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Abstract

Spatio-temporal forecasting is challenging attributing to the
high nonlinearity in temporal dynamics as well as complex
location-characterized patterns in spatial domains, especially
in fields like weather forecasting. Graph convolutions are usu-
ally used for modeling the spatial dependency in meteorology
to handle the irregular distribution of sensors’ spatial loca-
tion. In this work, a novel graph-based convolution for im-
itating the meteorological flows is proposed to capture the
local spatial patterns. Based on the assumption of smooth-
ness of location-characterized patterns, we propose condi-
tional local convolution whose shared kernel on nodes’ lo-
cal space is approximated by feedforward networks, with lo-
cal representations of coordinate obtained by horizon maps
into cylindrical-tangent space as its input. The established
united standard of local coordinate system preserves the ori-
entation on geography. We further propose the distance and
orientation scaling terms to reduce the impacts of irregular
spatial distribution. The convolution is embedded in a Re-
current Neural Network architecture to model the temporal
dynamics, leading to the Conditional Local Convolution Re-
current Network (CLCRN). Our model is evaluated on real-
world weather benchmark datasets, achieving state-of-the-art
performance with obvious improvements. We conduct further
analysis on local pattern visualization, model’s framework
choice, advantages of horizon maps and etc. The source code
is available at https://github.com/BIRD-TAO/CLCRN.

1. Introduction
In classical statistical learning, spatio-temporal forecasting
is usually regarded as a multi-variate time series problem,
and methods such as autoregressive integrated moving aver-
age (ARIMA) with its variants are proposed, but the station-
ary assumption is usually hard to satisfy. Recently, the rise
of deep learning approaches has attracted lots of attention.
For example, in traffic flow forecasting, Graph Neural Net-
works (GNNs) are regarded as superior solutions to model
spatial dependency by taking sensors as graph nodes (Yu,
Yin, and Zhu 2018; Li et al. 2018). Compared with great
progress in traffic forecasting, works focusing on meteorol-
ogy are scarce, while the need for weather forecasting is in-
creasing dramatically (Shi et al. 2015; Sønderby et al. 2020).
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In this work, our research attention is paid to spatio-temporal
meteorological forecasting tasks.

The task is challenging due to two main difficulties. First,
the irregular sampling of meteorological signals usually dis-
ables the classical Convolutional Neural Networks (CNNs)
which work well on regular mesh grid signals on Euclidean
domains such as 2-D planar images. Signals are usually ac-
quired from irregularly distributed sensors, and the mani-
folds from which signals are sampled are usually non-planar.
For example, sensors detecting temperature are located un-
evenly on land and ocean, which are not fixed on structured
mesh grids, and meteorological data are often spherical sig-
nals rather than planar ones. Second, the high temporal and
spatial dependency makes it hard to model the dynamics. For
instance, different landforms show totally distinct wind flow
or temperature transferring patterns in weather forecasting
tasks and extreme climate incidents like El Nino (Broad
2002) often cause non-stationarity for prediction.

GNNs yield effective and efficient performance for irreg-
ularly spatio-temporal forecasting, enabling to update node
representations by aggregating messages from their neigh-
bors, the process of which can be analogized to heat or wind
flow from localized areas on the earth surface. As discussed,
the meteorological flow may demonstrate totally variant pat-
terns in different local regions. Inspired by the analogy and
location-characterized patterns, we aim to establish a graph
convolution kernel, which varies in localized regions to ap-
proximate and imitate the true local meteorological patterns.

Therefore, we propose our conditional local kernel. We
embed it in a graph-convolution-based recurrent network,
for spatio-temporal meteorological forecasting. The con-
volution is performed on the local space of each node,
which is constructed considering both distance between
nodes and their relative orientation, with the kernel proposed
mainly based on the assumption: smoothness of location-
characterized patterns. In summary, our contributions are:

• Proposing a location-characterized kernel to capture and
imitate the meteorological local spatial patterns in its
message-passing process;

• Establishing the spatio-temporal model with the pro-
posed graph convolution which achieves state-of-the-art
performance in weather forecasting tasks;

• Conducting further analysis on learned local pattern visu-
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alization, framework choice, local space and map choice
and ablation.

