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Abstract

Learning in a lifelong setting, where the dynamics contin-
ually evolve, is a hard challenge for current reinforcement
learning algorithms. Yet this would be a much needed fea-
ture for practical applications. In this paper, we propose an
approach which learns a hyper-policy, whose input is time,
that outputs the parameters of the policy to be queried at
that time. This hyper-policy is trained to maximize the es-
timated future performance, efficiently reusing past data by
means of importance sampling, at the cost of introducing a
controlled bias. We combine the future performance estimate
with the past performance to mitigate catastrophic forgetting.
To avoid overfitting the collected data, we derive a differen-
tiable variance bound that we embed as a penalization term.
Finally, we empirically validate our approach, in comparison
with state-of-the-art algorithms, on realistic environments, in-
cluding water resource management and trading.

1 Introduction

In the most common setting, Reinforcement Learning (RL,
Sutton and Barto 2018) considers the interaction between an
agent and an environment in a sequence of episodes. The
agent progressively adapts its policy, but the dynamics of
the environment, typically, remain unchanged. Most impor-
tantly, the agent can experience multiple times the same por-
tion of the environment. However, this usual setting is some-
times not met in real applications. Hence several modifica-
tions have been proposed to model different, more realis-
tic, scenarios. One of them is non-stationary RL (Bowerman
1974), which considers that the episodes can follow differ-
ent distributions, or even that the distribution changes within
each episode. The change can either be abrupt, when a clear
separation between tasks evolving through time is present,
or smooth, when the environment’s evolution displays some
regularity w.r.t. time. Non-stationarity can arise from diverse
causes and can be interpreted as a form of partial knowledge
(Khetarpal et al. 2020). Learning in non-stationary environ-
ments has been diffusely addressed in the literature (Garcia
and Smith 2000; Ghate and Smith 2013; Lesner and Scherrer
2015). Nevertheless, in these works, the agent-environment
interaction based on episodes is preserved, so that the same
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region of non-stationary behavior can be experienced multi-
ple times by the agent.

Still moving towards a more realistic setting, another
modification is the lifelong interaction with the environ-
ment (Silver, Yang, and Li 2013; Brunskill and Li 2014).
Here, the separation in episodes vanishes and, therefore,
there is no clear distinction between learning and testing.
Moreover, given the never-ending nature of this interaction,
the agent is not allowed to reset the environment and might
not be able to visit twice some portions of the environment.
Thus, the agent aims at exploiting the experience collected
in the past to optimize its future performance. In this sense,
Lifelong Learning (LL) can be considered closer to the in-
tuitive idea of learning for human agents. More technically,
LL requires the agent to readily adapt its behavior to the en-
vironment’s evolution, as well as keeping memory of past
behaviors in order to leverage this knowledge on future sim-
ilar phases (Khetarpal et al. 2020). This represents a criti-
cal trade-off, peculiar of the lifelong setting. Indeed, if the
agent displays a highly non-stationary behavior, the samples
collected in the past would be poorly informative and, con-
sequently, hardly usable to estimate the future performance.
Instead, being more stationary favors sample reuse, at the
cost of sacrificing the optimality of the learned behavior.

In this paper, we consider the RL problem with a lifelong
interaction between an agent and its environment, where the
latter’s dynamics smoothly evolve over time. We address this
problem by designing a hyper-policy, responsible for select-
ing the best policy to be played at time ¢. This way, we de-
couple the problem of learning in a non-stationary setting,
by assigning to the hyper-policy level the management of
the dependence on time and to the policy level the action
to be played given a state (Section 3). This hyper-policy
is trained with an objective composed of the future per-
formance, the ultimate quantity to be maximized, and the
past performance. Although the past performance is not the
direct interest of our agent, it is included to constrain the
hyper-policy to perform well on past samples, thus mitigat-
ing catastrophic forgetting. Future performance is estimated
through multiple importance sampling. To avoid overfitting,
we additionally penalize the hyper-policy for the variance
of the estimations. Rather than estimating this quantity, that
would inject further uncertainty, we derive a differentiable
upper-bound allowing a gradient based optimization. This



penalization, involving a divergence between past and fu-
ture hyper-policies, has the indirect effect of quantifying and
controlling the “amount” of non-stationarity selected by the
agent (Section 4). We propose a practical policy-gradient
optimization of the objective, which we name POLIS, for
Policy Optimization in Lifelong learning through Impor-
tance Sampling. After having revised the literature (Sec-
tion 5), we provide an experimental evaluation on realis-
tic domains, including a trading and water resource man-
agement, in comparison with state-of-the-art baselines (Sec-
tion 6). The proofs of the results presented in the main paper
are reported in Appendix A'.

