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Abstract

Despite deep learning (DL) success in classification problems,
DL classifiers do not provide a sound mechanism to decide
when to refrain from predicting. Recent works tried to control
the overall prediction risk with classification with rejection
options. However, existing works overlook the different sig-
nificance of different classes. We introduce Set-classifier with
Class-specific RIsk Bounds (SCRIB) to tackle this problem,
assigning multiple labels to each example. Given the output
of a black-box model on the validation set, SCRIB constructs
a set-classifier that controls the class-specific prediction risks.
The key idea is to reject when the set classifier returns more
than one label. We validated SCRIB on several medical ap-
plications, including sleep staging on electroencephalogram
(EEG) data, X-ray COVID image classification, and atrial
fibrillation detection based on electrocardiogram (ECG) data.
SCRIB obtained desirable class-specific risks, which are 35%-
88% closer to the target risks than baseline methods.

1 Introduction
Deep Learning (DL) has demonstrated highly discriminative
power on classification tasks and has been successfully ap-
plied in many application areas, including healthcare(Hannun
et al. 2019; Esteva et al. 2017; Gulshan et al. 2016; Biswal
et al. 2018).

Impressive as DL is, we nevertheless hope to identify when
the model might fail and take actions accordingly, which is
especially important in healthcare applications. For example,
suppose we are to design an automated system using pre-
trained DL classifiers for sleep staging on EEG data (Biswal
et al. 2018), detecting diseases based on ECG data (Hong et al.
2019), or classifying X-ray images (Qiao et al. 2020). For
predictions to be reliable, the model should sometimes reject
the examples and yield them to human experts to decide. And
when the model does predict, we want the misclassification
risks to be low and controllable.

This leads to classification with a reject option, where the
rejection usually happens when the confidence score is low.
For example, when the base classifier’s prediction is the true
conditional probability, Maximum Class Probability (MCP)
is the optimal confidence score as it minimizes the rejection
rate for each risk level (Chow 1970). The actual decision
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rule, given an overall risk target (not a class-specific one),
(Geifman and El-Yaniv 2017) picks a confidence threshold
on the validation set. Alternative confidence measures were
also proposed by training separate models (Jiang et al. 2018;
Corbière et al. 2019).

However, existing works ignored that different classes
have different significance. The confidence score is almost al-
ways class-agnostic, and the rejection is binary, which means
there is no class-specific risk control. As a result, a difficult
class can have an extremely high rejection rate, where easy
classes are predicted all the time. In many applications such
as medicine, this class-agnostic rejection creates problems, as
difficult classes are often the most important ones that need
classification. For example, the N1 class in sleep staging is
challenging to classify but of great interest to the applica-
tions. It will currently be disproportionally rejected due to
the difficulty of achieving low overall risk.

In this work, we aim to incorporate class-specific risk
controls into classification with rejection. We propose Set-
classifier with Class-specific RIsk Bounds (SCRIB), which
can output multiple labels to each example based on the pre-
dicted conditional probabilities by a black-box classifier in a
theoretically efficient way. Rejections happen naturally when
the output set contains more than one label1. The multiple la-
bels for each rejection also serve as an intuitive explanation of
the underlying ambiguity, helping human experts understand
the model behavior.

To construct the set classifier, SCRIB searches for the
optimal thresholds by minimizing a loss designed to con-
trol class-specific risks. This set classifier can be optimal in
some scenarios and naturally comes with a risk concentra-
tion bound. To the best of our knowledge, SCRIB is the first
class-specific risk control method for multi-class classifica-
tion tasks. SCRIB has the following desirable properties:

1. Flexible. It enforces class-specific risk controls by allow-
ing different risk targets for different classes. It also works
with any black-box classifier without model retraining.

2. Fast. We propose an efficient optimization method to
choose the thresholds for the set classifier. Specifically, we
proposed a novel dynamic programming-based coordinate

1We tackle multi-class classification where one class is assigned
to each example. This is different from multi-label classification
where multiple labels can be assigned to the same example.
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descent method for this optimization task, which proves
highly efficient.

3. Concise. When it rejects, it returns a set of possible la-
bels, as the rejection explanation (Section 5.4) without
unnecessary labels (Theorem 4.1).

Finally, we evaluated SCRIB on multiple real-world medi-
cal datasets. SCRIB obtained desirable class-specific risks
(usually within 1% of the target risks), which are 35%-88%
closer to the target risks than baseline methods (Table 3).

