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Abstract

Prediction using the ground truth sounds like an oxymoron
in machine learning. However, such an unrealistic setting
was used in hundreds, if not thousands of papers in the area
of finding graph representations. To evaluate the multi-label
problem of node classification by using the obtained repre-
sentations, many works assume that the number of labels of
each test instance is known in the prediction stage. In prac-
tice such ground truth information is rarely available, but we
point out that such an inappropriate setting is now ubiqui-
tous in this research area. We detailedly investigate why the
situation occurs. Our analysis indicates that with unrealistic
information, the performance is likely over-estimated. To see
why suitable predictions were not used, we identify difficul-
ties in applying some multi-label techniques. For the use in
future studies, we propose simple and effective settings with-
out using practically unknown information. Finally, we take
this chance to compare major graph representation learning
methods on multi-label node classification.

1 Introduction
Recently unsupervised representation learning over graphs
has been an important research area. One of the primary
goals is to find embedding vectors as feature representations
of graph nodes. Many effective techniques (e.g., Perozzi,
Al-Rfou, and Skiena 2014; Tang et al. 2015; Grover and
Leskovec 2016) have been developed and widely applied.
This research area is very active as can be seen from the tens
of thousands of related papers.

The obtained embedding vectors can be used in many
downstream tasks, an important one being node classifica-
tion. Because each node may be associated with multiple
labels, this application falls into the category of multi-label
problems in machine learning. In this study, we point out
that in many (if not most) papers using node classification
to evaluate the quality of embedding vectors, an unrealistic
setting was adopted for prediction and evaluation. Specifi-
cally, in the prediction stage, the number of labels of each
test instance is assumed to be known. Then according to de-
cision values, this number of top-ranked labels is considered
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to be associated with the instance. Because information on
the number of labels is usually not available in practice, this
setting violates the machine learning principle that ground-
truth information should not be used in the prediction stage.
Unfortunately, after surveying numerous papers, we find that
this inappropriate setting is so ubiquitous that many started
thinking it is a standard and valid one.

While the research community should move to use appro-
priate settings, some detailed investigation is needed first.
In this work, we aim to do so by answering the following
research questions.
• Knowing this unrealistic setting has been commonly

used, how serious is the situation and why does it occur?
To confirm the seriousness of the situation, we identify
a long list of papers that have used the unrealistic pre-
dictions. Our analysis then indicates that with unrealis-
tic information, the performance is likely over-estimated.
Further, while the setting clearly cheats, it roughly works
for some node classification problems that are close to a
multi-class one with many single-labeled instances.

• What are suitable settings without using unknown infor-
mation? Are there practical difficulties for researchers to
apply them?
After explaining that multi-label algorithms and/or tools
may not be readily available, we suggest pragmatic solu-
tions for future studies. Experimental comparisons with
the unrealistic setting show that we can effectively opti-
mize some commonly used metrics such as Macro-F1.

• Because of the use of unrealistic predictions, past com-
parisons on methods to generate embedding vectors may
need to be re-examined. Can we give comparisons under
appropriate multi-label predictions?
By using suitable prediction settings, our results give new
insights into comparing influential methods on represen-
tation learning.

This paper is organized as follows. Sections 2-3 address
the first research question, while Sections 4 and 5 address
the second and the third research questions, respectively. Fi-
nally, Section 6 concludes this work. Programs and supple-
mentary materials are available at https://www.csie.ntu.edu.
tw/∼cjlin/papers/multilabel-embedding/
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2 Unrealistic Predictions in Past Works
After finding the embedding vectors, past studies on repre-
sentation learning experiment with various applications. An
important downstream task is node classification, which is
often a multi-label classification problem.

In machine learning, multi-label classification is a well-
developed area with many available training methods. The
most used one may be the simple one-versus-rest setting,
also known as binary relevance. This method has been
adopted by most works on representation learning. The main
idea is to train a binary classification problem for each la-
bel on data with/without that label. The binary optimization
problem on label-feature pairs (yi,xi), where yi = ±1 and
i = 1, ..., # training instances, takes the following form.

min
www

1

2
wwwTwww + C

∑
i
ξ(yiwww

Txxxi), (1)

where ξ(·) is the loss function, wwwTwww/2 is the regulariza-
tion, and C is the regularization parameter.1 Now embed-
ding vectors xxxi, ∀i are available and fixed throughout all
binary problems. Then for each label, the construction of
problem (1) is simply by assigning

yi =

{
1, if xi is associated with the label,
−1, otherwise.