2 Preliminaries

In this section, we report the necessary background that will
be employed in the following sections.

Lifelong RL A Non-Stationary Markov Decision
Process (MDP, Puterman 2014) is defined as M
(X, A, P, R,v,Dy), where X’ and A are the state and action
spaces respectively, P = (P;)en is the transition model that
for every decision epoch t € N and (z,a) € X’ x A assigns
a probability distribution over the next state 2’ ~ P;(|z, a),
R = (Ry)ten is the reward distribution assigning for every
t € Nand (z,a) € X x A the reward r ~ R:(+|x,a) such
that ||rflcc < Rmax < 0, 7 € [0,1] is the discount fac-
tor, and Dy is the initial state distribution. A non-stationary
policy m = (7¢)ten assigns for every decision epoch ¢ € N
and state z € X’ a probability distribution over the actions
a; ~ 7(-]z). Let T € N be the current decision epoch, let
B € N1, we define the 3-step ahead expected return as:

T+8

Jrs(m) = >, A'Ef[r], (1)
t=T+1

t—T—1

where 3t = ~ and we denote with Ef the expecta-
tion under the visitation distribution induced by policy 7 in
MDP M after ¢ decision epochs. A policy 77 5 is S-step
ahead optimal if 707, 5 € arg max, s Jr,5(7), where IT° is
the set of non-stationary policies operating over § decision
epochs. In classical RL, the agent’s goal consists in maxi-
mizing Jo g, where H is the (possibly infinite) horizon of
the task, having the possibility to collect multiple episodes
(not necessarily of length H). Instead, from the lifelong RL
perspective, the agent is interested in maximizing the co-step
ahead expected return Jp (), having observed in the past
only one episode of length 7', i.e., optimizing for the future.

Multiple Importance Sampling Importance Sam-
pling (IS, Owen 2013) allows estimating the expectation
i =E,.p[f(x)] of a function f under a rarget distribution
P having samples collected with a sequence of behavioral
distributions (Q;)je1,s7 such that P < @y, i.e., P is ab-
solutely continuous w.r.t. Q;, for all j € [[1, J]|. Let p and
(¢5) je,s7 be the density functions corresponding to P and

!The extended version of the paper is available at https:/arxiv.
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(Qj)jef,J7 then, the resulting unbiased estimator is:

Z Zﬂj zg f($2])a

J i=1 Lij )
where {xij}i:1 ~ @ and (B; (x))je[[LJ]] are a partition of
the unit for every z € X'. A common choice for the latter is
to use the balance heuristic (BH, Veach and Guibas 1995),

yielding 8;(z) = %. Using BH, samples can be

regarded as obtained from the mixture of the (Q;) jel1,J]
distributions as ® = Zi:l NeQp, with N = Z‘j]:l N,

Rényi divergence Let o € [0,00], the a-Rényi diver-
gence between two probability distributions P and ) such
that P « () is defined as:

Da(P|Q) = —— log Lp(maq(x)l*“dx.

We denote with d,(P|Q) = exp{D,(P|Q)} the exponen-
tial a-Rényi divergence, linked to the a-moment of the im-

)] = da(Pl@)

(z)
3 Lifelong Parameter-Based Policy
Optimization

In this paper, we consider the Policy Optimization (PO,
Deisenroth, Neumann, and Peters 2013) setting in which the
policy belongs to a parametric set Illg = {mg : 6 € © <
Rdl}. In particular, we focus on the parameter-based PO?
in which the policy parameter 6 is sampled from a hyper-
policy v, belonging, in turn, to a parametric set Np = {v,, :
p € P < R?%} (Sehnke et al. 2008). As opposed to action-
based PO in which policies g need to be stochastic for ex-
ploration, in parameter-based PO we move the stochasticity
to the hyper-policy level and 7 can be deterministic.