2 Related Works
The most related line of works is a classification with re-
jection options, which is intertwined with two other areas:
calibration and uncertainty quantification (UQ). At a high
level, classification with rejection options is about making
classification decisions using a trained classifier, while cali-
bration and uncertainty quantification enhance the classifier’s
prediction scores.

A natural method rejects if the prediction score (or uncer-
tainty measure) is below (or above) a certain threshold. In
terms of the scores, one simple choice is the predicted class
probabilities by the base classifier. Many works directly use
the predicted Maximum Class Probability (MCP) 2 (Geifman
and El-Yaniv 2017; Gimpel 2017), which is already optimal
for overall risk control if the prediction is accurate (Chow
1970). In this respect, calibration research (Platt and oth-
ers 1999; Guo et al. 2017; Wenger, Kjellström, and Triebel)
2020; Kull et al. 2019; Kumar, Liang, and Ma 2019) is thus
related as they aim to transform the classifier output to true
probabilities. However, calibration research is orthogonal to
our problem - our work focuses on the decision (rejection)
rules and does not require calibrated outputs.

Measures other than predicted probabilities have also been
explored. In classification, uncertainty is almost a synonym
to (the opposite of) confidence, and such research is related
to uncertainty quantification. Monte-Carlo Dropout (MC-
Dropout) (Gal and Ghahramani 2016) is one of the most
popular uncertainty quantification methods because it is rela-
tively lightweight. MCDropout was used in rejection litera-
ture (Geifman and El-Yaniv 2017; Corbière et al. 2019). How-
ever, most related methods (including MCDropout) (Neal
1996; Gal and Ghahramani 2016; Blundell et al. 2015; Wil-
son et al. 2016; Lakshminarayanan, Pritzel, and Blundell
2017; Moon et al. 2020; Corbière et al. 2019) need to simul-
taneously train the base classifier and confidence/uncertainty
estimator, which greatly limits the applicability and might
even affect the performance, especially when the base clas-
sifier is a complicated deep learning model. An exception is
(Jiang et al. 2018), which trains a second classifier but is very
expensive and only works for low-dimensional data. Works
in uncertainty quantification are still complementary to our
problem because uncertainty measures are inputs to the rejec-
tion rules, which will be demonstrated in our experiments.

Almost all score-based rejection works focus on finding
better confidence measures and (Geifman and El-Yaniv 2017;

2In practice, usually MCP is replaced by the Maximum Softmax
Response - the maximum Softmax output, as people tend to interpret
Softmax output as probabilities.

Fumera, Roli, and Giacinto 2000) focus on decision rules
(e.g., threshold finding). Apart from confidence-based re-
jection, a good number of works jointly learn the classi-
fier and the rejector without an explicit confidence score
at all—(Fumera and Roli 2002; Wegkamp and Yuan 2011;
Grandvalet et al. 2009; Bartlett and Wegkamp 2008; Her-
bei and Wegkamp 2006; Cortes, De Salvo, and Mohri 2016;
Cortes, DeSalvo, and Mohri 2016; Geifman and El-Yaniv
2019), many of which focusing on binary classification and
SVM. Such methods also tend to have limited applicability
and do not work for blackbox classifiers. We refer to a re-
cent survey (Hendrickx et al. 2021) for more discussions on
classification with rejection in machine learning.

Most importantly, all works reviewed here focus on overall
risk. To the best of our knowledge, our work is the first to
find decision rules for class-specific risk controls given a
blackbox classifier.

A secondary issue of existing works is that the rejection
is typically a binary decision. When rejection happens, we
only know that the most likely class is selected or rejected.
On the contrary, when our set-classifier rejects (i.e., when it
contains more than one label), it informs the human inspector
what competing predictions are causing the rejection given
our risk targets (Section 5.4). Set classifiers are also used in
classification (Angelopoulos et al. 2021; Nguyen et al. 2018),
usually in a multi-label setting (which is critically different
from multi-class classification). To the best of our knowledge,
no such application considers the rejection possibility nor
class-specific risk targets. Such problem (i.e. constructing
confidence sets without rejection) is however well-studied
with-closed form solution (Mortier et al. 2019; Sadinle, Lei,
and Wasserman 2019), but set-classifier in the context of
rejection is a much more difficult problem.

