
Deep Amortized Relational Model
with Group-Wise Hierarchical Generative Process

Huafeng Liu1,2, Tong Zhou1, Jiaqi Wang1

1Beijing Key Lab of Traffic Data Analysis and Mining, Beijing Jiaotong University, Beijing, China
2 Department of Mathematics, The University of Hong Kong, Hong Kong SAR, China

{huafeng, tong zhou, jiaqi.wang, lpjing}@bjtu.edu.cn

Abstract

In this paper, we propose Deep amortized Relational Model
(DaRM) with group-wise hierarchical generative process for
community discovery and link prediction on relational data
(e.g., graph, network). It provides an efficient neural rela-
tional model architecture by grouping nodes in a group-wise
view rather than node-wise or edge-wise view. DaRM simul-
taneously learns what makes a group, how to divide nodes
into groups, and how to adaptively control the number of
groups. The dedicated group generative process is able to
sufficiently exploit pair-wise or higher-order interactions be-
tween data points in both inter-group and intra-group, which
is useful to sufficiently mine the hidden structure among
data. A series of experiments have been conducted on both
synthetic and real-world datasets. The experimental results
demonstrated that DaRM can obtain high performance on
both community detection and link prediction tasks.

Introduction
Relational models, which describe the pairwise interaction
between nodes in a network (graph), have gained tremen-
dous attention in recent years, with numerous methods de-
veloped to model the complex dependencies within rela-
tional data; in particular, probabilistic Bayesian methods.
Aside from it usefulness in many downstream tasks, prob-
abilistic relational model is an important tool for visualizing
and understanding the underlying structure of datasets, as
well as a model for categorization inn cognitive science. A
plethora of relational models have been developed and suc-
cessfully employed in various fields, including computer vi-
sion [Mehta, Duke, and Rai 2019], natural language process-
ing [Larsen and Aone 1999], social network analysis [Fortu-
nato 2010], and medical informatics [Masulli and Schenone
1999]. Among various relational models, probabilistic rela-
tional model have been widely concerned because of its flex-
ibility and adaptivity [Zhu et al. 2017].

Probabilistic relational models [Nowicki and Snijders
2001] are a staple of statistical modeling in which a discrete
latent variable is introduced for each observation, indicat-
ing its latent structures. These latent structures help discover
the underlying groups in the network, as well as in predict-
ing potential links between nodes. These generative mod-
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Figure 1: The Group-wise generative process of DaRM.

els can be roughly divided into two categories: finite proba-
bilistic relational model and infinite probabilistic relational
model [Cohen 1982; Teh et al. 2006]. In recent years, fi-
nite probabilistic relational models have been increasingly
applied in unsupervised graph learning problems with the
aid of deep neural networks. The most relevant research is
that of deep generative relational models [Kipf and Welling
2016; Hu, Rai, and Carin 2017; Fan et al. 2019], where
neural networks are trained to predict the states of latent
variables given observations in a deep generative model or
probabilistic program [Sohn, Lee, and Yan 2015]. A finite
relation model with a fixed number of groups may fit the
given dataset well, however, it may be sub-optimal to use the
same number of groups if more data comes under a slightly
changed distribution. It would be ideal if probabilistic rela-
tional model can figure out the unknown number of groups.

Alternatively, infinite probabilistic relational model is
the application of nonparametric Bayesian techniques to
group modeling, which allows for the automatic determi-
nation of an appropriate number of groups. The prior dis-
tribution can be specified in terms of a relation sequential
process called Dirichlet process (e.g., Chinese Restaurant
Process (CRP) [Kemp et al. 2006], India Buffet Process
(IBP) [Miller, Jordan, and Griffiths 2009]), where the num-
ber of group can arbitrarily grow to better accommodate
data as needed. To approximate the corresponding infinite
relational posterior, recently, deep generative latent feature
relational model [Mehta, Duke, and Rai 2019] is proposed
in a black-box fashion. Specifically, it makes use of neural
networks for amortized inferring the group assignments and
parameters, which is flexible to define the groups. To adap-
tively determine the number of groups, however, they have
to construct the non-parametric prior, which largely depends
on the sequential node or edge modeling. For large-scale
datasets, this process will be time-consuming and difficult
to converge.
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In this paper, we build on these prior works and propose
deep amortized relational model (DaRM) with group-wise
hierarchical generative process, which aims to learn deep
Bayesian posterior in a group-wise view rather than node-
wise or edge-wise view, without predefining the number of
groups since it allows for an unrestricted number of groups.
In other words, DaRM targets on generating latent structure
rather than generating nodes or relations (all existing prob-
abilistic relational models adopted the later), as shown in
Figure 1. This group-wise generative process has two good
facets. One is that the whole generation process is efficient,
because it depends on the number of groups (K) rather than
the number of nodes (N ) or edges (M ), where K � N
and K � M . The other is that inter-group and intra-group
structure can be sufficiently exploited during the learning
process, because each group is generated according to the
previous groups and the current left data points. To illustrate
the superior of the proposed method, we perform experi-
ments on both synthetic data and real-world data in terms
of community detection and link prediction tasks.