Optimizing the $-step ahead expected return in eq. (1) re-
quires, in general, considering non-stationary policies. From
the PO perspective, this requirement can be fulfilled in two
ways. The traditional way consists in augmenting the state =
with the time ¢ and, consequently, considering a policy of the
form 7o (-|(z, t)). This approach highlights the direct depen-
dence of the action a; ~ mg(|(z¢,t)) on the time ¢. How-
ever, in several cases, it is convenient to track the evolution
of the policy parameters 6 as a function of the time ¢, whose
dependence might be simpler compared to that of the action.
In this latter approach, the one we adopt in this work, the
policy parameter is sampled from a time-dependent hyper-
policy 8, ~ v,(-|t) and the policy depends on the state only
mo, (+|z+). We will refer to this setting as lifelong parameter-
based PO. Refer to Figure 1 for a comparison of the graphi-
cal models of the two approaches.

In this setting, we aim at learning a hyper-policy parame-
ter pf, 5 maximizing the (3-step ahead expected return:

T+p3

Z ’Yt]Ep [re],

EF? L]

2We follow the taxonomy of (Metelli et al. 2018).

portance weight, i.e., E, [(

2

pT 5 € argmax Jr 5(p
peP

where Ef[-] is a shorthand for Eg..,, (. [



Q

7o (-1(s,1)

Figure 1: Graphical models of the two approaches to model
non-stationarity of the environment: the non-stationarity is
handled at the parameter selection level (left), the non-
stationarity is handled at the action selection level (right).
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4 Lifelong Parameter-Based PO via Multiple
Importance Sampling

In this section, we propose an estimator for Jr g(p) (Sec-
tion 4.1), we analyze its bias (Section 4.2) and variance
(Section 4.3), and we propose a novel surrogate objective
accounting for the estimation uncertainty (Section 4.4).

4.1 [-Step Ahead Expected Return Estimation

The main challenge we face in estimating Jr g(p) is that
it requires evaluating hyper-policy v, in the future, while
having samples from the past only. Since the environment
evolves smoothly, it is reasonable to use the past data to ap-
proximate the future dynamics and IS to correct the hyper-
policy behavior mismatch from past to future. More specifi-
cally, in this section, we study how to leverage the history of
the past a samples Hr o = (04, 7¢)te[r—a+1,77] in order to
estimate the 5-step ahead expected return Jr g(p).

As a preliminary step, we illustrate the estimation of the
s-step ahead expected reward EP[r,]. For every s € [T +
1, T+ ] we employ the following MIS estimator that makes
use of the history Hr :

T

2

t=T—a+1

0
STt - Vp(04]3) r,

2k=T—at1 @ FVp(0c|k)
where w € [0, 1] is an exponential weighting parameter. The
Z3CA0) ad-
Zk:T7Q+1 WT*kVp(ek‘k)
dresses the mismatch between the hyper-policies in the fu-
ture v,(-|s) and those in the past v,(-|k). The reader may
have noticed that these importance weights are not using
the exact BH weights. Indeed, we have adapted the heuristic
to include our knowledge that the environment is smoothly
changing. With BH, each past sample would have been
weighted equally whereas our sampling mixture probabil-
ity, proportional to Y.} . wT Fu,(6,]k), gives more
weight to recent samples thanks to the parameter w which
exponentially discounts samples as they are collected far
from current time 7" (Jagerman, Markov, and de Rijke 2019).
Using 7' as building block, we propose the estimator for

the 3-step ahead expected return fT,a, 5(p) that is obtained
as the discounted sum of the s-step ahead expected reward
estimators of Equation (3):

T+p

3

s =

importance sampling correction

J1.0,8(P) = A7

s=T+1
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T

T+ ~s
Z Zs ﬁ+17 Vp(0t|5)
Tt
t=T—a+1 Zk:T—a-H wT=Fu, (04 k)