2. Related Work
Spherical signal processing. The spatial signals in me-
teorology are usually projected on a sphere, e.g. earth sur-
face. Different from regular mesh grid samples on plane,
sampling space of spherical signals demonstrates different
manifold properties, which needs a specially designed con-
volution to capture the spatial pattern, such as multi-view-
projection-based 2-D CNN (Coors, Condurache, and Geiger
2018), 3-D mesh-based convolution (Jiang et al. 2019) and
graph-based spherical CNN (Perraudin et al. 2019). Further
proposed mesh-based convolutions have remarkable hard-
baked properties, such as in (Cohen et al. 2018) and (Esteves
et al. 2018) with equivariance, in spite of high computational
cost and requirements of mesh grid data. For signals on ir-
regular spatial distribution, graph-based neural networks are
usually employed, representing the nodes on sphere as nodes
of the established graph, with fast implementation and good
performance (Defferrard et al. 2020). Our method also pro-
cesses spherical signals with graph-based methods, and har-
nesses properties of sphere manifold, to model the local pat-
terns in meteorology.

Spatio-temporal graph neural networks. Graph neural
networks perform convolution based on the graph structure,
and yield effective representations by aggregating or diffus-
ing messages from or to neighborhoods (Niepert, Ahmed,
and Kutzkov 2016; Atwood and Towsley 2016; Kipf and
Welling 2017) or filter different frequency based on graph
Laplacian (Bruna et al. 2014; Defferrard, Bresson, and Van-
dergheynst 2017). After the rise of GNNs (Gilmer et al.
2017; Veličković et al. 2018; Wu et al. 2021), spatio-
temporal forecasting models are mostly graph-based neu-
ral networks thanks to their ability to learn representations
of spatial irregular distributed signals, such as STGCN (Yu,
Yin, and Zhu 2018) convoluting spatial signals by using
spectral filters for traffic forecasting, and DCRNN (Li et al.
2018) achieving tremendous improvements on the same task
by employing diffusion convolution on graphs. Despite the
inability of previous methods to adaptively model location-
characterized patterns, graph attention (Guo et al. 2019) is
employed in spatio-temporal model to learn the adjacency
relation among traffic sensors, and an adaptive graph recur-
rent model (Bai et al. 2020) is proposed to optimize differ-
ent local patterns according to higher-level node represen-
tations. Differing from the previous, the adaptively learned
local patterns in our method are hard-baked with property
of local smoothness of location-characterized patterns, thus
capable of capturing the meteorological flowing process.

3. Background
Problem setting. Given N correlated signals located on
the sphere manifold S2 at time t, we can represent the
signals as a (directed) graph G = (V, E ,A), where V is
a node set with V = {xSi = (xi,1, xi,2, xi,3) ∈ S2 :
i = 1, 2, . . . , N} meaning that it records the position of N
nodes, which satisfies ||xSi ||2 = 1. We denote positions of

nodes in Euclidean space by xE , and in sphere as xS . E is a
set of edges and A ∈ RN×N is the adjacency matrix which
can be asymmetric. The signals observed at time t of the
nodes on G are denoted by F (t) ∈ RN×D. For the forecast-
ing tasks, our goal is to learn a function P (·) for approxi-
mating the true mapping of historical T ′ observed signals to
the future T signals, that is

[F (t−T ′), . . . ,F (t);G]
P−→ [F (t+1), . . . ,F (t+T );G]. (1)

In the paper, for meteorological datasets which do not pro-
vide the adjacency matrix, we construct it by K-nearest
neighbors algorithm based on induced spherical distance of
their spatial location which will be discussed later.

Graph convolution neural networks. For notation sim-
plicity, we omit the supper-script (t) when discussing spa-
tial dependency. Denote the set of neighbors of center node
i by N (i) = {j : (i, j) ∈ E}, and note that (i, i) ∈ N (i).
In Graph Neural Networks, (W l, bl) is the weights and bias
parameters for layer l, and σ(·) is a non-lieanr activation
function. The message-passing rule concludes that at layer
l, representation of node i updates as

yli =
∑

j∈N (i)

ωi,jh
l−1
j ; (2)

hli = σ(yliW
l + bl), (3)

where hli is the representation of node i after l-th layer, with
h0
i = Fi, which is the observed graph signals on node i.