Related Work
There is significant interest in probabilistic deep learning
models for graphs, e.g., stochastic groups model and proba-
bilistic relational model.
Stochastic Block Model Stochastic Block Model (SBM) is
a well-studied probabilistic generative model for graph com-
munity detection with strong theoretical background [Now-
icki and Snijders 2001; Karrer and Newman 2011]. A further
improvement of this model introduces mixed membership
by adding a Dirichlet prior to the community labels [Vi-
roli and McLachlan 2019]. The other popular framework
with strong theory is the spectral clustering[Von Luxburg
2007]. In comparison to SBM, the difficulty of the later is
the costly computation of the eigenvectors and the require-
ment of availability of the entire adjacency matrix, and it
becomes tricky for large graphs [Liu et al. 2013].
Probabilistic Relational Model There has been several
work on generative models for relational data [Teh et al.
2006; Kemp et al. 2006; Konishi et al. 2015; Kipf and
Welling 2016; Hu, Rai, and Carin 2017; Mehta, Duke, and
Rai 2019; Fan et al. 2019]. Among them, infinite relational
model (IRM) [Kemp et al. 2006], latent feature relational
models (LFRM) [Miller, Jordan, and Griffiths 2009], varia-
tional bayesian infinite relational model (VBIRM) [Konishi
et al. 2015] and have the ability to model infinite groups.
Hu, Rai, and Carin [2017] proposed an extension of the IRM
via a deep hierarchy of binary latent features for each node.
However, this model relies on expensive batch MCMC in-
ference, precluding its applicability to large-scale networks.
Variational graph autoencoders (VGAE) [Kipf and Welling
2016] combines the graph neural network with variational
autoencoder for modeling relational data. The recent work
on deep generative model includes deep generative latent
feature relational model (DGLFRM) [Mehta, Duke, and
Rai 2019] and scalable deep generative relational model
(SDREM)[Fan et al. 2019], which can model the relational
data in more perspectives.

The Proposed Method
In this section, based on our previous work[Liu, Wang, and
Jing 2021], we present the deep amortized relational model
for learning latent structure from relational data in an effi-
cient group-wise manner.

Notations and Problem Formulation
Let calligraphic letter (e.g., A) indicate set, capital letter
(e.g., A) for scalar, lower-case bold letter (e.g., a) for vec-
tor, and capital bold letter (e.g., A) for matrix. Relational
data can usually be represented as graph or network, which
is formulated as G = (V, E), where V is the set of nodes (we
will use nodes throughout this article), and E is the set of
edges. Let vi ∈ V to denote a node and eij = (vi, vj) ∈ E to
denote an edge between node vi to vj . The relational matrix
A ∈ {0, 1}N×N is a binary matrix with ai,j = 1 if edge
ei,j ∈ E and ai,j = 0 if edge ei,j /∈ E . A graph may have
node attributes X = (x1, · · · ,xN )> ∈ RN×D, where each
node is represented as a D-dim vector.
Relation Modeling For groups in graphs, we assume
group labels for each node are generated as in the clus-
ter prior, followed by a generative model of relations A =
{ai,j}Ni,j=1, and possibly node features X = {xi}Ni=1. Let
{c1, · · · , cN} indicate the group assignment of nodes, where
ci ∈ {1, · · · ,K} denotes the group index to which the node
i is assigned, and K is the number of groups. The general
generative process for relational modeling is

ci ∼ p(ci|α1) ωa,b ∼ p(ωa,b|α2) ai,j ∼ p(ωci,cj ) (1)

where α1 and α2 are hyperparameters, a and b indicates
node group assignments and ωa,b indicates latent strength
between group a and b. Note that only the binary ai,j are
observed. based on the group relationship of two nodes, the
final edge between them is generated.
Group Modeling Let {C1, · · · , CK} indicate the final group
partitions, Ck represents the set of nodes belonging to the
k-th group. We aim to formulate the probabilistic relational
model by learning the conditional joint distribution of the
current group given the data points and the existing groups,
p(Ck|C1:k−1,X,A), from which we can sample the groups:

Ck ∼ p(Ck|C1:k−1,X,A) k = 1, · · · ,K (2)

We estimate pθ(C1:K |X,A) =
∏K
k=1 p(Ck|C1:k−1,X,A) with

a probabilistic deep generative model, which we describe
next. Following that, it is easy to model group sequentially,
and the arbitrary number of groups can be adaptively deter-
mined until there is no remaining nodes need to group.

Deep Amortized Relational Model
We propose to approximate the unknown conditional distri-
bution p(Ck|C1:k−1,X,A), with a variational autoencoder
(VAE) framework [Kingma and Welling 2013]. However, in-
stead of directly learning a latent space for group, we model
p(Ck|C1:k−1,X,A) in a hierarchical conditional distribution
with a separate latent space for groups and group represen-
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tations as follows:

pθ(C1:K |X,A)=

K∏
k=1

∑
Ik

∫
pθ(Ck , hk|zk,SIk ,X,A)

pθ(zk|SIk ,X,A)pθ(Ik|C1:k−1,Sk,X,A)dzk

(3)

Here the generative process p(Ck|C1:k−1,X,A) is broken
into three parts: 1) pθ(Ik|C1:k−1,Sk,X,A), selecting sev-
eral nodes Ik (i.e., the indices of the nodes) from unassigned
node set Sk for the k-th group; 2) pθ(zk|SIk ,X,A), gener-
ating group representation zk ∈ RD1 for the k-th group; 3)
pθ(Ck , hk|zk,SIk ,X,A), making the group assignments
hk = (hk,1, · · · , hk,Mk−|Ik|) ∈ RMk−|Ik| for the unsigned
nodes except previous selected nodes Ik. Here |Sk| = Mk

is the number of left nodes after generating the previous k−1
group, defined byMk = N−

∑k−1
i=j Nj , whereNj is the num-

ber of nodes belonging to j-th group. For convenience, we
denote {Ik, C1:k−1,Sk} by SIk . The group assignments are
indicated via a binary vector hk = (hk,1, · · · , hk,Mk−|Ik|) ∈
RMk−|Ik|, which can be sampled to indicate whether each
left data point is affiliated with the k-th group. After obtain-
ing hk, the group result Ck will be explicit. Obviously, it is
easy to model group sequentially, and the arbitrary number
of groups can be adaptively determined until there is no re-
maining point in Sk.
Amortized Variational Inference Following the condi-
tional variational auto-encoder (CVAE) paradigm [Sohn,
Lee, and Yan 2015], we aim to maximize the correspond-
ing group-wise data log-likelihood with the aid of varia-
tional distribution qφ(zk, Ik|C1:k,Sk,X,A). Model param-
eters θ and φ can be optimized by maximizing a low bound
of Ep(X,A,C1:K) log pθ(C1:K |X,A), i.e.,

Ep(X,A,C1:K) log pθ(C1:K |X,A)

≥ −Ep(X,A,C1:K)

K∑
k=1

[
KL(qφ(zk, Ik|C1:k,Sk,X,A)||

pθ(zk, Ik|C1:k−1,X,A))

+ Eqφ(zk,Ik|C1:k,Sk,X,A)[log pθ(hk|zk,SIk ,X,A)]
]

(4)

Here variational distribution qφ(zk, Ik|C1:k,Sk,X,A) can be
regarded as a amortized inference model which can be fac-
torized by introducing a factorized variational posterior dis-
tribution:

qφ(zk, Ik|C1:k,Sk,X,A)=qφ(zk|SIk ,X,A)qφ(Ik|C1:k,Sk,X,A)

This operation will encourage group inference process from
Ik to zk, i.e., Ep(X,A,C1:K)[·] and Eqφ(zk,Ik,|C1:k,Sk,X,A)[·]
are intractable, and can be estimated by the Gumbel-
Softmax trick [Jang, Gu, and Poole 2016] and the Gaussian
re-parameterization trick [Kingma and Welling 2013], re-
spectively. Once the training procedure is finished, the group
assignment can be estimated by

p(hk|zk, C1:k−1,Sk,X,A) ≈ 1

R

R∑
r=1

pθ(hk|z(r)k , C1:k−1,Sk)

where R is the number of Monte Carlo samples and z
(r)
k ∼

pθ(zk|SIk ,X,A).