This estimator could be, in principle, directly optimized
but, as common in IS-based estimators. However, we would
incur in the following undesired effect. In order to increase

jT-,a, s(p), the agent can either increase the probability of
good actions for future policies v, (6¢|s) (the numerator of
the importance weight) or decrease the probability of the
same good actions for past policies v, (6;|k) (the denomina-
tor). The latter phenomenon, akin to catastrophic forgetting,
is clearly undesired, but can be easily spotted by looking at
the past reward. Specifically, we propose to adjust the objec-
tive function with the return of the last « steps, called a-step
behind expected return:

wat

jT,a(p) = Ci

1 d T—txt
2 w Y Tty
70{

Xt—T+a—1 C 1—

where 3¢ = ¥ — ~if w < 1 otherwise
C,, = a. Putting all together, we obtain the objective:

I1.0,8(P) = J1.0,8(p) + J1.a(p)-
4.2 Bias Analysis

In this section, we analyze the bias of estimator Jr o 5(p),
under suitable regularity conditions on the environment and
on the hyper-policy model. In particular, we will require that
the environment and the hyper-policy are smoothly chang-
ing. We formalize the intuition in the following assumptions.

Assumption 4.1 (Smoothly Changing Environment) For
every t,t' € N, and for every policy m it holds for some
Lipschitz constant 0 < L < o0:
(EF —EF) [7]l < Laa|t = #].
Assumption 4.2 (Smoothly Changing Hyper-policy) For
every t,t' € N, and for every time-dependent hyper-policy
p € P it holds for some Lipschitz constant 0 < L,, < oo:
|vp(C1t) = vp(-1t)], < Lo |t — ']

Thus, Assumption 4.1 prescribes that executing the same
policy m at different times ¢ and t’ yields expected re-
wards whose difference can be bounded proportionally to
the time distance. A similar requirement is given by As-
sumption 4.2, involving the total variation distance between
time-dependent hyper-policies. Under these assumptions
we provide the following bias bound. We denote with IET o

the expectation under the probability distribution induced by
the joint hyper-policy H;‘ZT%YH Vp(:|t) in the MDP.
Lemma 4.1 Under Assumptions 4.1 and 4.2, the bias of the
estimator nya’ 3(p), for w < 1, can be bounded as:

Jr.5(p) — Eg“,a[JT#l,B]’

1

< (Lt + 2R L) Oy (B) <1°_"w N 1—7) 7

where, for & =
Cw(ﬁ) = §~

—~E . .
= 11_"; if v < 1 otherwise

L Cy(8)



A tighter, but more intricate bias bound, and a derivation for
the case w = 1 can be found in Appendix A. Some obser-
vations are in order. First, we note the role of w in control-
ling the bias: the smaller w, the smaller the bias. Second, the
bound is proportional to the Lipschitz constants governing
the non-starionarity of the environment and of the hyper-
policy. It is worth noting that in a fully stationary setting
(i.e., Lypq = L, = 0), the estimator is unbiased.

4.3 Variance Analysis

Before showing the construction of the surrogate objec-
tive, we derive in this section a bound on the variance
of Jr,q,5(p) that involves the Rényi divergence. To this
purpose, we denote with Var% ., the variance under the
probability distribution induced by the joint hyper-policy
[T/ i1 vo(:|t) in the MDP.

Lemma 4.2 The variance of the objective Jr . can be
bounded as:

Var’?",a |7T7a75 (p)] < 2R12nax (C’Y (a)Q + C’Y (5)2
T+8

( Vp(-t)>> -

The variance bound resembles the ones usually provided
in the context of off-policy estimation and learning (e.g.,
Metelli et al. 2018; Papini et al. 2019; Metelli et al. 2020).
The first addendum accounts for the variance of the esti-
mator component Jr . (p) that does not involve importance

sampling, whereas the second refers to Jr o g(p), based
on importance sampling. Indeed, this latter term comprises
the exponentiated 2-Rényi divergence between two mixture
hyper-policies. Unfortunately, even in presence of conve-
nient distributions, like Gaussians, the Rényi divergence be-
tween mixtures does not admit a closed form (Papini et al.
2019). In Appendix B, we discuss several approaches, based
on variational upper-bounds, to provide a usable version of
such a divergence. In the following, we report the upper-
bound that we will use in practice.