Because representation learning aims to get a low-
dimensional but informative vector, a linear classifier is of-
ten sufficient in the downstream task. For the loss function,
logistic regression is usually considered, and many use the
software LIBLINEAR (Fan et al. 2008) to solve (1).

To check the performance after the training process, we
find that hundreds, if not thousands of papers2 in this area
used the following procedure.

• Prediction stage: for each test instance, assume

the number of labels of this instance is known.

Predict this number of labels by selecting those with the
largest decision values from all binary models.

• Evaluation stage: many works report Micro-F1 and
Macro-F1.

Clearly, this setting violates the principle that in the predic-
tion stage, ground-truth information should not be used. The
reason is obvious that in the practical model deployment,
such information is rarely available.

In particular, some influential works with thousands of ci-
tations (e.g., Perozzi, Al-Rfou, and Skiena 2014; Tang et al.
2015) employed such unrealistic predictions, and many sub-
sequent works followed. The practice is now ubiquitous and
here we quote the descriptions in some papers.

• Chanpuriya and Musco (2020): “As in Perozzi, Al-Rfou,
and Skiena (2014) and Qiu et al. (2018), we assume that
the number of labels for each test example is given.”

1In some situations a bias term is considered, so wwwTxxxi is re-
placed by wwwTxxxi + b.

2See a long list compiled in supplementary materials.

• Schlötterer et al. (2019): “we first obtain the number of
actual labels to predict for each sample from the test set.
... This is a common choice in the evaluation setup of the
reproduced methods.”

Interestingly, we find that such unrealistic predictions were
used long before the many recent studies on representation
learning. An example is as follows.
• Tang and Liu (2009): “we assume the number of labels of

unobserved nodes is already known and check the match
of the top-ranking labels with the truth.”3

Our discussion shows how an inappropriate setting can even-
tually propagate to an entire research area. Some works did
express concerns about the setting. For example,
• Faerman et al. (2018): “Precisely, this method uses the

actual number of labels k each test instance has. ... In
real world applications, it is fairly uncommon that users
have such knowledge in advance.”4

• Liu and Kim (2018): “we note that at the prediction stage
previous approaches often employs information that is
typically unknown. Precisely, they use the actual num-
ber of labels m each testing node has (Perozzi, Al-Rfou,
and Skiena 2014; Qiu et al. 2018). ... However, in real-
world situations it is fairly uncommon to have such prior
knowledge of m.”

To be realistic, Faerman et al. (2018); Liu and Kim (2018)
predict labels by checking the sign of decision values.5 We
name this method and give its details as follows.
• one-vs-rest-basic: for a test instance x,

wwwTxxx

{
> 0

≤ 0
⇒
{
xxx predicted to have the label,
otherwise.

(2)

Their resulting Macro-F1 and Micro-F1 are much lower than
works that have used unknown information.

If so many works consider an unrealistic setting for pre-
dictions, they probably have reasons for doing so. Some pa-
pers explain the difficulties that lead to their assumption of
knowing the number of labels.
• Li, Zhu, and Zhang (2016): “As the datasets are not only

multi-class but also multi-label, we usually need a thresh-
olding method to test the results. But literature gives
a negative opinion of arbitrarily choosing thresholding
methods because of the considerably different perfor-
mances. To avoid this, we assume that the number of the
labels is already known in all the test processes.”

• Qiu et al. (2018): “To avoid the thresholding effect (Tang,
Rajan, and Narayanan 2009), we assume that the num-
ber of labels for test data is given (Perozzi, Al-Rfou, and
Skiena 2014; Tang, Rajan, and Narayanan 2009).”
3Tang and Liu (2009) stated that “Such a scheme has been

adopted for other multi-label evaluation works (Liu, Jin, and Yang
2006)”. However, we found no evidence that Liu, Jin, and Yang
(2006) assumed that the number of labels is known.