3 Problem Formulation

Symbol Meaning

k Class index
[K] The set {1, 2, . . . ,K}
X ,Y Data space and label space
P , Pk Underlying data distribution (of class k)

P{event} Probability of event when data follows P
1{event} Indicator function of event

H Set classifier: X 7→ 2Y

A(H) Ambiguity (Size- or Chance-) of H
r(H) , rk(H) Risk of classifier H (of class k)

r∗, r∗k Target risks (overall/for class k)
mk(x) Base model prediction for P{Y = k|X = x}
t,tk The threshold parameter for H (for class k)
L(t) Unconstrained loss given thresholds t

L̂, P̂, Â, r̂, r̂k Empirical L,P, A, r, rk on Svalid
αk(H) Mis-coverage rate for H of class k

Table 1: Notations used in this paper
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Figure 1: All possible set-valued predictions, withK = 3 and
t = [0.25, 0.2, 0.3]. Intuitively, K hyperplanes (mk(x) ≥
tk) divide RK into up to 2K cells (some might be empty).
In each cell, we show the value of the set classifier (E.g.,
H = {1, 2}).

3.1 Base Classifier and Learning Setup
In this work we situate our task in the K-class classification
problem, with data space X , label space Y = {1, . . . ,K},
and the joint distribution of (X,Y ) as P over X ×Y . We will
use [K] to denote the set {1, 2, . . . ,K}. We further denote
the class-specific distributions (X,Y = k) as Pk, which is
effectively a distribution over X . Here Pk{·} can also be
viewed as P{·|Y = k}.

Like in many tasks, we assume the data split into a training
set Strain, validation set Svalid and test set Stest. We assume
that data in Svalid and Stest are iid, and we can only use la-
bel information on Strain and Svalid. We are given a model
m (potentially a DNN) trained on Strain: X 7→ RK , where
the k-th output, mk(x), captures the conditional probability
P{Y = k|X = x}. As a simple example, m(x) can be the
Softmax output over the K classes or confidence scores gen-
erated from uncertainty quantification or calibration methods.
Note that here Svalid is the validation set for this base classi-
fier m, and will be used to tune SCRIB (Section 4). Finally, ·̂
means evaluating the empirical value on Svalid. For example,
P̂{Y = 1} means the frequency of class 1 in Svalid.

3.2 Problem: Class-specific Risk Control
We will first introduce the concept of a set classifier:

Definition 1 (Set Classifier). A set classifier is a mapping
from data to a set of labels, denoted as H : X 7→ 2Y .

A set-valued function has been used in classification tasks
for different purposes (sometimes under different names)
(Wu, Lin, and Weng 2004; Vovk, Gammerman, and Shafer
2005; Del Coz, Dı́ez, and Bahamonde 2009; Sadinle, Lei,

and Wasserman 2019). Its link classification with rejection is
natural: Rejections happen naturally when the set classifier
contains more than one label. A set classifier is a generaliza-
tion of the typical classifier that only outputs the most-likely
class.

For a multi-class classification problem, ideally, we want
an oracle classifier such that P{Horacle(X) = {Y }} = 1.
However, this is not possible in most cases. Our goal is to
find a H that minimizes the ambiguity while satisfying class-
specific risk constraints. There are many ways to define the
ambiguity for a H, and we will focus on two intuitive ones:

Definition 2 (Chance-Ambiguity and Size-Ambiguity).
Chance-Ambiguity of a set classifier H is the probabil-
ity of it having cardinality (size) greater than 1, namely
P{|H(X)| > 1}. Size-Ambiguity is the expected size of H,
namely E[|H(X)|]

These two ambiguity definitions of a set classifier H are
usually correlated3. Size-ambiguity, easier to analyze, is a
measure used more often in the statistics literature (Sadinle,
Lei, and Wasserman 2019). However, it overlooks the qualita-
tive difference between being certain (|H| = 1) and uncertain
(|H| > 1) - in reality, human experts need to step in as long
as the model is uncertain, regardless of the size of H. Chance-
ambiguity is equivalent to the rejection rate widely used in
rejection literature (Geifman and El-Yaniv 2017; Jiang et al.
2018; Corbière et al. 2019). We will use A(H) to denote the
general concept of ambiguity, either Chance-Ambiguity or
Size-Ambiguity.