T

2

t=T—a+1

/\

C“/

wat

|s)

w

Lemma 4.3 The divergence between mixtures of Lemma 4.2
can be bounded as:

T+p ;s I wT—t
s=T+1 'y t=T—a+1 “
2
T+ ~8
< G 2| 2 - :
Cy(8) s=T+1 L wl—t ’
t=TZQHW
Br,a,8(p)

4.4 Surrogate Objective

The direct optimization of the objective Jr  5(p) makes
the hyper-policy overfit the non-stationary process on the
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Algorithm 1: Lifelong learning with POLIS
Input: steps behind «, steps ahead 3, regularization A, dis-
count factor w, training period h, training epochs IV,
1: Initialize v,, t < 0
2: while True do
3: Sample 8; ~ v,(t)
Collect new state s; and reward 7, using 7g,
ift mod h = 0and ¢ > 1 then
forie {1,...,N}do =POLIS’ training loop
Compute J; o (p), Jt,a,5(p) and By o 5(p)
p — argmax, L (p) > See eq. (4)
t—t+1

> Possibly never-ending loop

° N Nk

last « steps. To allow for a better generalization on future
unseen variations, following the idea of Metelli et al. (2018),
we regularize the objective with the bound on the variance
of Lemma 4.3. The following concentration bound, based
on Cantelli’s inequality, is the theoretical grounding of our
surrogate objective.

Theorem 4.1 For every § € (0, 1), with probability at least
1 — 4, it holds that:

Ta rTaﬁ

\/2Rmax ( ) +O BTaﬂ(p))

We are now ready to construct the surrogate objective
function and show how to optimize it. Following the path
of Metelli et al. (2018), we take an uncertainty-averse ap-
proach, by maximizing a probabilistic lower bound of the
quantity of interest i.e., the one presented in Theorem 4.1.
1=09R2

max:?

)] = J1,0,6(p)

Renaming \ = and treating it as a hyperpa-

rameter, we get the followmg surrogate objective:

£:(p) M/ Cy(@) + CuBraplp). @)

In order to optimize this objective, we use a policy-gradient
approach that is discussed in Appendix A.1. We call this al-
gorithm POLIS (Policy Optimization in Lifelong learning
through Importance Sampling) and provide its pseudocode
in algorithm 1.

= J1.0,5(p) —

5 Related Works

The problem of lifelong RL is not new to the community.
Nevertheless, the term encapsulates problems which can
have slightly differing definitions, thus hindering the com-
parison between existing approaches. In this section, we will
briefly discuss the most relevant ones. A more complete
overview can be found in (Padakandla 2021). Lifelong RL
approaches handle finite-horizon settings (Hallak, Di Cas-
tro, and Mannor 2015; Ortner, Gajane, and Auer 2020) as
well as infinite-horizon settings. In this second case, many
works focus on the detection of abrupt changes in the dy-
namics (da Silva et al. 2006; Hadoux, Beynier, and Weng
2014) or on scenarios where the non-stationarity arises from
switching between stationary dynamics, where the number