Denote the neighborhood coordinate set of center node i by
V(i) = {xSj : j ∈ N (i)}, and then Eq. 2 represents ag-
gregation of messages from neighbors, which can also be
regarded as the convolution operation on graph, which can
be written as

(Ω ?N (i) H
l−1)(xS

j ) =
∑

xS
j ∈V(i)

Ω(xS
j ;xS

i )H l−1(xS
j ), (4)

where ?N (i) means convolution on the i-th node’s neighbor-
hood, Ω : S2 × S2 → R is the convolution kernel, such that
Ω(xSj ,x

S
i ) = ωi,j , and H l−1 is a function mapping each

point on sphere to its feature vector in l-th representation
space.

Example 1. The convolutional kernel used in DCRNN (Li
et al. 2018) is

Ω(xSj ,x
S
i ) = exp(−d2(xSi ,x

S
j )/τ), (5)

where d(·, ·) is the distance between the two nodes, and τ is
a hyper-parameter to control the smoothness of the kernel.

To imitate the meteorological patterns, the value of convo-
lution kernel should be large for neighbors having great me-
teorological impacts on centers. For example, If there exists
heat flows from the south-east to the north-west, the kernel
should give more weights to the nodes from the south-east
when aggregating messages from neighbors. Using slight
abuse of terminology, we consider the convolution kernels
are equivalent to meteorological patterns in local regions.
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Sphere manifold. The signals are located on the earth sur-
face, which is regarded as a sphere, and thus we introduce
the notation of sphere manifold to further develop our con-
volution method. The M -D sphere manifold is denoted by
SM = {xS = (x1, x2, . . . , xM+1) ∈ RM+1 : ||xS || = 1}.
The convolution is usually operated on a plane, so we in-
troduce the local space, the M -D Euclidean space, as the
convolution domains.

Definition 1. Define the local space centered at point x as
some Euclidean space denoted by LxS

M , with x ∈ LxS
M ,

which is homeomorphic to the local region centered at x.
(Formal definition see Appendix A2.)

Example 2. The tangent space centered at point x is an ex-
ample of local space, denoted by TxSM = {v ∈ RM+1 :<
x,v >= 0}, where < ·, · > is the Euclidean inner product.

The geodesics and induced distance on sphere are im-
portant to both defining the neighborhood of a node, as well
as identifying the message-passing patterns. Intuitively, the
greater is the distance from one node to another, the fewer
messages should be aggregated from the node into another
in graph convolution.

Proposition 1. Let x ∈ SM , and u ∈ TxSM be unit-speed.
The unit-speed geodesics is γx→u(t) = x cos t + u sin t,
with γx→u(0) = x and γ̇x→u(0) = u. The intrinsic shortest
distance function between two points x,y ∈ SM is

dSM (x,y) = arccos(< x,y >). (6)

The distance function is usually called great-circle dis-
tance on sphere. In practice, the K-nearest neighbors algo-
rithm to construct the graph structure is conducted based on
spherical distance.

On the establishment of local space of each center node,
an isometric map Mx(·) : SM → LxS

M satisfying that
||Mx(y)|| = dSM (x,y) can be used to map neighbor nodes
on sphere into the local space.

Example 3. Logarithmic map is usually used to map the
neighbor node xj ∈ V(i) on sphere isometrically into
Txi

SM , which reads

logxi
(xj) = dSM (xi,xj)

Pxi(xj − xi)

||Pxi
(xj − xi)||

,

where Pxi
(x) = x

||x||− <
xi

||xi|| ,
x
||x|| >

xi

||xi|| is the normal-
ized projection operator.

After the neighbors of xi are mapped into local space of
the center nodes through the isometric maps, which reads
vj =Mxi(xj), the local coordinate system of each center
node is set up, through a transform mapping Πxi(vj) = xi

′

j

for each xj ∈ V(i). We call xi
′

j the relative position of vj in
the local coordinate system of the local space centered at xi.
As xi

′

j is always in the local space which is Euclidean, the
supper-script E is omitted. The mapping Πxi

(·) can be de-
termined by M orthogonal basis chosen in the local coordi-
nate system, i.e. {ξ1, ξ2, . . . , ξM}, which will be discussed
later in S2 scenario for meteorological application.