4See the version at https://arxiv.org/abs/1710.06520
5More precisely, if logistic regression is used, they check if the

probability is greater than 0.5 or not. This is the same as checking
the decision value in (2).
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To see what is meant by the thresholding effect and the diffi-
culties it imposes, we give a simple illustration. For a data set
BlogCatalog (details in Section 5.1), we apply the one-vs-
rest training on embedding vectors generated by the method
DeepWalk (Perozzi, Al-Rfou, and Skiena 2014). Then the
unrealistic prediction of knowing the number of labels in
each test instance is performed. Results (Micro-F1 = 0.41,
Macro-F1 = 0.27) are similar to those reported in some past
works.

In contrast, when using the one-vs-rest-basic setting as
in Faerman et al. (2018); Liu and Kim (2018), results are
very poor (Micro-F1 = 0.33 and Macro-F1 = 0.19). We see
that many instances are predicted to have no label at all.
A probable cause of this situation is the class imbalance
of each binary classification problem. That is, in problem
(1), few training instances have yi = 1, and so the deci-
sion function tends to predict everything as negative. Many
multi-label techniques are available to address such difficul-
ties, and an important one is the thresholding method (e.g.,
Yang 2001; Fan and Lin 2007). Via a constant ∆ to adjust
the decision value, in (2) we can replace

wwwTxxx with wwwTxxx+ ∆. (3)

A positive ∆ can make the binary problem produce more
positive predictions. Usually ∆ is decided by a cross-
validation (CV) procedure. Because each label needs one
∆, the overall procedure is more complicated than one-
vs-rest-basic. Moreover, the training time is significantly
longer. Therefore, past works may not consider such a tech-
nique.

3 Analysis of the Unrealistic Predictions
We analyze the effect of using the unrealistic predictions. To
facilitate the discussion, in this section we consider

i : index of test instances, and j : index of labels.

We further assume that for test instance i,

Ki : true number of labels,

K̂i : predicted number of labels.
(4)

In multi-label classification, two types of evaluation met-
rics are commonly used (Wu and Zhou 2017).
• Ranking measures: examples include precision@K,

nDCG@K, ranking loss, etc. For each test instance, all
we need to predict is a ranked list of labels.

• Classification measures: examples include Hamming
loss, Micro-F1, Macro-F1, Instance-F1, etc. For each test
instance, several labels are chosen as the predictions.

Among these metrics, Macro-F1 and Micro-F1 are used
in most works on representation learning. We first define
Macro-F1, which is the average of F1 over labels:

Macro-F1 = Label-F1 =

∑
F1 of label j
#labels

, (5)

F1 of label j =
2× TPj

TPj + FPj + TPj + FNj
.

Note that TPj , FPj , and FNj are respectively the number
of true positives, false positives and false negatives on the
prediction of a given label j. Then Micro-F1 is the F1 by
considering all instances (or all labels) together:

Micro-F1 =
2× TP sum

TP sum + FP sum + TP sum + FN sum
, (6)

where “sum” indicates the accumulation of prediction re-
sults over all binary problems. Next we prove an upper
bound of Micro-F1.
Theorem 1. With the definition in (4), we have

Micro-F1 ≤
2×

∑l
i=1 min

(
K̂i,Ki

)∑l
i=1

(
Ki + K̂i

) ≤ 1, (7)

where l is the number of test instances. Moreover, when
K̂i = Ki, the bound in (7) achieves the maximum (i.e., 1).

The proof is in supplementary materials. For the upper
bound of Micro-F1 proved in Theorem 1, we see that know-
ingKi “pushes” the bound to its maximum. If a larger upper
bound leads to a larger Micro-F1, then Theorem 1 indicates
the advantage of knowing Ki.

While Theorem 1 proves only an upper bound, by some
assumption on the decision values,6 we can exactly obtain
Micro-F1 for analysis. The following theorem shows that
if all binary models are good enough, the upper bound in
(7) is attained. Further, if Ki is known, we achieve the best
possible Micro-F1 = 1.
Theorem 2. Assume for each test instance i, decision values
are properly ranked so that

decision values of its Ki labels
> decision values of other labels.