We define the overall risk like in existing rejection liter-
ature (Geifman and El-Yaniv 2017) and class-specific risks
below:

Definition 3 (Class-specific and Overall Risk). The class-
specific risk rk(H) for class k and overall risk r(H) for a
set classifier H are defined to be:

rk(H) := Pk{k 6∈ H(X)
∣∣|H| = 1} (1)

r(H) := P{Y 6∈ H(X)
∣∣|H| = 1} (2)

Intuitively, Pk{k 6∈ H(X)} means the probability of class
k not in the output of set classifier H(X) (or formally the
mis-coverage rate of class k). And Pk{k 6∈ H(X)

∣∣|H| = 1}
is that probability of class k for the output set with a single
label (i.e., no ambiguity).

Putting everything together, our goal is to solve the follow-
ing optimization problem:

Problem 1 (Class-specific Risk Control).

min
H

A(H) (3)

s.t. Pk{k 6∈ H(X)
∣∣|H(X)| = 1} ≤ r∗k, ∀k ∈ [K] (4)

Here A(H) is the ambiguity measure (Chance- or Size-
Ambiguity, or a weighted average of both, chosen by the
user depending on the task), and r∗1 , . . . , r

∗
K ∈ [0, 1] are the

user-specified risk targets.

3Empirical results on the correlation are in the Appendix
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4 The SCRIB Method
4.1 Method Overview
Given a trained base classifier m and validation set Svalid, we
first parameterize H with K thresholds, one for each class.
Given t := (t1, . . . , tK) ∈ RK , H(x) is defined as

H(x; t) := {k ∈ [K] : mk(x) ≥ tk}. (5)

Figure 1 illustrated an example when K = 3. Here mk(x) is
a proxy for how confident the model thinks x is from class k.
We will drop t in the notation for simplicity.

Next, we transform the optimization problem in Section
3.2 into an unconstrained optimization problem that mini-
mizes the following loss L̂ : RK 7→ R:

L̂(t) := Â(H)︸ ︷︷ ︸
ambiguity

+
K∑
k=1

λk(r̂k(H)− r∗k)2+︸ ︷︷ ︸
class specific risk control penalty

(6)

where v+ := max{v, 0} and H is parameterized by t as de-
fined above. Â and r̂k are the ambiguities and risks evaluated
on the validation set Svalid. In practice, all {λk}k are set to a
large number unless there is an order of importance among
classes.

Although the loss definition seems simple, the interaction
between different classes makes it hard to simultaneously
optimize all parameters. To tackle the actual optimization,
we choose the thresholds t from the model’s outputs on the
validation set Svalid. We compare several methods and arrive
at an efficient coordinate descent algorithm with dynamic
programming. A sketch of the full algorithm is provided
in Algorithm 1, with the details of “QuickSearch” in the
Appendix. In practice, we repeat Algorithm 1 ten times and
take the lowest loss found.

Algorithm 1: Thresholds Finding for SCRIB
Input:
M ∈ RN×K : model output on Svalid sorted by column. Mi,k

is the i-th smallest value in {mk(x)}x∈Svalid , for class k. N
denotes |Svalid|.
L̂ : RK 7→ R, empirical loss function on Svalid.
Output:
t ∈ RK : optimal thresholds for the set classifier H.
Algorithm:

For k ∈ [K], initialize tk randomly from M·,k, and evalu-
ate current loss l← L̂(t).
repeat

for k = 1 to K do
Fixing tk′∀k′ 6= k, search t′k in M·,k to minimize L̂
using QuickSearch (See Appendix)
l′k ← L̂(t′k) where t′k := (t1, . . . , t

′
k, . . . , tK)

end for
If mink∈[K] l

′
k < l, update l← l′k and t← t′k

until l does not improve
return t

Complexity The naive search in each direction requires
O(N) loss evaluations, each taking O(KN), leading to

O(KN2) operations. We invented a novel dynamic program-
ming trick in “QuickSearch”, lowering it to only O(KN) op-
erations in total instead. Total complexity is thus O(TK2N)
where T denotes the number of outer-iterations in Algorithm
1. Due to the space constraint, we have the pseudo-code
for QuickSearch and comparison with several optimization
methods (time and value) in the Appendix.