of such dynamics is known (Choi, Yeung, and Zhang 2000).
When this number is unknown, Mendez, Wang, and Eaton
(2020) propose learning a factored representation of the pol-
icy composed of a shared dictionary of coefficients trained
to perform well on average on the set of tasks encountered
so far and of task-specific coefficients trained on the current
task. Their algorithm, LPG-FTW, is therefore able to adapt
quickly to new task while avoiding catastrophic forgetting.
Non-stationarity in the MDP dynamics is not only bound
to LL, since it is also a core element of continual learn-
ing. To adapt to the evolving environment, continually learn-
ing agents need to find structure in the world to tackle
new tasks by decomposing them in smaller sub-problems
through function composition (Griffiths et al. 2019) or by ex-
tracting meaningful information in the form of abstract con-
cepts (Zhang, Satija, and Pineau 2018; Francois-Lavet et al.
2019). Other approaches focus on capturing task-agnostic
underlying dynamics of the world, by building auxiliary
tasks like reward prediction (Jaderberg et al. 2017) or using
inverse dynamics prediction (Shelhamer et al. 2017) to pro-
vide denser training signal. A general overview of continual
RL approaches can be found in (Khetarpal et al. 2020).
Another relevant approach to Lifelong RL is Meta RL,
which leverages past experience to learn new skills more ef-
ficiently, i.e. using a small amount of new data. Usual Meta
RL algorithms can be adapted to non-stationarity by mod-
elling the consecutive tasks as a Markov chain model (Al-
Shedivat et al. 2018), using experience replay (Riemer et al.
2019) or learning a latent model of the environment which
can then be predicted (Poiani, Tirinzoni, and Restelli 2021).
Lastly, more similar to our approach, is the one of Chan-
dak et al. (2020) where the policy is trained to optimize
the future predicted performance. To this end, the past per-
formance is first of all estimated through importance sam-
pling and then used to forecast future performance. All these
steps are differentiable, which allows optimizing the pol-
icy through gradient ascent. The authors propose two algo-
rithms, Pro-OLS, forecasting the performance using an or-
dinary least-squares regression and Pro-WLS, where the re-
gression takes into account the importance weights inside
a weighted least-squares. The latter reduces the variance of
the estimates at the expense of adding some bias. One major
difference with our approach is that their method is designed
for episodic RL, where the non-stationarity arises from one
episode to the next. We instead consider a truly lifelong
framework, where that are no episodes and non-stationarity
arises at the single step level. Our approach is different for
three other reasons. First, while our estimate of the S-step
ahead performance has in common with the aforementioned
paper the use of importance sampling, our objective is how-
ever greatly different as we add an extra discounting parame-
ter to control the bias due to non-stationarity and two terms,
the a-step behind performance and a variance regulariza-
tion. Second, our surrogate objective can be optimized at any
point in time, meaning that if a significant shift in dynamics
is detected, one has the opportunity to retrain the algorithm
suddenly. Third, we consider a parameter-based approach in
which the hyper-policy depends only upon time, the policy
may thus change at every step. Chandak et al. (2020) con-
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sider an action-based approach where policy’s parameters
are fixed during an episode.

6 Experiments

In this section, we report the experimental evaluation of our
algorithm in comparison with state-of-the-art baselines.

6.1 Lifelong Learning Framework

The schedule for a lifelong interaction with the environment
is divided in two periods. In the first, which we refer to as
behavioural period, a behavioural hyper-policy is queried to
sample data in order to gather enough samples to compute
the first a-step behind expected return. In the second period,
referred to as target period, the agent continues interacting
with same environment, but is now training its hyper-policy
every few steps (50 in all experiments) for a given number
of gradient steps (100 in all experiments). For all tasks, we
sety=w =13

We consider a particular subclass of non-stationary en-
vironments, frequently encountered in practice. The state
z (z¢,z") is decomposed into a controllable x¢ and a
non-controllable z* part. The controllable part evolves ac-
cording to stationary dynamics and depends on the action
P¢((a")¢|2z¢, a). The non-controllable part instead is not af-
fected by the action and follows non-stationary dynamics
Pr((a')[a).

Assumption 6.1 The transition model P

= (P;)ten factor-
e X, ac¢€

izes as follows, for every x = (z¢, x%) A, and
te N:
Pi(a'|z,a) = P((2')°]x%, 2, a) PP ((2)"]z").  (5)

Under the assumption, we can sample new trajectories from
the last « steps, where the non-stationary part of the state z*
is kept fixed but the sampled policy at each time and there-
fore the stationary controllable part of the state ¢ changes.
Therefore, we have access to the value of the gradient of the
a-step behind expected return by direct estimation, without
requiring importance sampling.

6.2 Trading Environment

The first task is the daily trading of the EUR-USD (€/$) cur-
rency pair from the Foreign Exchange (Forex). Following
(Bisi et al. 2020), we allow the agent to trade up to a fixed
quantity of 100k$ USD with a per-transaction fee f of 1$.
The agent has a continuous actions space in [—1, 1], where
1 and —1 correspond to buy or sell with the maximum order
size, while 0 corresponds to staying flat. We do not model
the effect of our agent’s trades on the market,* thus satisfy-
ing assumption 6.1. The state of the agent is composed of its
actual portfolio (z7, which also corresponds to its previous
action) and the current rate of the currency (33}() The reward
is defined as 7, = a.(z}, — x}') — fla, — xf|.

We consider three datasets of historical data 2009-2012,
2013-2016, and 2017-2020; each period having a little more

3The code is available at https://github.com/pierresdr/polis.
“We assume that the order size of the agent is negligible w.r.t.
the market liquidity.



than 1000 data points. « is set to 500 and we consider a
target period of 500 steps.