(8)

Under specified K̂i, ∀ i, the best Micro-F1 is obtained by
predicting labels with the largest decision values. Moreover,
the resulting Micro-F1 is the same as the upper bound in (7).
That is,

Micro-F1 =
2×

∑l
i=1 min

(
K̂i,Ki

)∑l
i=1

(
Ki + K̂i

) . (9)

If K̂i = Ki, the best possible Micro-F1 = 1 is attained.
The proof is in supplementary materials. Theorem 2 in-

dicates that even if the classifier can output properly ranked
decision values, without the true number of labels Ki, opti-
mal Micro-F1 still may not be obtained. Therefore, usingKi

gives predictions an inappropriate advantage and may cause
the performance to be over-estimated as a result.

Next, we investigate why unrealistic predictions were
commonly considered and point out several possible reasons
in the current and subsequent sections. The first one is the re-
lation to multi-class problems. Some popular node classifi-
cation benchmarks are close to multi-class problems because

6Wu and Zhou (2017) also assumed (8) for analyzing Micro-
F1. However, their results are not suited for our use here because
of various reasons. In particular, they made a strong assumption
that Micro-F1 is equal to Instance-F1.
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many of their instances are single-labeled with Ki = 1.
See the data statistics in Table 1. For multi-class problems,
the number of labels (i.e., one) for each instance is known.
Thus in prediction, we simply find the most probable label.
In this situation, Theorem 3 shows that the accuracy com-
monly used for evaluating multi-class problems is the same
as Micro-F1. The proof is in supplementary materials.

Theorem 3. For multi-class problems,

accuracy = Micro-F1.

Therefore, using Micro-F1 with prior knowledge on the
number of labels is entirely valid for multi-class classifica-
tion. Some past studies may conveniently but erroneously
extend the setting to multi-label problems.

Based on the findings so far, in Section 3.1 we explain
that the unrealistic prediction roughly works if a multi-label
problem contains mostly single-labeled instances.

3.1 Predicting at Least One Label per Instance
The discussion in Theorem 3 leads to an interesting issue
on whether in multi-label classification, at least one label
should be predicted for each instance. In contrast to multi-
class classification, for multi-label scenarios, we may pre-
dict that an instance is associated with no label. For the sam-
ple experiment on one-vs-rest-basic in Section 2, we men-
tioned that this “no label” situation occurs on many test in-
stances and results in poor performance. A possible remedy
by tweaking the simple one-vs-rest-basic method is:

• one-vs-rest-no-empty: The method is the same as one-
vs-rest-basic, except that for instances predicted to have
no label, we predict the label with the highest decision
value.

For the example considered in Section 2, this new set-
ting greatly improves the result to 0.39 Micro-F1 and 0.24
Macro-F1. If we agree that each instance is associated with
at least a label (i.e., Ki ≥ 1), then the method one-vs-rest-
no-empty does not take any unknown information in the
prediction stage. In this regard, the method of unrealistic
predictions is probably usable for single-labeled instances.
However, it is definitely inappropriate for multi-labeled in-
stances. For some benchmark sets in Section 5, the majority
of instances are multi-labeled. Thus there is a need to de-
velop effective prediction methods without using unrealistic
information. This subject will be discussed in Section 4.

4 Appropriate Methods for Training and
Prediction

Multi-label classification is a well-developed area, so natu-
rally we may criticize researchers in representation learning
for not applying suitable techniques. However, this criticism
may not be entirely fair: what if algorithms and/or tools on
the multi-label side are not quite ready for them? In this sec-
tion, we discuss the difficulties faced by researchers on rep-
resentation learning and explain why simple and effective
settings are hard to obtain.

The first challenge faced by those handling multi-label
problems is that they must choose from a myriad of methods

according to the properties of their applications. Typically
two considerations are

• number of labels, and
• evaluation metrics.

For example, some problems have extremely many labels,
and the corresponding research area is called “eXtreme
Multi-label Learning (XML);” see the website (Bhatia et al.
2016) containing many such sets. For this type of problems
it is impossible to train and store the many binary models
used by the one-vs-rest setting, so advanced methods that
organize labels into a tree structure are needed (e.g., You
et al. 2019; Khandagale, Xiao, and Babbar 2020; Chang
et al. 2021). With a huge number of tail labels (i.e., labels
that rarely occur), the resulting Macro-F1, which is the av-
erage F1 over all labels, is often too low to be used. In prac-
tice, a short ranked list is considered in the prediction stage,
so precision@K or nDCG@K commonly serve as the eval-
uation metrics.