4. Proposed Method
4.1. Local Convolution on Sphere
Given a center node xEi ∈ R2, from the perspective of de-
fined graph convolution in Eq. 4, the convolution on planar
mesh grids such as pixels on images is written as

(Ω ?V(i) H)(xE
i ) =

∑
xE

Ω(xE ;xE
i )H(xE)δV(i)(x

E)

=
∑
xE

χ(xE
i − xE)H(xE)δV(i)(x

E), (7)

where δA(x) = 1 if x ∈ A, else 0. In terms of convolution
on 2-D images, V(i) = {xE : xE−xEi ∈ Z2∩ ([−k1, k1]×
[−k2, k2])}. k1 > 0 and k2 > 0 are the convolution views
to restrict how far away pixels are included in the neigh-
borhood along the width-axis and length-axis respectively.
When k1, k2 < +∞, the neighborhood set is limited, and
thus the convolution is defined as local, conducted on each
node’s local space, with local convolution kernel χ(·) .

To extend the local convolution on generalized manifolds,
we conclude that the local space of xEi is LxE

i
R2 = {xE :

xE − xEi ∈ [−k1, k1] × [−k2, k2]}, so that the isometric
map satisfies vE = Mxi

(xE) = xE − xEi . {−ex,−ey}
with ex = (1, 0) and ey = (0, 1) is the orthogonal basis in
local coordinate system of the local space. In conclusion,

xi
′

= ΠxE
i

(vE) = −vE = xEi − xE . (8)

In this way, we obtain the local convolution on 2-D Eu-
clidean plane, which reads

(Ω ?V(i) H)(xE
i ) =

∑
xE

χ(xi′)H(xE)δV(i)(x
E). (9)

In analogy to this, the local convolution on 2-D spherical the
center node xSi is defined similarly:

(Ω ?V(i) H)(xS
i ) =

∑
xS

χ(xi′)H(xS)δV(i)(x
S), (10)

where V(i) is given by the graph structure, nodes in which
can be mapped into xSi ’s local space. And xi

′
is obtained by:

xi
′

= ΠxS
i
(vS) = ΠxS

i
(MxS

i
(xS)). (11)

Following parts are organized to discuss how to elaborate
• MxS

i
(·) and ΠxS

i
(·), isometry mapping neighbors into

some local space of xSi and choice of orthogonal basis in
local coordinate system.

• χ(·), the formulation of convolution kernel to approxi-
mate and imitate the meteorological patterns.

4.2. Orientation-Preserving Local Regions
In the following parts, all the nodes are located on sphere, so
the supper-script S is omitted. We choose what we define as
cylindrical-tangent space and horizon maps (Fig. 1(a).) to
construct local spaces and to map neighbors into them.
Definition 2. For xi ∈ S2, the cylindrical-tangent space
centered at xi reads

CxiS
2 = {v ∈ R3 :< v−,x−i >= 0},

where x− = (x1, x2), taking the first two coordinates of
vectors in R3.
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geodesics

Figure 1: Tangent space with logarithmic maps in the top and
cylindrical-tangent space with horizon maps in the below.

Proposition 2. Similar to logarithmic map, the horizon map
Hxi

(·) is used to map the neighbor node xj ∈ V(i) isomet-
rically into CxiS

2, which reads

Hxi(xj) = dS2(xi,xj)
[Px−i

(x−j − x−i ), xj,3 − xi,3]

||[Px−i
(x−j − x−i ), xj,3 − xi,3]||

,

where [·, ·] is the concatenation of vectors/scalars.
The reason for choosing cylindrical-tangent space with

horizon maps rather than tangent space with logarithmic
maps is that the former one preserves the relative orienta-
tion on geographic graticules on the earth surface, which
has explicitly geophysical meaning in meteorology. The log-
arithmic maps distort the relative position in orientation on
graticules. For a node in the northern hemisphere, a neigh-
bor locate in the east of it will locate in the north-east on
its tangent plane after logarithmic map. In comparison, the
defined cylindrical-tangent space preserves both relative ori-
entation on graticules and spherical distance after mapping.
Detailed proofs are provided Appendix B1 and empirical
comparisons are given in Experiments 5.4.