4.2 Parameterization Optimality
By parameterizing H using t as in Eq. (5), we are answer-
ing the question “Might x belong to class k?” for each class
separately, as illustrated in Figure 1. This particular parame-
terization seems to “ignore” the potential interaction between
classes. However, as we will prove next, H is already optimal
in minimizing the mis-coverage rate. The mis-coverage rate
for H for class k is defined as:

αk(H) := Pk{k 6∈ H(X)} (7)

It refers to the probability that the correct class k is not in the
output of set classifier H(X).

Theorem 4.1. (Adapted from (Sadinle, Lei, and Wasserman
2019)) For any t, define H∗ as the set classifier parameter-
ized by H∗(x) := {k : P{Y = k|X = x} > tk}. H∗ has
the minimum Size-Ambiguity among all set classifiers with
equal or lower mis-coverage rates. That is, ∀H′(

∀k, αk(H′) ≤ αk(H∗)
)
⇔ E[|H∗|] ≤ E[|H′|]

A proof using the Neyman-Pearson lemma (Neyman and
Pearson 1933) is included in Appendix.

Usually, the base classifier m gives us some prediction
scores (e.g., Softmax output). Un-calibrated prediction scores
tend to deviate from true probabilities (Guo et al. 2017), but
we only need order consistency like in (Geifman and El-Yaniv
2017). If the base classifier captures the ordering of P{Y =
k|X = x}, then with Theorem 4.1, our parameterization
in Eq. (5) will give us an optimal H for minimizing Size-
Ambiguity.

When the objective function contains Chance-Ambiguity,
the form of H will depend on the distribution of the pre-
dictions (assuming they are true conditional probabilities).
However, our proposed parameterization is still desirable
because, empirically, Chance- and Size-Ambiguity are corre-
lated, and this simple parameterization is also intuitive and
less prone to over-fitting.
Secondary output: Another benefit of this parameterization
is that for each output H, we have the estimated mis-coverage
rates α1(H), . . . , αK(H) immediately4. Intuitively, the mis-
coverage rate means H can miss class k with only probability
αk(H). As output, αk(H) can be beneficial for human ex-
perts in classifying the rejected samples.

4.3 Risk Bounds
As mentioned in Section 4.1, the thresholds t are chosen by
enforcing the risk constraints in Problem 1 on Svalid. Roughly
speaking, because m is not trained on the Svalid nor Stest, if
data in Svalid and Stest follow the same distribution, then the

4This is given by the quantiles of the thresholds t.
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scores’ distribution on Svalid for each class k can represent
that at test time. We now derive a way to compute the class-
specific risk bounds with the following theorem:
Theorem 4.2. For any fixed set classifier H parameterized
by t, with a hold-out set {(Xi, Yi)}Ni=1 and a new test data
XN+1 from P, denote k = YN+1 as the true but unknown
class of XN+1, we have

Pk{k 6∈ H(XN+1)
∣∣|H(XN+1)| = 1} = E[r̂k(H)] = rk(H)

(8)

where r̂k(H) is the risk on the first N data points and rk(H)
is the true risk defined in Definition 3. Moreover, with (Ho-
effding 1963) we have ∀ε > 0:

P{r̂k(H) ≥ rk(H) + ε} ≤ e−D(rk(H)+ε||rk(H))nk (9)

where D(p||q) = p ln p
q

+ (1− p) ln 1−p
1−q

is the Kullback–Leibler
divergence between Bernoulli random variables parameterized by p
and q, and nk :=

∑N
i=1 1{Yi = k}1{|H(Xi)| = 1} is the number

of data points from class k that receives a certain prediction by H.

Proof for Theorem 4.2 is in Appendix. Note that since
SCRIB chooses t on Svalid, to compute the risk bounds, we
technically cannot use Svalid as the hold-out set mentioned
in Theorem 4.2, and need to reserve another hold-out set5.
Since the bound decreases exponentially, the size of this
hold-out set can be very small. In practice, since we have
|Svalid| � K, the bias from fitting H on Svalid is negligible:
In our experiments, we found that r̂(H) on Svalid is very close
to the true risk as measured on Stest.

5 Empirical Results
We present relevant baselines to our task in Section 5.1. We
will then compare these methods (when applicable) to SCRIB
on a series of risk control tasks on synthetic and real-world
datasets. The real-world datasets are with diverse character-
istics but all from the medical domain, because we believe
classification with rejection can have an important practical
impact on that domain.

In the experiments, we answer the following questions:
1. Can SCRIB control class-specific risks well empirically?