Nevertheless, the focus now is on node classification
problems in past studies on representation learning. The
number of labels is relatively small, and some even contain
many single-labeled instances. From the predominant use of
Micro-F1 and Macro-F1 in past works it seems that a subset
of labels instead of a ranked list is needed for node classifi-
cation. Therefore, our considerations are narrowed to

• methods that are designed for problems without too many
labels, and

• methods that can predict a subset of labels (instead of just
ranks) and achieve a high classification measure such as
Micro-F1, Macro-F1, and Instance-F1.

In addition to one-vs-rest, other methods are applicable
for our scenario (e.g., Tai and Lin 2012; Read et al. 2011;
Read, Pfahringer, and Holmes 2008; Tsoumakas and Vla-
havas 2007). Because one-vs-rest does not consider label
correlation, this aspect is the focus of some methods. For
simplicity we stick with the one-vs-rest setting here and pri-
oritize achieving good Macro-F1. Macro-F1 in (5) is the
average of F1 results over labels, so under the one-vs-rest
framework, all we need is to design a method that can give
satisfactory F1 on each single label. In contrast, optimizing
Micro-F1 is more difficult because it couples all labels and
all instances together; see the definition in (6).7 Therefore,
we mainly focus on techniques to optimize Macro-F1 in the
following sections.

4.1 Extending One-vs-rest to Incorporate
Parameter Selection

If we examine the one-vs-rest-basic method more closely,
it is easy to see that a crucial process is missing – parameter
selection of the regularization parameter C. While the im-
portance of parameter selection is well recognized, this step
is easily forgotten in many places (Liu et al. 2021). For ex-
ample, out of the works that criticized the unrealistic setting

7See, for example, “... is the most challenging measure, since
it does not decompose over instances nor over labels.” in Pillai,
Fumera, and Roli (2017)
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(see Section 2), Faerman et al. (2018) used a fixed regular-
ization parameter for comparing with past works, but Liu
and Kim (2018) conducted cross-validation in their one-vs-
rest implementation. Therefore, a more appropriate baseline
should be the following extension of one-vs-rest-basic:

• one-vs-rest-basic-C: For each binary problem, cross-
validation is performed on the training data by checking
a grid of C values. The one yielding the best F1 score is
chosen to train the binary model of the label for future
prediction.

CV is so standard in machine learning that the above pro-
cedure seems to be extremely simple. Surprisingly, several
issues may hamper its wide use.

• We learned in Section 2 that some binary problems may
not predict any positives in the prediction process. Thus
cross-validation F1 may be zero under all C values. In
this situation, which C should we choose?

• To improve robustness, should the same splits of data for
CV be used throughout all C values?

• If C is slightly changed from one value to another, so-
lutions of the two binary optimization problems may be
similar. Thus a warm-start implementation of using the
solution of one problem as the initialization for training
the other can effectively reduce the running time. How-
ever, the implementation, together with CV, can be com-
plicated.

The discussion above shows that even for a setting as simple
as one-vs-rest-basic-C, off-the-shelf implementations may
not be directly available to users.8

4.2 Thresholding Techniques
While the basic concept of thresholding has been discussed
in Section 2, the actual procedure is more complicated and
several variants exist (Yang 2001). From early works such
as Lewis et al. (1996); Yang (1999), a natural idea is to use
decision values of validation data to decide ∆ in (3). For
each label, the procedure is as follows.

• For each CV fold, sort validation decision values.
Sequentially assign ∆ as the midpoint of two adjacent
decision values and select the one achieving the best F1
as the threshold of the current fold.

• Solve a binary problem (1) using all training data. The
average of ∆ values over all folds is then used to adjust
the decision function.

However, Yang (2001) showed that this setting easily over-
fits data if the binary problem is unbalanced. Consequently,
the same author proposed the fbr heuristic to reduce the
overfitting problem. Specifically, if the F1 of a label is
smaller than a pre-defined fbr value, then the threshold is
set to the largest decision value of the validation data. This
method requires a complicated two-level CV procedure. The

8LIBLINEAR supports warm-start and same CV folds for pa-
rameter selection after their work in Chu et al. (2015). However,
the purpose is to optimize CV accuracy. Our understanding is that
an extension to check F1 scores is available only very recently.

outer level uses CV to check that among a list of given fbr
candidates, which one leads to the best F1. The inner CV
checks if the validation F1 is better than the given fbr.