Model Parameterization
In this section, we describe the detailed implementation
of each components, including the node selection proce-
dure pθ(Ik|C1:k−1,Sk,X,A), prior pθ(zk|SIk ,X,A), decoder
pθ(hk,i|zk,SIk ,X,A), and encoder qφ(zk|SIk ,X,A). Note
that there are a key component are proposed to map the ob-
served relations A and node features X together to an em-
bedding vector space E = {ei}Ni=1, which is able to exploit
relationship between nodes and represent data in a improved
feature space. The whole model architecture of DaRM is
shown in Figure 2. Furthermore, an efficient strategy is
proposed to combat mode collapse. The model parameters
{θ, φ} include: N data point embeddings {ei}Ni=1 ∈ RN×D,
K pioneer data point indices {Ik}Kk=1 ∈ {1, · · · , N}K related
to each group, K group prototypes {mk}Kk=1 ∈ RK×D1 and
group representations {zk}Kk=1 ∈ RK×D1 , K group assign-
ments {hk}Kk=1, and the parameters of neural networks. We
optimize {θ, φ} to maximize the training objective Eq. (4).
Graph Embedding Considering initial feature and corre-
sponding relational information, we introduce conditional
mapping module E = f(X,A) to model the graph embed-
ding, which is able to map nodes in the network to a low-
dimensional vector space, while saving as much structural
information as possible in the representations. Graph Convo-
lutional Network (GCN) is a class of message-passing graph
neural networks that updates the representation of each node
based on local neighborhood information. Inspired by pre-
vious work [Wang et al. 2020], we focus on leveraging
edge gating mechanisms and each neighboring node in the
graph convolution operation may receive different weights
depending on the edge gate. Residual connections are used
between layers for multi-layer GCN. To improve it, we de-
fine a explicitly updating edge gates across layers with in-
formation propagation:

ul+1
i = uli + RELU

(
BN

(
Wl

au
l
i +
∑
j→i

elij �Wl
bu
l
j

))
(5)

where uli is the feature of node i at layer l and u0
i = xi,

e0ij = aij . Wl
a and Wl

b are learnable weight matrix of the
neural network. BN(·) is batch normalization. elij is the edge
gate computed as follows:

elij =
σ(êlij)∑

j
′→i σ(ê

l
ij

′ ) + ε

êlij = êl−1
ij + RELU(BN(Alul−1

i +Blul−1
j +Clêl−1

ij ))

(6)

where Al, Bl and Cl are learnable weight matrices. After
multiple-layer process, we can obtain the embedding ei =
uLi for each node (here L is the number of layers in graph
embedding module).
Prototype-based Nodes Selection A straightforward ap-
proach would be to assume pθ(Ik|C1:k−1,Sk,X,A) follow a
uniform distribution related to random sampling or categor-
ical distribution with its own set of Mk − 1 parameters. As
we all known, uniform distribution is too simple to contain
any prior, and complex categorical distribution would result
in over-parameterization and low sample efficiency. We in-
stead propose a prototype-based implementation. To be spe-
cific, we introduce K group prototypes {mk}Kk=1 and make
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Figure 2: The model architecture of DaRM.

use of the data point representations to draw the multi-hot
vector ok following Multinormal distribution:

ok ∼ MULTI
(

SOFTMAX([s
(k)
1 , · · · , s(k)j , · · · , s(k)Mk

])
)

s
(k)
j =

COSINE(e
(k)
j ,mk)

τ

(7)