As discussed, the cylindrical-tangent space is Euclidean,
so in S2, the transform Πxi

(·) can be determined by two
orthogonal bases which are not unique. Since our method
is mainly implemented in spherical meteorological signals,
we choose {eφ, ez} as the two orthogonal bases in every lo-
cal coordinate system of the cylindrical-tangent plane, in or-
der to permit every local space to share the consistent South
and North poles and preserve the relative position. For xi =
(xi,1, xi,2, xi,3) and v ∈ CxiS

2, let φi = arctan (xi,2/xi,1),
and xi

′
= Πxi(v) = (θi

′
, zi
′
) which is obtained by

φi
′

=< v, eφi >; zi
′

=< v, ezi >, (12)

which is the latitude and longitude on the sphere, and

eφi = (− sinφi, cosφi, 0); ezi = (0, 0, 1). (13)

The discussed maps and transforms cannot be applied for
the South and North pole. We discuss it in Appendix B2.

4.3. Conditional Local Convolution
Now we introduce the conditional local convolution, which
is the core module in our model. We aim to formulate a ker-
nel which is

Figure 2: The necessity of the unified standard for choice of
the basis. xp from the east affects both xi and xj a lot, with
the corresponding local patterns in two center nodes shown
in the heatmaps. However, if the basis is not unified as given
in the example, the smoothness of local convolution kernel
will be compromised.

• location-characterized: In the local regions of different
center nodes, the meteorological patterns governed by
convolution kernel differ.

• smooth: Patterns are broadly similar when the center
nodes are close in spatial distance.

• common: The kernel is shared by different local spaces
where the neighbors’ spatial distribution is distinct.

Kernel conditional on centers. Contrary to Example 1 in
DCRNN whose convolution kernel is predefined, we aim to
propose the convolution kernel which can adaptively learn
and imitate the location-characterized patterns of each local
region centered at node i. A trivial way is to use a multi-layer
neural network whose input is xi

′
to approximate the con-

volution kernel χ(xi
′
). However, xi

′
as the input only rep-

resents the relative position and disables the kernel to cap-
ture the location-characterized patterns. For example, given
two different center nodes whose neighbors’ relative posi-
tions are totally the same, the convolution kernel in differ-
ent locations will also coincide exactly, contrary to location-
characterized patterns. Therefore, we propose to use condi-
tional kernel, which reads χ(xi

′
;xi), meaning that the con-

volution kernel in a certain local region is determined by the
center node xi. An multi-layer feedforward network is used
to approximate this term, as

χ(xi
′
;xi) = MLP([xi

′
,xi]). (14)

Smoothness of local patterns. We assume that the lo-
calized patterns of meteorological message flows have the
property of smoothness – two close center nodes’ patterns
of aggregation of messages from neighbors should be simi-
lar. In the light of convolution kernel, we define the smooth-
ness of kernel function as follows:
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Figure 3: The motivation of reweighting the angle scale. The
angle scale ψ

2π is given to balance neighbors’ uneven contri-
butions to the centers resulted from irregular distribution.

Definition 3. The conditional kernel χ(·; ·) is smooth, if it
satisfies that for any ε > 0, there exist δ > 0, such that for
any two points xi,xj ∈ S2 with dS2(xi,xj) ≤ δ,

sup
v∈Cxi

S2,u∈Cxj
S2

Πxi
(v)=Πxj

(u)

|χ(Πxi(v);xj)− χ(Πxj (u);xi)| ≤ ε.

The definition of smoothness of location-characterized
kernel is motivated by the fact that if the distance between
two center nodes dS2(xi,xj) is very small, the meteorolog-
ical patterns in two local region should be of little differ-
ence, and thus kernel function χ(·;xi) and χ(·;xj) should
be almost exactly the same. The unified standard for choice
of orthogonal basis on the cylindrical-tangent plane avoids
problems caused by path-dependent parallel transport (Co-
hen et al. 2019), and contributes to the smoothness of con-
ditional kernel. The property is likely to be compromised
without unified standard for orthogonal basis, as the follow-
ing example illustrates.
Example 4. (shown in Fig. 2.) For one node xi, the orthog-
onal basis is {eφi

, ezi} as previously defined in Eq. 13, and
for another node xj which is close to it, it is {−eφi

, ezi}.
There exists a node xp which is in their east on the sphere as
the neighbors of both, and has great meteorological impacts
on both of them. In one’s local coordinate system, the first
coordinate is positive while it is negative in another. Then
if the kernel is smooth, the neighbor xp from the east will
never be given large value in both local regions centered at
node i and j, violating the true patterns in meteorology, or it
is likely to violate the smoothness of the kernel.