The above fbr heuristic was further studied in an influen-
tial paper (Lewis et al. 2004). An implementation from Fan
and Lin (2007) as a LIBLINEAR extension has long been
publicly available. Interestingly, our survey seems to indi-
cate that no one in the field of representation learning ever
tried it. One reason may be that the procedure is compli-
cated. If we also select the parameter C, then a cumbersome
outer-level CV to sweep some (C, fbr) pairs is needed. Fur-
thermore, it is difficult to use the same data split, especially
in the inner CV. Another reason may be that as a heuris-
tic, people are not confident about the method. For example,
Tang and Liu (2009) stated that because “thresholding can
affect the final prediction performance drastically (Fan and
Lin 2007; Tang, Rajan, and Narayanan 2009),” they decided
that “For evaluation purpose, we assume the number of la-
bels of unobserved nodes is already known.”

4.3 Cost-sensitive Learning
We learned in Section 2 that because of class imbalance,
one-vs-rest-basic suffers from the issue of predicting very
few positives. While one remedy is the thresholding tech-
nique to adjust the decision function, another possibility
is to conduct cost-sensitive learning. Namely, by using a
higher loss on positive training instances (usually through
a larger regularization parameter), the resulting model may
predict more positives. For example, Parambath, Usunier,
and Grandvalet (2014) give some theoretical support show-
ing that the F1 score can be optimized through cost-sensitive
learning. For each label, they extend the optimization prob-
lem (1) to

min
www

1

2
wwwTwww+C

(2− t)
t

∑
i:yi=1

ξ(yiwww
Txxxi) +C

∑
i:yi=−1

ξ(yiwww
Txxxi),

where t ∈ (0, 1]. Then we can check cross-validation F1 on
a grid of (C, t) pairs. The best pair is then applied to the
whole training set to get the final decision function of the
corresponding label.

An advantage over the thresholding method (fbr heuris-
tic) is that only a one-level CV is needed. However, if many
(C, t) pairs are checked, the running time can be long. In
Section 5.2 we discuss two implementations for this ap-
proach.

5 Experiments
In this section we experiment with training/prediction meth-
ods discussed in Sections 2-4 on popular node classifica-
tion benchmarks. Embedding vectors are generated by some
well-known methods and their quality is assessed.

5.1 Experimental Settings
We consider the following popular node classification prob-
lems:

BlogCatalog, Flickr, YouTube, PPI.
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Data #instances #labels
avg. #labels
per instancesingle-labeled multi-labeled

BlogCatalog 7,460 2,852 39 1.40
Flickr 62,521 17,992 195 1.34

YouTube 22,374 9,329 46 1.60
PPI 85 54,873 121 38.26

Table 1: Data statistics.

From data statistics in Table 1, some have many single-
labeled instances, but some have very few. We generate em-
bedding vectors by the following influential works.
• DeepWalk (Perozzi, Al-Rfou, and Skiena 2014).
• Node2vec (Grover and Leskovec 2016).
• LINE (Tang et al. 2015).

Since we consider representation learning independent of
the downstream task, the embedding-vector generation is
unsupervised. As such, deciding the parameters for each
method can be tricky. We reviewed many past works and
selected the most used values.

In past studies, Node2vec often had two of its parameters
p, q selected based on the results of the downstream task.
This procedure is in effect a form of supervised learning.
Therefore, in our experiments, the parameters p, q are fixed
to the same values for all data sets.

For training each binary problem, logistic regression is
solved by the software LIBLINEAR (Fan et al. 2008). We
follow many existing works to randomly split each set to
80% for training and 20% for testing. This process is re-
peated five times and the average score is presented. The
same training/testing split is used across the different graph
representations. More details on experimental settings are
given in the supplementary materials.