Then, the indices of pioneer nodes can be obtained by Ik =
INDEX(ok > 0). e(k)

j is the representation of the j-th data
point in Sk. Here the cosine similarity, COSINE(a,b) =
(a>b)/(||a||2||b||2), instead of the inner product similar-
ity adopted by most existing deep learning methods [Luo,
Schwing, and Urtasun 2016], is used to evaluate the corre-
lation between data point and group and prevent mode col-
lapse. In fact, with inner product, the majority of the avail-
able data points are highly like to be selected as the pio-
neer data point for the k-th group, which will result in im-
proper data assignment to group. Moreover, cosine similar-
ity can be taken as Euclidean distance on the unit hyper-
sphere, which is more suitable for inferring the group struc-
ture than inner product [Mettes, van der Pol, and Snoek
2019]. The hyper-parameter τ scales the similarity from
[−1, 1] to [−1/τ, 1/τ ], which is set as τ = 0.1 to obtain
a more skewed distribution. The term in s(k)j aims to cap-
ture the similarity between data point and the current group,
which can be taken as intra-group correlation.
Prior Network The prior pθ(zk|Ik, C1:k−1,Sk,X,A) ,
pθ(zk|SIk ,X,A) aims to group representation for current
cluster Ck, when given the selected data points Ik, exist-
ing groups C1:k−1 and the unsigned data points Sk. For con-
venience, zk is assumed following a multivariate Gaussian
distribution with diagonal covariance matrix and sampled
via N

(
zk|µ(k)

θ , [diag(σ
(k)
θ )]2

)
where mean µ

(k)
θ and vari-

ance σ
(k)
θ are parameterized by neural networks fθ(·):

W
(k)
θ = Ek + f

(
k−1∑
i=1

MHA(Ek,Vi),MHA(Ek,Uk)

)
(µ

(k)
θ ,σ

(k)
θ ) = fθ(W

(k)
θ + f(W

(k)
θ ))

(8)

here Ek ∈ R|Ik|×D is the representation of {xi}i∈Ik , Vi ∈
RNi×D indicates node representation matrix belonging to

the i-th group and Uk ∈ R(Mk−|Ik|)×D for the unassigned
nodes. MHA(A,B) indicates multi-head attention for captur-
ing the relation between A and B, which is able to exploit
pair-wise or higher-order interactions between data points
in both inter-group and intra-group [Lee et al. 2019]. f(·)
and fθ are feedforward layers with layer normalization [Ba,
Kiros, and Hinton 2016]. We use Multi-head attention Mod-
ule MHA(·) to exploit pair-wise or higher-order interactions
between data points in both inter-and intra-cluster. Consid-
ering we want to capture the elements-wise relationship be-
tween A and B, we set A as query, and set key and values
are B. The Multi-head attention module is defined as follow:

MHA(A,B) = CONCAT(O1, · · · ,OH)Wh

Oh = RELU

(
AWQ

h

(
BWK

h

)>)
BWV

h

(9)

where WQ
h ,W

K
h ,W

V
h are head-specific transform matrices

and H is the number of heads.

Decoder The decoder predicts which data points out of Mk

ones are mostly to be selected to form the k-th group, i.e.,
pθ(hk,i|zk,SIk ) = gθ,i(zk,SIk ), where we introduce neural
network parameterized by gθ,i(·) defined in terms of

w
(k)
i =e

(k)
i +f

(
k−1∑
i=1

MHA(e
(k)
i ,Vi),MHA(e

(k)
i ,Uk)

)

hk,i = gθ,i

(
COSINE(e

(k)
i , zk)

τ
,w

(k)
i + f

(
w

(k)
i

)) (10)

Encoder The inference procedure contains two parts:
qφ(Ik|C1:k,Sk,X,A) and qφ(zk|hk,SIk ,X,A). For Ik, the
variational distribution has the same architecture as gener-
ative distribution. Due to the page limitation, we omit it and
the full description can be found in supplementary material.
Similarly, zk is sampled via a multivariable Gaussian distri-
bution, i.e., qφ(zk|hk,SIk ,X,A) = N (zk|µ(k)

φ , [diag(σ
(k)
φ )]2),

here mean and standard deviation are parameterized by a
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Metric IRM VBIRM DGLFRM SDREM DaRM