Finding a satisfactory set of hyperparameters (in the sense
of parameters of the algorithm itself, not parameters of the
hyper-policy) can be problematic in our lifelong scenario.
Indeed, here, there is no distinction between training and
testing since the parameters are continually updated. Select-
ing hyperparameters for future interactions with the environ-
ment by evaluating past performances is thus prone to over-
fitting on the past performance. To account for this prob-
lem, we compare two hyperparameter selection approaches.
In the first, we select the best performing hyperparameters
from the dataset 2009-2012 and evaluate the selection on the
other two datasets. In the second approach, we both select
the hyperparameters and evaluate on the last two datasets.

The trading of the EUR-USD currency pair is a highly
complex task. To give more chance to the algorithm to ex-
ploit potential patterns of the series, we provide another trad-
ing task on a simulated series. The framework is the same,
only changes the underlying rate process which will now be
a Vasicek process. In this scenario, the rate (p;);>1 satisfies
pry1 = 0.9p; +uyg, where uy ~ N(0,1). On this task we will
test the set of hyperparameters selected on the EUR-USD.

6.3 Dam Environment

The second environment is a water resource management
problem. A dam is used to save water from rains and pos-
sibly release it to meet a certain demand for water (e.g.,
the needs of a town). We model the environment following
(Castelletti et al. 2010; Tirinzoni et al. 2018). The inflow
(e.g., rain) is the non-stationary process and the agent has
obviously no impact on it, thus satisfying assumption 6.1.
The mean inflow follows one of either 3 profiles given
in Appendix C.2. The state observed by the agent is the
day’s lake level. The agent does not observe the day of the
year, contrarily to (Tirinzoni et al. 2018), in order to ensure
non-stationarity. The agent’s action is continuous and corre-
sponds to selecting the daily amount of water to release in
order to avoid flooding and meet the demand. Considering
the flooding level F' = 300 and the daily demand for water
D = 10, the penalty that the agent gets for each is respec-
tively cp = (max(z — F,0))? and cp = (max(a — D, 0))?,
where a is the action of the agent and x the current lake level.
The final cost is a convex combination of those costs, whose
weights depend on the inflow profile (see Appendix C.2). In
this environment, « is set to 1000 in order to include enough
years of past data in the estimator. We provide results for a
target period of 500 steps. Because the results for this envi-
ronment are less sensitive to the choice of hyperparameters,
we only select them according to the performance given the
first inflow profile.

6.4 The Hyper-Policy and Policy

We now describe the hyper-policy used in all experiments. It
is composed of two modules. The first is positional encod-
ing introduced in (Vaswani et al. 2017). It embeds its input,
time, as a vector of Fourier basis. Therefore, it does not add
learnable parameters to the hyper-policy. This module has
two main advantages. First, its output dimension is free to be
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Figure 2: The hyper-policy queried at time ¢. First the last b
times are appended to ¢, b the receptive field of the temporal
convolution. They are fed to a positional encoding which
outputs a vector f(¢) for each. The latter are then fed to a
temporal convolution which returns the mean p; of 6,.

| Inflow 1 Inflow 2 Inflow 3
POLIS —-22+02 -15+0.0 —-3.24+0.2
Stationary | —2.2+0.1 —-1.5+0.0 —-3.24+0.2
ONPG —514+32 —-14+0.2 —4.1+0.5
Pro-OLS —-26+04 -—-52+5.1 —-3.8+0.7
Pro-WLS —-55+43 —85+9.7 —84+4.2
LPG-FTW | —234+0.3 —-11.94+86 —47+1.9

Table 1: Lifelong learning on the Dam environment for each
of 3 inflow profile. Mean return on the target period and stan-
dard deviation over 3 seeds. Reported results are divided by
an order of 1e3 for aesthetic.