5.2 Multi-label Training and Prediction Methods
for Comparisons

We consider the following methods. Unless specified, for bi-
nary problems (1), we mimic many past works to set C = 1.
• unrealistic: After the one-vs-rest training, the unrealistic

prediction of knowing the number of labels is applied.
• one-vs-rest-basic: After the one-vs-rest training, each

binary classifier predicts labels that have positive deci-
sion values.

• one-vs-rest-basic-C: The method, described in Sec-
tion 4.1, selects the parameter C by cross-validation. We
use a LIBLINEAR parameter-selection functionality that
checks dozens of automatically selected C values. It ap-
plies a warm-start technique to save the running time. An
issue mentioned in Section 4.1 is that CV F1=0 for every
C may occur. We checked a few ways to choose C in this
situation, but find results do not differ much.

• one-vs-rest-no-empty: This method slightly extends
one-vs-rest-basic so that if all decision values of a test
instance are negative, then we predict the label with the
highest decision value; see Section 3.1.

• thresholding: The method was described in Section 4.2.

For the approach in Section 4.3 we consider two variants.
• cost-sensitive: A dense grid of (C, t) is used. The range

of t is {0.1, 0.2, . . . , 1}. For each t, we follow one-vs-
rest-basic-C to use a LIBLINEAR functionality that
checks dozens of automatically selected C values. In this
variant, we do not ensure that CV folds are the same
across different t.

• cost-sensitive-simple: We check fewer parameter set-
tings by considering t = {1/7, 2/7, . . . , 1} and C = 1.
We ensure the same data split is applied on the CV for
every pair. The implementation is relatively simple if all
parameter pairs are independently trained without time-
saving techniques such as warm-start.

Similar to one-vs-rest-basic, for thresholding or cost-
sensitive approaches, an instance may be predicted to have
no labels. Therefore, we check the following extension.
• cost-sensitive-no-empty: This method extends cost-

sensitive by the same way from one-vs-rest-basic to
one-vs-rest-no-empty.

5.3 Results and Analysis
In Table 2 we compare the unrealistic method and represen-
tative methods in Section 4. Other variants are investigated
in Table 3 later. Due to the space limit, we omit the YouTube
data set, though results follow similar trends. Observations
from Table 2 are as follows.
• As expected, unrealistic is the best in nearly all situa-

tions. It significantly outperforms others on Micro-F1, a
situation confirming not only the analysis in Theorem 3
but also that unrealistic may over-estimate performance.

• In Section 2 we showed an example that one-vs-rest-
basic performs poorly because of the thresholding issue.
Even with the parameter selection, one-vs-rest-basic-C
still suffers from the same issue and performs the worst.

• Both thresholding and cost-sensitive effectively opti-
mize Macro-F1 and achieve similar results to unrealis-
tic. Despite Micro-F1 not being the optimized metric, the
improvement over one-vs-rest-basic-C is still signifi-
cant.

In Table 3 we study the variations of one-vs-rest-basic
and cost-sensitive. We only present the results of embed-
ding vectors generated by DeepWalk, while complete results
with similar trends are in supplementary materials. Some ob-
servations from Table 3 are as follows.
• Even with parameter selection, one-vs-rest-basic-C is

only marginally better than one-vs-rest-basic. This re-
sult is possible because for binary logistic regression, it is
proved that afterC is sufficiently large, the decision func-
tion is about the same (Theorem 3 in Chu et al. 2015).
The result shows that conducting parameter selection is
not enough to overcome the thresholding issue.

• Following the analysis in Section 3.1, one-vs-rest-no-
empty significantly improves upon one-vs-rest-basic
for problems that have many single-labeled instances.
However, it has no visible effect on the set PPI, in which
most instances are multi-labeled.
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Training and BlogCatalog Flickr PPI
prediction methods DeepWalk Node2vec LINE DeepWalk Node2vec LINE DeepWalk Node2vec LINE

Macro-F1 (avg. of five; std. in supplementary)
unrealistic 0.276 0.294 0.239 0.304 0.306 0.258 0.483 0.442 0.504
one-vs-rest-basic-C 0.208 0.220 0.195 0.209 0.208 0.188 0.183 0.150 0.243
thresholding 0.269 0.283 0.221 0.299 0.302 0.264 0.482 0.457 0.498
cost-sensitive 0.270 0.283 0.250 0.297 0.301 0.279 0.482 0.461 0.495