(Section 5.3)
2. Does SCRIB also perform well for overall risk control?

(Section 5.5) This experiment also serves as a test for our
optimization method.

5.1 Baselines
We compare SCRIB with the following baselines.
• Selective Guaranteed Risk (SGR) (Geifman and El-

Yaniv 2017) is a post-hoc method that can achieve an over-
all risk guarantee. The proposed version uses (predicted)
Maximum Class Probability of the base classifier as the
confidence score for rejection.

• SGR + Dropout (Geifman and El-Yaniv 2017) is a vari-
ant of SGR using the (negative) variance of Monte-Carlo
Dropout (Gal and Ghahramani 2016) predictions as the
confidence score.

5This practice is similar to (LeRoy and Zhao 2021), which uses
three hold-out sets.

• LABEL (Sadinle, Lei, and Wasserman 2019) is a set-
classifier that can control the class-specific mis-coverage
rate αk(H), the unconditional version of rk(H). It is a
conformal method that uses an analytical solution specific
to αk(H) (picking the α quantile of the prediction scores
on the validation set).

• SCRIB- The same as SCRIB but we use the same threshold
for all classes tk ≡ t for the same t. We include this to
check the necessity of using multiple thresholds.

Compared with SGR, SCRIB can provide class-specific risk
controls along with additional information (a confidence set)
to human decision-makers when rejections happen. For the
sake of our experiment, any method that uses one thresh-
old (like SGR) is the same, and SGR is used only because
it is one of the first to introduce rejection into deep learn-
ing. Compared with LABEL, SCRIB can control both the
unconditional coverage level (as a degenerate use case, see
Appendix) and the conditional risk when |H| = 1. In addi-
tion, we want to emphasize that SCRIB can be applied to
solve a lot of more general problems, with the specific opti-
mization in Eq. (1) being just an instance. As an example, we
will explain how SCRIB can be modified mildly to control
overall risk in Experiment 5.5.

5.2 Data and Model Output
Synthetic data is created by first generating conditional prob-
abilities and then sampling the labels from these probabilities.
The synthetic data has 5 classes, with an easy class and a
hard one. The exact generation process is in the Appendix.

ISRUC (Sub-group 1) (Khalighi et al. 2016) is a public
Polysomnographic (PSG) dataset for sleep staging. It con-
tains 89,283 30-second recordings from 100 subjects, classi-
fied into W/N1/N2/N3/REM (class 0-4). 75% of the data are
used to train the base classifier.

Sleep-EDF (Kemp et al. 2000; Goldberger et al. 2000) is
another public dataset widely used to evaluate sleep staging
models. It has the same classes as ISRUC, and we use 122
recordings (331,184 samples) to train the base model.

ECG (PhysioNet2017) (Clifford et al. 2017; Goldberger
et al. 2000) is a public ECG dataset with 8,528 de-identified
ECG recordings sampled at 300Hz. Classes 0-3 are Normal
(N), Other rhythms (O), Atrial Fibrillation (AF), and Noisy.
75% of the recordings were used for training the base classi-
fier.

X-ray dataset is constructed from two publicly available
sources, COVID Chest X-ray6 and Kaggle Chest X-ray7, in-
cluding 5,508 chest X-ray images from 2,874 patients. Class
0-3 are COVID-19, non-COVID-19 viral pneumonia, bacte-
rial pneumonia, and normal.

Excluding samples for model training, each class’s sample
counts are presented in Table 2. These are evenly split into
validation and test sets.

Base Deep Learning Models For ISRUC and Sleep-EDF,
we used a ResNet-based (He et al. 2016) with 3 Residual

6https://github.com/ieee8023/covid-chestxray-dataset
7https://www.kaggle.com/paultimothymooney/chest-xray-

pneumonia
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Data \Class 0 1 2 3 4

Xray 34 547 1,002 400 N/A
ISRUC 4,907 2,857 7,255 4,476 2,985
SleepEDF 57,424 4,464 14,812 1,946 5,259
ECG 2,893 1,579 449 145 N/A

Table 2: Sample size for each class of the validation dataset
(excluding the training samples used to train the DL model).

Blocks, each with 2 convolution layers. For ECG, we em-
ployed (Hong et al. 2019) and changed the last layer for a
4-classification problem. For X-ray, we directly take the DL
model predictions (Qiao et al. 2020) and run experiments in
a purely post-hoc manner. More details are in the Appendix.