As such, by using MLP(·) as the approximator with
smooth activate function like tanh and unifying the stan-
dard for choice of orthogonal basis, the smoothness property
of conditional kernel can be ensured. However, the irregu-
lar spatial distribution of discrete nodes conflicts with the
continuous kernel function shared by different center nodes,
which will be discussed in the next part.

Reweighting for irregular spatial distribution. Because
the kernel function is continuous and shared by different
center nodes, when the spatial distribution of each node’s

neighbors is similar or even identical, e.g. nodes are dis-
tributed on regular spatial grids in local spaces, the proposed
conditional kernel takes both distance and orientation into
consideration. However, the nodes are discrete and irregu-
larly distributed on the sphere. Since the kernel is shared by
all center nodes, the distinct spatial distribution of neighbors
of different center nodes is likely to disrupt the smoothness
of local patterns. An explicit example is given to illustrate
the problems brought about by it.
Example 5. (shown in Fig. 3.) The two center nodes are
close in distance, but the spatial distribution of their neigh-
bors is different. The number of the right center’s neighbors
located in the south-west is two, while it is one for the left
center. If the kernel is smooth, the message from the south-
west flowing into the right center will be about twice than it
from the south-west flowing into the left.

To reweight the convolution kernel for each xj ∈ V(i),
we consider both their angle and distance scales. We first
turn its representation in Cartesian coordinate system xi

′

j =

(φi
′

j , z
i′

j ) in cylindrical-tangent space of xi into polar coor-
dinate (ϕi

′

j , ρ
i′

j ), where ϕi
′

j = arctan(zi
′

j /φ
i′

j ) and ρi
′

j =√
(zi
′
j )2 + (φi

′
j )2. Note that ρi

′

j equals to the geodesics in-
duced distance between the two nodes on sphere. In terms of
angle, we calculate the angle bisector of every pair of adja-
cent nodes in the neighborhood according to ϕi

′

j . We denote
the angle between two adjacent angular bisectors of xi

′

j by
ψi
′

j (as shown in Fig. 3 ), and thus the angle scale is writ-
ten as ψi

′

j /2π. The distance scale is obtained similarly as
DCRNN in Example 1, which reads exp(−(ρi

′

j )2/τ), where
τ is a learnable parameter.

To sum up, combining the two scaling terms with Eq. 14,
the final formulation of the smooth conditional local kernel
in the case of irregular spatial distribution reads

χ(xi
′

j ;xi) =
ψi
′

j

2π
exp(−

(ρi
′

j )2

τ
)MLP([xi

′

j ,xi]). (15)

(a) Flows in meteorology (b) Flows in traffic

(c) Local pattern in meteorology (d) Local pattern in traffic

Figure 4: Different geographic sample spaces and local pat-
terns in meteorology and traffic.
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Figure 5: Overall workflows and architecture of CLCRN.

4.4. Inapplicability in Traffic Forecasting
The proposed convolution is inapplicable to traffic forecast-
ing. One reason is that the smoothness is not a reasonable
property of local traffic flows’ patterns, i.e. great difference
may exist between traffic patterns of two close regions. An
important transportation hub exit may exist in the middle
of them, so the patterns are likely to differ a lot. Besides,
because our convolution kernel is continuous in spatial do-
main, the continuity in orientation of the local convolution
kernel is of no physical meaning in traffic irregular net-
works. In essence, the irregular structure of the road network
restricts the flows of traffic to road direction, stopping vehi-
cles from crossing the road boundary, so that the geographic
sample space is restricted to the road networks, and traffic
can only flow along roads. In comparison, the flows in me-
teorology like heat and wind can diffuse freely on the earth,
without boundary, and the geographic sample space is the
whole earth surface, enabling the local patterns to satisfy the
continuity and smoothness.

4.5. Temporal Dynamics Modeling
The temporal dynamics is modeled as DCRNN does, which
replaces fully-connected layers in cells of recurrent neural
network with graph convolution layers. Using the kernel
proposed in Eq. 15, we obtain the GRU cell constituting the
conditional local convolution recurrent network (CLCRN),
whose overall architecture is shown in Fig. 5.