chosen, allowing to control the input size of the next mod-
ule. Second, while time eventually becomes large, the output
of positional encoding is bounded, which is a valuable prop-
erty when then fed to a neural network. The second module
are convolutions scanning through time. We chose convo-
Iutions as they generally excel in finding patterns in time
series. Moreover, they allow processing inputs of variable
length and are easily parallelizable. We use a particular type
of convolutions, temporal convolutions (Oord et al. 2016)
which preserve time causality. Obviously, the convolutions
require several time-steps in order to scan through with their
kernel. However our hyper-policy takes only the current time
as input, v,(-|t). Nevertheless, we can freely decide to con-
sider the positional encoding of ¢ and a few previous times
to reach the length of the receptive field of the convolutions.
Its length is b = 2!~1(k— 1), where [ is the number of layers
and k the kernel size of the temporal convolution. Another
advantage of using temporal convolutions is that the com-
putation of the policy parameters 6 can be made in parallel.
This is an interesting property in practice as between two
updates of the hyper-policy, we can already sample in par-
allel all the policy parameters to be used. The output of the
temporal convolutions is the mean gy of the normally dis-
tributed policy parameter ;. The standard deviation of each
entry of 6, is not time dependent and can be either learned
or fixed during training. A schematic representation of the
hyper-policy is given in fig. 2.

At the policy level, in all the experiments, we use an affine
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(b) Hyperparameters selected on 2013-2016 and 2017-2020.

Figure 3: Lifelong learning on the EUR-USD currency pair. Mean cumulative returns on the target period with one standard
deviation shaded area, over 3 seeds. Vertical dashed line indicate retrain.
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Figure 4: Lifelong learning on the Vasicek process. Mean
cumulative returns on the target period with one standard
deviation shaded area, over 10 seeds. Vertical dashed line
indicate retrain.

policy with bounded outputs.

6.5 Baselines

The first baseline is the stationary hyper-policy which can be
seen as a special case of POLIS when v, (-[t) = vp(-). We
consider this hyper-policy along with the same affine policy.
Note that, although stationary between trainings, the hyper-
policy’s parameters are retrained every 50 steps.

We then consider baselines from the literature, including
Pro-OLS and Pro-WLS (Chandak et al. 2020) and LPG-
FTW (Mendez, Wang, and Eaton 2020). In their experi-
ments, Chandak et al. (2020) use a baseline which they re-
fer to as ONPG, replicating the idea of (Al-Shedivat et al.
2018). We also include this baseline and thank Chandak
et al. (2020) for providing their code.

6.6 Results

Trading environment The cumulative returns obtained for
the hyperparameters selected on 2009-2012 are given in Fig-
ure 3a. Interestingly, on the period 2013-2016, POLIS has a
performance similar to the stationary policy, which is com-
parable or superior to baselines. On the period 2017-2020,
POLIS under-performs the baselines, but the stationary one.
When selecting the set of hyperparameters from the testing
dataset, we obtain the results shown in Figure 3b. This time,
POLIS obtains more similar performance to the baselines,
closing the gap on the period 2017-2020.
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The cumulative returns obtained for the trading on the Va-
sicek process are reported in Figure 4. On this tasks, specifi-
cally designed to highlight the smooth non-stationarity, PO-
LIS is clearly superior to baselines, particularly the station-
ary one. Note also its smaller variance.

Dam environment We report the results of the experi-
ment in Table 1. Surprisingly, out of all the baselines, the
stationary hyper-policy obtains the best performance over
the 3 inflows. Other baselines sometimes obtain a compa-
rable performance but exhibit a tendency to have a higher
standard deviation. Remarkably, POLIS is able to match the
stationary policy’s performance and variance on each inflow
profile. This indicates that our approach is able to avoid extra
non-stationarity in tasks where it is not needed.

7 Conclusion

In this paper, we proposed to address the lifelong RL prob-
lem by using a hyper-policy mapping time to policy param-
eters. To grasp the objective of LL, i.e., the future perfor-
mance, we designed an estimator of such quantity, making
use of the past collected experience via importance sam-
pling. The estimator has a controllable bias which vanishes
as the environment and the hyper-policy become stationary.
Besides, we add two terms to the objective: an estimation
of the past performance preventing catastrophic forgetting
and a penalization based on an upper-bound on the variance,
which prevents overfitting the past and favors generaliza-
tion to future non-stationarity. We proposed an implementa-
tion of such hyper-policy which we tested in several scenar-
ios, demonstrating that our approach can exploit predictable
non-stationarity, control for its variance and avoid excessive
non-stationarity when non necessary. Our approach tackled
exploration via the stochasticity of the hyper-policy. Future
work include a more principled and explicit treatment of the
exploration problem in the lifelong RL setting.
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