5.3 Experiment: Class-Specific Risks
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Figure 2: The issue of unbalanced class-specific risks on
ISRUC (left) and Sleep-EDF (right). Controlling only the
overall risk at 5% leads to extremely high risks for harder
classes like N1 (SGR). Setting class-specific risk constraints,
SCRIB achieves much lower risk on N1 than baselines. (Here,
the overall risk for SGR/LABEL/SCRIB are 4.8%/11%/7.6%
for ISRUC, and 4.5%/6.8%/4.4% for Sleep-EDF.)

In this experiment, we check whether SCRIB can find a
H with a risk profile similar to a set of pre-specified values.
In many healthcare-related tasks, some classes are (much)
harder to classify than others. For example, for sleep staging,
N1 is usually the hardest-to-predict class, whereas W (wake)
is usually easy, which means the risks are very high/low risk
for N1/W. Figure 2 illustrates this observation and how to
alleviate this issue with SCRIB and class specific risk targets.

Setup: To quantitatively compare different methods, we
will set the target risks (r∗k) for SCRIB to 15% for all classes
for ECG and 10% for other datasets. The same numbers are
used as overall risk targets (r∗) for SGR and mis-coverage
targets for LABEL. Note requiring all classes to bear 10%
risk is a much stricter condition than requiring the overall risk
to be the same number. The target is higher for ECG because
the performance of the classifier is worse (SGR rejects 90+%
samples at r∗ = 15%). λk is set to 104 for all classes and
datasets, and we use chance-ambiguity for A(H). We choose
large λks to satisfy the risk constraint before optimizing
ambiguities (see Eq. 6)8.

8In fact, 104 is not that large: 1% excess risk translates to
104(1%)2 = 1.0 (the second term in Eq. 6), while the ambigu-
ity term (the first term) is a value in [0, 1]
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Figure 3: Distribution (violin plots) of class-specific risks for
different methods with marked medians. Unlike other meth-
ods, realized class-specific risks of SCRIB are concentrated
around/below target (red dashed lines).

(∆rk)+ (%) SGR LABEL SCRIB- SCRIB

Xray 5.67 6.43 13.69 3.71 (0.34)
ISRUC 8.60 4.23 8.79 1.78 (0.01)
SleepEDF 16.90 7.21 16.32 0.89 (3e-8)
ECG 46.23 21.58 7.71 0.90 (6e-12)

Table 3: Average class specific excess risk ((∆rk)+ in per-
centage) for each methods. The p-values for the two-sample
mean t-test between SCRIB and the best baseline are reported
in parenthesis. SCRIB directly controls the risk and has lower
deviations from targets than all baselines.

Evaluation Metric: We will measure the excess class-
specific risk defined as

(∆rk)+ := max{0, rk(H)− r∗k} (10)

on the test set. For binary rejection like SGR, HSGR(x) is
naturally defined to be [K] when rejections happen. We ran-
domly split the samples into validation and test sets 20 times,
and report mean and p-values. For ISRUC/SleepEDF/ECG,
we include the results of re-splitting by recordings/subjects
in the Appendix.

Results are presented in Table 3 and Figure 3. The runtime
of SCRIB is detailed in the Appendix, which is generally a
few seconds. SCRIB almost always controls the class-specific
risks close to the target. Except for the X-ray dataset, the
difference between SCRIB and the best baseline is always
significant. This can also be seen from the violin-plots as well.
For the X-ray dataset, the risks are much more volatile as each
class size is small, especially after rejection. Comparison
between SCRIB and SCRIB- suggests that using the same
threshold for all classes is not enough even with the custom
loss function.

5.4 Clinical User Study of Set Predictions
To evaluate the practical value and interpretability of a set
classifier, we picked 50 samples from the ISRUC dataset9 and
asked a neurologist with a specialization in sleep medicine
to score the predicted sets from 1 to 5 (with 5 being the
best). The sets get lower scores if they miss a likely class or

9For each class, we pick the most certain instance according to
the base classifier, 3 instances at the 100%/90%/80% percentile for
entropy, and 6 purely random instances.
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Figure 4: Distribution of ratings given by doctor. SCRIB
(left) has higher ratings than using the same threshold for all
classes (right).

unnecessarily ambiguous (e.g., contain all labels all the time).
We compare the scores with a baseline that uses the same t
for all classes like SCRIB- and SGR, where t is chosen to
have the same number of certain predictions as SCRIB. On
average, SCRIB’s score is significantly higher with a p-value
of 0.01 (3.86± 0.86 vs 3.42± 0.91).