s1

DBI 0.0313±0.005 0.0426±0.001 0.0367±0.002 0.0301±0.002 0.0218±0.003

ACC 0.9566±0.021 0.9432±0.003 0.9623±0.004 0.9615±0.003 0.9698±0.002

NMI 0.8977±0.002 0.8934±0.005 0.9345±0.004 0.9389±0.003 0.9573±0.004

AUC 0.8344±0.001 0.8521±0.002 0.8663±0.003 0.8715±0.004 0.8857±0.003

Time[s] 0.0821±0.032 0.0585±0.021 0.0314 ±0.047 0.0421±0.056 0.0179±0.061

s2

DBI 0.0554±0.014 0.0827±0.006 0.0761±0.003 0.0587±0.004 0.0512±0.004

ACC 0.9331±0.007 0.9244±0.005 0.9421±0.003 0.9414±0.003 0.9426±0.004

NMI 0.8532±0.004 0.8644±0.015 0.8934±0.006 0.8873±0.004 0.9236±0.003

AUC 0.8455±0.006 0.8677±0.003 0.8843±0.004 0.8802±0.002 0.9056±0.003

Time[s] 0.0831±0.032 0.0525±0.015 0.0335±0.045 0.0483±0.032 0.0157±0.061

Table 1: Performance on synthetic relational data

Dataset NIPS12 Cora CiteSeer Pubmed
] nodes (N ) 2,037 2,708 3,312 19,717
] relations (M ) 3,134 5,429 4,715 44,324
] features (D) 100 1,433 3,703 500
] groups (K) 12 7 6 3

Table 2: Dataset statistics.

neural network fφ(·):

(a
(k)
φ ,b

(k)
φ )=fφ

∑Nk
j=1 hk,j · e

(k)
j√∑Nk

j=1(hk,j)
2

,

k∑
i=1

MHA(Ek,Vi)


µ

(k)
φ =

a
(k)
φ

||a(k)
φ ||2

σ
(k)
φ ← σ0 · exp

(
−1

2
b
(k)
φ

) (11)

where hk,j = 1 if j ∈ Ik. The neural network fφ(·) cap-
tures nonlinearity, and is shared across the K components.
We normalize the mean to be consistent with the use of co-
sine similarity which projects the representations onto a unit
hypersphere. Note that σ0 should be set to a small value,
e.g., around 0.1, since the learned representations are well
normalized.

Experiments
We report experimental results on both synthetic and real-
world datasets in terms of community detection performance
and link prediction performance.

Experimental Setup
Dataset Several widely known citation datasets are used,
namely, NIPS12 [Globerson et al. 2007], Cora, CiteSeer and
Pubmed [Rossi and Ahmed 2015]. More detailed informa-
tion of datasets is given in Table 2.
Baselines We compare the proposed model with two kinds
of methods, including traditional methods: infinite relational
model (IRM) [Kemp et al. 2006], variational bayesian in-
finite relational model (VBIRM) [Konishi et al. 2015], la-
tent feature relational models (LFRM) [Miller, Jordan, and
Griffiths 2009]; Deep generative models: variational autoen-
coder on graphs (VGAE) [Kipf and Welling 2016], hier-
archical latent feature model (HLFM) [Hu, Rai, and Carin
2017], deep generative latent feature relational model (DGL-

FRM) [Mehta, Duke, and Rai 2019], scalable deep genera-
tive relational model (SDREM)[Fan et al. 2019].
Metrics For community detection task, two evaluation
metrics are adopted. One is internal evaluation, Davies-
Bouldin Index (DBI) [Davies and Bouldin 1979]: DBI =
1
K

∑K
k=1 maxj 6=k ((ak + aj)/d(ck, cj)) where ck is the cen-

troid of the k-th group, ak is the average distance of all
elements in group k to centroid ck. d(·) is cosine similar-
ity. Smaller DBI value indicates better performance. The
other is external evaluation including group accuracy (ACC)
and Normalized Mutual Information (MNI). ACC is defined
by ACC = maxm∈M

1
N
1{yi = m(ŷ(xi))}, where yi is

the ground-truth label that corresponds to that xi sample,
ŷ(xi) is the group assignment obtained by the model, andm
ranges over the setM of all possible one-to-one mappings
between group assignments and labels. Normalized Mutual
InformationNMI(Ci, Cj) = MI(Ci,Cj)√

H(Ci)H(Cj)
, whereN is the to-

tal number of data samples, yi is the ground-truth label that
corresponds to that xi sample, ŷ(xi) is the cluster assign-
ment obtained by the model, and m ranges over the setM
of all possible one-to-one mappings between cluster assign-
ments and labels. Larger ACC value indicates better perfor-
mance. For link prediction performance evaluation on rela-
tional data, we use AUC (Area Under ROC Curve) as the
comparison criteria. The AUC value represents the probabil-
ity that the method will rank a randomly chosen existing-link
higher than a randomly chosen non-existing link. Therefore,
the higher the AUC value, the better the predictive perfor-
mance.