The overall neural network architecture for multi-step
forecasting is implemented based on Sequence to Sequence
framework (Sutskever, Vinyals, and Le 2014), with the en-
coder fed with previously observed time series and decoder
generating the predictions. By setting a target function of
predictions and ground truth observations such as minimal
mean square error, we can use backpropagation through time
to update the parameters in the training step. More details are
given in Appendix C.

5. Experiments
5.1. Experiment Setting
Datasets. The datasets used for performance evaluation
are provided in WeatherBench (Rasp et al. 2020), with

Methods Spatial Temporal Learnable Continuous

STGCN Vanilla GCN 1-D Conv % %

MSTGCN ChebConv 1-D Conv % %

ASTGCN GAT Attention " %

TGCN Vanilla GCN GRU % %

GCGRU ChebConv GRU % %

DCRNN DiffConv GRU % %

AGCRN Node Similarity GRU " %

CLCRN CondLocalConv GRU " "

Table 1: Comparison of different spatio-temporal methods.
‘Spatial’ and ‘Temporal’ represent the spatial convolution
and temporal dynamics modules. If the spatial kernel is pre-
defined, it is not ‘learnable’. Only our method is established
for ‘continuous’ spatial domain from which meteorological
signals usually sampled.

2048 nodes on the earth sphere. We choose four hour-
wise weather forecasting tasks including temperature, cloud
cover, humidity and surface wind component, the units of
which are K, %×10−1, %×10, ms−1 respectively. We trun-
cate the temporal scale from Jan.1, 2010 to Dec.31, 2018,
and set input time length as 12 and forecasting length as 12
for the four datasets.

Metrics. We compare CLCRN with other methods by de-
ploying three widely used metrics - Mean Absolute Error
(MAE), Root Mean Square Error (RMSE), and Mean Abso-
lute Percentage Error (MAPE) to measure the performance
of predictive models.

Protocol. Seven representative methods are set up, which
can be classified into attention-based methods (Rozember-
czki et al. 2021): STGCN (Yu, Yin, and Zhu 2018), MST-
GCN, ASTGCN (Guo et al. 2019) and recurrent-based
method: TGCN (Zhao et al. 2020), GCGRU (Seo et al.
2016), DCRNN (Li et al. 2018), AGCRN (Bai et al. 2020).
Note that the spatial dependency in AGCRN is based on
the product of learnable nodes’ embeddings, which is called
’Node Similarity’. The comparison of these methods and
ours are given in Table. 1. All the models are trained with
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Datasets Metrics TGCN STGCN MSTGCN ASTGCN GCGRU DCRNN AGCRN CLCRN Improvements

Temp. MAE 3.8638 4.3525 1.2199 1.4896 1.3256 1.3232 1.2551 1.1688 7.2001%
RMSE 5.8554 6.8600 1.9203 2.4622 2.1721 2.1874 1.9314 1.8825 2.5318%

Cloud. MAE 2.3934 2.0197 1.8732 1.9936 1.5925 1.5938 1.7501 1.4906 6.3987%
RMSE 3.6512 2.9542 2.8629 2.9576 2.5576 2.5412 2.7585 2.4559 3.3567%

Humidity. MAE 1.4700 0.7975 0.6093 0.7288 0.5007 0.5046 0.5759 0.4531 9.5067%
RMSE 2.1066 1.1109 0.8684 1.0471 0.7891 0.7956 0.8549 0.7078 10.3028%

Wind. MAE 4.1747 3.6477 1.9440 2.0889 1.4116 1.4321 2.4194 1.3260 6.0640%
RMSE 5.6730 4.8146 2.9111 3.1356 2.2931 2.3364 3.4171 2.1292 7.1475%

Table 2: MAE and RMSE comparison in forecasting length of 12h. Results with underlines are the best performance achieved
by baselines, and results with bold are the overall best. Comparisons in other lengths and metrics are shown Appendix D2.

target function of MAE and optimized by Adam optimizer
for a maximum of 100 epoches. The hyper-parameters are
chosen through a carefully tuning on the validation set (See
Appendix D1 for more details). The reported results of mean
and standard deviation (see Appendix D2) are obtained
through five experiments under different random seeds.