5.5 Experiment: Overall Risk
This experiment focuses on comparing the overall risk con-
trol between SCRIB and the baseline method SGR. The first
goal is to explain how to slightly change the loss function of
SCRIB for a different task, such as the overall risk control
SGR was designed for. Moreover, because we know the ana-
lytic solution when the predicted probabilities are accurate,
this experiment also serves as a sanity check to see whether
the searched local optima are good (close to global optima).

Setup: We will use SCRIB to solve the overall risk control
SGR was designed for, by changing the loss function to
account for chance-ambiguity and the overall risk:

L̂overall(t) := P̂{|H(X)| > 1}︸ ︷︷ ︸
Chance-ambiguity

+λ(r̂(H)− r∗)2+︸ ︷︷ ︸
Overall risk penalty

(11)

Setting all thresholds to the same gives the best trade-off
when the base classifier is accurate, but we do not impose
this prior knowledge. Therefore, an inferior search could find
bad local optima/trade-offs for SCRIB because it picks K
different thresholds. We repeat the experiment 20 times, each
time randomly re-splitting unseen data evenly into validation
and test sets. For ISRUC/SleepEDF/ECG, data for the same
recording are always in the same set. λ is set to 104 like
before.

Evaluation Metric: We will plot accuracy (1− risk) as a
function of coverage / chance-ambiguity and compute the
area under the curve (AUC) for SGR and SCRIB, a common
evaluation metric in classification with rejection literature.
When the model output is the true conditional probability,
using the same threshold t for all classes is theoretically
optimal. As a result, we expect the SGR curve to be slightly
above SCRIB for the Synthetic data (i.e., lower ambiguity
with the same risk).

Results are presented in Table 4 and Figure 5. In general,
SCRIB is on par with or better than SGR in our benchmark
datasets. Although SGR is the theoretical optimal on the
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Figure 5: Accuracy-Ambiguity (reject rate) curve when we
use different methods to control the overall risk. SCRIB
achieves similar or higher accuracy at the same level of am-
biguity as SGR and its variant.

AUC (1e-2) SGR SGR+Dropout SCRIB

Synthetic 90.12±0.43 N/A 89.89±0.43
Xray 89.39±0.54 N/A 89.32±0.56
ISRUC 87.55±0.71 88.60±0.56 90.77±0.74
SleepEDF 96.50±0.60 96.48±0.51 96.62±0.65
ECG 77.03±2.13 N/A 82.55±0.67

Table 4: Mean and standard deviation of AUC of the accuracy-
ambiguity curve for different methods (n = 20 experiments).
Statistically significant differences (at p=0.01) are bolded.
AUC of SCRIB is either comparable with SGR or higher.

Synthetic data, the performance difference between SCRIB
and SGR is small. This is also the case for Xray, but for
the rest of the data, we see that SCRIB has the best trade-
off10. SGR+Dropout is comparable with SGR. On ECG, the
confidence given by MCDropout is negatively correlated with
accuracy, which prevents SGR from controlling the overall
risk, so we omit those results11.

6 Conclusion
In this paper, we present SCRIB, the first method for classifi-
cation with rejection with class-specific risk controls. SCRIB
provides a simple, effective and efficient way to construct
set-classifiers for this task by choosing multiple thresholds
for the base classifier’s output. We demonstrated how overall
risk control leads to the issue of unbalanced risks for differ-
ent classes. Then, we showed that SCRIB can control the
class-specific risks close to the targets on several medical
datasets. Since this is a new and important new task, we
also see a lot of potential research directions, examples of
which include finding more efficient optimization method or
alternative parameterization of the rejection criteria that is
still theoretically sound. We believe that, as the first method
in controlling class-specific risk in classification with rejec-
tion, SCRIB has potential applications to other fields where
class-specific risks matter as well.

10This was also observed in (Fumera, Roli, and Giacinto 2000)
and could happen if the base classifier has biases. But the focus of
this experiment is that our search algorithm finds good local optima.

11There is no curve because it can never find a threshold such
that data above that threshold have a low risk. Similar phenomena
have been noted before (Jiang et al. 2018)
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