Experiments on Synthetic Data
We first demonstrate DaRM on synthetic graph data with
arbitrary number of groups. We generate dataset by the fol-
lowing process.

N ∼ Unif(0.3Nmax, Nmax) (ci)
N
i=1 ∼ CRP(α)

(λci,cj )
N
i,j=1 ∼ N(0, σ2

λ) (ai,j)
N
i,j=1 ∼ Bernoulli(λci,cj )

where Nmax is set to 500 and CRP is a Chinese Restaurant
Process with concentration parameter α = 0.7.

We consider four baselines as comparison: IRM, VBIRM,
DGLFRM and SDREM. Among them, IRM and VBIRM
are traditional relational model with different inference
methods, and DGLFRM and SDREM are deep neural net-
work based methods. Two testing scenarios (s1 and s2) are
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Dataset Metric LFRM HLFM VGAE DGLFRM SDREM DaRM

NIPS12

DBI 0.4354±0.001 1.5946±0.002 0.2394±0.001 0.2578±0.001 0.2327±0.002 0.2142±0.001

ACC 0.9446±0.002 0.8630±0.002 0.9758±0.002 0.9596±0.003 0.9796±0.002 0.9832±0.001

NMI 0.6832±0.005 0.7531±0.004 0.7498±0.004 0.7454±0.003 0.7642±0.002 0.7867±0.002

AUC 0.8489±0.003 0.8733±0.005 0.8790±0.004 0.8894±0.002 0.8769±0.003 0.8963±0.002

Time[s] 23.44±2.24 27.83±1.32 21.42±1.02 24.65±0.78 26.33±2.16 13.62±1.27

Cora

DBI 0.7606±0.004 0.7435±0.003 0.6958±0.004 0.6828±0.004 0.6845±0.002 0.6542±0.001

ACC 0.6245±0.003 0.6362±0.004 0.6631±0.004 0.7138±0.005 0.7123±0.003 0.7342±0.002

NMI 0.4883±0.004 0.5024±0.003 0.5342±0.002 0.5551±0.003 0.5531±0.003 0.5732±0.002

AUC 0.9096±0.003 0.9127±0.004 0.9260±0.002 0.9277±0.003 0.9271±0.001 0.9365±0.002

Time[s] 15.34±1.11 13.22±2.17 14.52±1.17 21.52±1.19 20.41±2.25 9.32±1.34

CiteSeer

DBI 0.5730±0.031 0.5246±0.042 0.5313±0.045 0.4863±0.032 0.4734±0.027 0.4566±0.015

ACC 0.6384±0.001 0.6596±0.003 0.6630±0.004 0.6733±0.003 0.6869±0.002 0.6932±0.003

NMI 0.3632±0.004 0.3873±0.003 0.3983±0.002 0.4032±0.004 0.4355±0.003 0.4452±0.002

AUC 0.8965±0.002 0.9154±0.001 0.9001±0.003 0.9146±0.004 0.9033±0.002 0.9233±0.002

Time[s] 36.55±2.57 42.31±1.19 33.21±2.11 36.59±2.01 34.31±1.05 14.46±1.25

Pubmed

DBI 0.9921±0.044 0.9822±0.027 0.9502±0.036 0.8923±0.035 0.8906±0.043 0.8733±0.032

ACC 0.6446±0.002 0.6553±0.001 0.6704±0.003 0.6852±0.002 0.6741±0.003 0.7032±0.002

NMI 0.2877±0.003 0.3043±0.004 0.3001±0.003 0.3122±0.003 0.3233±0.002 0.3431±0.002

AUC 0.9152±0.003 0.9214±0.004 0.9318±0.002 0.9416±0.002 0.9122±0.001 0.9514±0.001

Time[s] 351.21±8.72 435.11±6.15 354.11±6.77 387.12±8.77 351.52±7.62 152.33±6.74

Table 3: Comparing clustering performance (DBI, ACC and NMI), link prediction performance (AUC) and running time on four
real-world datasets.

constructed to evaluate the effectiveness of the proposed
method. The testing set in s1 has the same configuration (200
samples and 4 groups) as training set, while s2 contains dif-
ferent numbers of samples and groups (400 samples and 6
groups) in order to verify whether the proposed method can
generalize to the unseen groups. As shown in Table ??, we
list community detection and link prediction performance on
two testing scenarios in terms of DBI, ACC, NMI and AUC.
As expected, the proposed DaRM consistently outperforms
baselines on both s1 and s2. Although s2 is more challeng-
ing, DaRM can capture group uncertainty and obtain the best
results. In model efficiency evaluation, DaRM obtains the
fast running time. The main reason is the group-wise strat-
egy is much more efficient than relation-wise strategy.

