noise intensity. This means
that the estimated uncertainty is associated with the sample
quality, which verifies the uncertainty estimation ability of
our method and further guarantees our method can obtain
a trusted multi-view result with the decrease of the overall
uncertainty after aggregation of multiple views.

Overall uncertainty evaluation. To evaluate the overall
uncertainty, we add Gaussian noise with the fixed value of
noise intensity (η = 0.5) to 50% of the test samples and
compare the average uncertainty of multi-view learning re-
sults with the minimal average uncertainty among different
single-view learning results on all datasets to verify the de-
crease of the overall uncertainty with the increasing views.
The results are shown in Table 2, where the Umulti indicates

Uncertainty CUB Caltech101 HMDB
Usmin 0.4896 0.5047 0.5995
Umulti 0.2255 0.4038 0.4577

Uncertainty Scene15 Handwritten Food-101
Usmin 0.4652 0.4337 0.6352
Umulti 0.3433 0.2574 0.4378

Table 2: Overall uncertainty evaluation.

the average uncertainty degree for multi-view results on all
datasets,Usmin represents the minimal average uncertainty
degree among different single-view results. The results indi-
cate the uncertainty for multi-view results are always smaller
than each single-view result in proposed method, which
proves that our method can produce more reliable multi-
view deep learning results. We also theoretically prove this
conclusion in Proposition 2.

Moreover, we also conducted a thorough ablation study to
justify the effectiveness of our major technical component,
including fusion strategy and related model parameters. Ad-
ditional comparisons with existing uncertainty-based meth-
ods (Gal and Ghahramani 2015; Lakshminarayanan, Pritzel,
and Blundell 2017; Heo et al. 2018) and comparisons with
different types of noise and the analysis of real-world appli-
cations are also performed. All of these experiments validate
the effectiveness and superiority of our model. Detailed re-
sults are provided in Technical Appendix B and C.

Conclusion
In this work, we propose an efficient trusted multi-view deep
learning method with opinion aggregation, which can gen-
erate trusted classification results on multi-view data. Our
method tries to represent the learning results from differ-
ent data sources as the opinions in evidence theory, which
can precisely measure the uncertainty of learning results.
By the opinion aggregation with evidence accumulation, our
method can reduce the uncertainty of aggregated opinion to
generate more reliable multi-view deep learning results. Fur-
thermore, we further extend our method by adding a consis-
tency regulation loss to guarantee the consistency of results
between different views. The experimental results validate
the effectiveness, reliability and robustness of the proposed
multi-view deep learning method.
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