Micro-F1 (avg. of five; std. in supplementary)
unrealistic 0.417 0.426 0.406 0.416 0.420 0.409 0.641 0.626 0.647
one-vs-rest-basic-C 0.344 0.355 0.335 0.291 0.296 0.289 0.458 0.441 0.489
thresholding 0.390 0.396 0.353 0.370 0.376 0.364 0.535 0.482 0.553
cost-sensitive 0.366 0.371 0.341 0.352 0.358 0.354 0.533 0.495 0.548

Table 2: Results of representative training/prediction methods applied to various embedding vectors. Each value is the average
of five 80/20 training/testing splits. The score of the best training/prediction method (excluding unrealistic) is bold-faced.

Training and prediction BlogCatalog Flickr YouTube PPI
methods on DeepWalk vectors Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1
one-vs-rest-basic 0.190 0.334 0.195 0.283 0.213 0.287 0.181 0.449
one-vs-rest-basic-C 0.208 0.344 0.209 0.291 0.217 0.290 0.183 0.458
one-vs-rest-no-empty 0.241 0.390 0.256 0.377 0.263 0.382 0.181 0.449
cost-sensitive 0.270 0.366 0.297 0.352 0.360 0.374 0.482 0.533
cost-sensitive-no-empty 0.268 0.351 0.298 0.343 0.359 0.372 0.482 0.533
cost-sensitive-simple 0.266 0.351 0.294 0.355 0.349 0.365 0.481 0.529

Table 3: Ablation study on variations of one-vs-rest-basic and cost-sensitive applied to embedding vectors generated by
DeepWalk. Each value is the average of five 80/20 training/testing splits. The best training/prediction method is bold-faced.

• However, cost-sensitive-no-empty shows no such im-
provement over cost-sensitive because cost-sensitive
mitigates the issue of predicting no labels for a large
portion of instances. Further, for the remaining instances
with no predicted labels, the label with the highest de-
cision value may be an incorrect one, resulting in worse
Micro-F1 in some cases. This experiment shows the im-
portance to have techniques that allow empty predictions.

• cost-sensitive-simple is generally competitive with
cost-sensitive and thresholding.

An issue raised in Section 4 is whether the same split
of data (i.e., CV folds) should be used in the multiple CV
procedures ran by, for example, cost-sensitive-simple. We
have conducted some analysis, but leave details in supple-
mentary materials due to the space limitation.

Regarding methods for representation learning, we have
the following observations.
• Our results of the unrealistic method are close to those in

the recent comparative study (Khosla, Setty, and Anand
2021). This outcome supports the validity of our experi-
ments.

• Among the three methods to generate representations,
there is no clear winner, indicating that the selection may
be application dependent. DeepWalk and Node2vec are
closer to each other because they are both based on ran-
dom walks. In contrast, LINE is based on edge modeling.

• DeepWalk is a special case of Node2vec under some pa-
rameter values, though here Node2vec is generated by
other commonly suggested values. Because DeepWalk

is generally competitive and does not require the selec-
tion of some Node2vec’s parameters, DeepWalk may be
a better practical choice.

• The relative difference between the three representation
learning methods differs from what unrealistic suggests.
Even though in our comparisons such effects are not
large enough to change their relative ranking, an unfair
comparison diminishes the utility of benchmark results.

6 Conclusions
We summarize the results on training/prediction methods.
The two methods thresholding and cost-sensitive are ef-
fective and can be applied in future studies. They are robust
without the concerns mentioned in some papers. Further, if
an easy implementation is favored, then the simple yet com-
petitive cost-sensitive-simple can be a pragmatic choice.
The implementations are available in an easy-to-use package

https://github.com/ASUS-AICS/LibMultiLabel
Thus, researchers in the area of representation learning can
easily apply appropriate prediction settings.

In the well-developed world of machine learning, it may
be hard to believe that unrealistic predictions were used in
almost an entire research area. However, it is not the time to
blame anyone. Instead, the challenge is to ensure that appro-
priate settings are used in the future. In this work, we analyze
how and why unrealistic predictions were used in the past.
We then discuss suitable replacements. Through our inves-
tigation hopefully unrealistic predictions will no longer be
used.
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