Experiments on Real-world Data

We conduct experiments on the real-world data to evaluate
the proposed method on community detection and link pre-
diction performance. Table 3 summarizes the results on four
datasets in terms of DBI, ACC and NMI. It can be seen that
our DaRM outperforms all baselines in terms of both in-
tern and external evaluation metrics. The main reason, we
believe, is that DaRM not only exploits amortized proper-
ties between data points in both inter-group and intra-group,
but also has flexible generative process, which simultane-
ously emphasizes the superiority of variational generative
framework. For link prediction task, we hold out 10% and
5% of the links as our test set and validation set, respec-
tively, and use the validation set to fine-tune the hyperpa-
rameters. We take the average of AUC scores by running
model on 10 random split of dataset. As shown in Table 3.
Our model, DaRM, outperforms the baselines on almost all
datasets. We again highlight that unlike the baselines, such

Group Selected top-5 pioneer nodes (authors)
Probabilistic Sejnowski T, Jordan M, Hinton G,

Modeling Frey B J, Ghahramani Z

Neural Networks LeCun Y, Sejnowski T, Hinton G,
Benjio Y, Tang A

Reinforcement Connolly C, Michel A, Eshr K,
Learning Peper F, Thrun S

Table 4: Selected top-5 pioneer nodes by DaRM on NIPS12.

as VGAE, DGLFRM and SDREM, that directly model the
connections among nodes, our model learns embeddings
and intrinsic latent structure together. In terms of running
time, thanks to the group-wise sequential modeling strategy,
DaRM achieves the best results in the shortest time.

Analysis of Model Behavior
To further understand model behavior, we conduct several
experiments to investigate the effect of parameters and list
some detailed experiments results.
Selected Pioneer Nodes To form the k-th group, DaRM
tends to select some pioneer nodes Ik. Actually, the number
of selected pioneer nodes plays an important role in forming
a more accurate group. In order to investigate the effect of
pioneer nodes, we conduct experiments by setting different
number of pioneer nodes. Figure 3 shows the effect of dif-
ferent number of pioneer nodes in terms of ACC and AUC.
We can see that DaRM obtains the best results (around 5 for
NIPS12, CiteSeer and Pubmed, and 3 for Cora), after that,
the performance remained basically stable. This result is in
line with our intuition that the more the numbers, the better
the performance and as the number increases, the increase of
performance decreases. One possible reason is that a smaller
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Figure 3: The performance evaluation when we set the number of selected pioneer nodes on different values.
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Figure 4: The effect of L, the number of layers in the graph embedding module in terms of running time (seconds) and accuracy
(ACC).

number of pioneer nodes can provide enough guidance for
the follow-up process.
Different Settings of L The number of layers L in graph
embedding module is a crucial parameter to control the
model capacity on learning improved node representations.
Figure. 4 shows the effect of L on all nine datasets in terms
of clustering performance and running time. It can be seen
that the overall accuracy is improved with the increasing of
layers. After the performance reaches the best value, with
the increase of the number of layers, the performance tends
to be stable, while the computational complexity is still in-
creasing.
Groups Interpretation Taking NIPS12 as an example, we
demonstrate top-5 authors obtained by DaRM in three repre-
sentative groups including ‘probabilistic modeling’, ‘neural
networks’ and ‘reinforcement learning’, as shown in Table 4.
Each of group represent a sub-filed, with authors working on
similar topics. It can be seen that these selected nodes have
unique characteristics of their corresponding groups, which
will further leverage the group generative process.

Conclusion and Future Work
In this paper, we proposed Deep amortized Relational Model
(DaRM) for modeling latent group structure on relational
data in a group-wise strategy. We showed how the proposed
model can be effectively applied in the community detection
and link prediction problem, and we achieve competitive to
better performance with significant save of time. It will be
interesting to investigate the model other application with
relational data (e.g., collaborative filtering) in the future.
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