5.2 Performance Comparison
Because MAPE is of great difference among methods and
hard to agree on an order of magnitude, we show it in Ap-
pendix D2.

From Table. 2, it can be conclude that (1) The recurrent-
based methods outperform the attention-based, except
that in Temperature dataset, MSTGCN works well. (2)
Our method further improves recurrent-based methods in
weather prediction with a significant margin. (3) Because
most of the compared methods are established for traf-
fic forecasting, they demonstrate a significant decrease in
performance for meteorological tasks, such as TGCN and
STGCN. The differences of the two tasks are analyzed by
Sec. 4.4. The ‘performance convergence’ phenomenon on
Temperature is explained in Appendix D2.

5.3. Visualization of Local Patterns

Figure 6: Changes of local kernels χ(xi
′
;xi) for uniformly-

spaced xi obtained by trained CLCRN according to Humid-
ity dataset.

The proposed convolution kernel aims to imitate the mete-
orological local patterns. For this, we give visualization of

conditional local kernels to further explore the local patterns
obtained from trained models. We choose a line from the
south-west to the north-east in USA, and sample points as
center nodes uniformly on the line.

As shown in Fig. 6, the kernels conditional on center
nodes show the smoothness property, and the patterns ob-
tained from Humidity datasets demonstrate obvious direc-
tionality - nodes from the north-west and south-east impact
the centers most. However, the kernel is over-smoothing -
The change is very little although the center nodes vary a
lot, which will be one of our future research issues. Further,
we use weather data in different periods of summer (from
June to August) and winter (from December to Februray)
to train the model, in order to get period-characterized ker-
nel. We randomly choose a center point to visualize its local
patterns in different period of time.

5.4. Framework Choice: CNN or RNN?

As concluded in (1) in performance comparison, recurrent-
based methods usually outperform the attention-based in our
evaluation. For the latter one, classical CNNs are usually
used for intra-sequence temporal modeling. Here we further
establish the CLCSTN by embedding our convolution layer
into the framework of MSTGCN, as the attention-based ver-
sion of CLCRN, to compare the cons and pros of the two
frameworks. From Table. 3, it is shown that the CLCRN out-
performs CLCSTN in all evaluations. Besides, it is noted
that the significant gap between two methods is in short
term prediction rather than long term. We conjecture that
the attention-based framework gives smoother prediction,
while the other one can fit extremely non-stationary time
series with great oscillation. Empirical studies given in Ap-
pendix D.3 show that the former framework tends to fit low-
frequency signals, but struggles to fit short-term fluctuations.
In long term, the influence of fitting deviation is weakened,
so the performance gap is reduced. In this case, the fact that
the learning curve of the former one is much smoother can
be explained as well. The unstable learning curve is actually
a common problem of all the recurrent-based models, which
is another future research issue of ours.
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L Metrics Temp. Cloud. Humidity. Wind.
C

L
C

ST
N

3h MAE 1.1622 1.5673 0.4710 1.2262
RMSE 1.9097 2.4798 0.6765 1.8085

6h MAE 1.2516 1.6461 0.5125 1.3582
RMSE 2.0216 2.5814 0.7330 1.9985

12h MAE 1.3325 1.7483 0.5691 1.5727
RMSE 2.1239 2.7101 0.8104 2.3058

C
L

C
R

N

3h MAE 0.3902 0.9225 0.1953 0.5233
RMSE 0.6840 1.6428 0.3307 0.9055

6h MAE 0.7050 1.1996 0.3107 0.8492
RMSE 1.2408 2.0611 0.5114 1.4296

12h MAE 1.1688 1.4906 0.4531 1.3260
RMSE 1.8825 2.4559 0.7078 2.1292

Table 3: MAE and RMSE comparison in different forecast-
ing length of CLCSTN and CLCRN.

Methods Metrics Temp. Cloud. Humidity. Wind.

CLCRN log MAE 1.2638 1.5599 0.4663 1.3958
RMSE 2.0848 2.5171 0.7341 2.2659

CLCRN hor MAE 1.1688 1.4906 0.4531 1.3260
RMSE 1.8825 2.4559 0.7078 2.1292

Table 4: MAE and RMSE comparison in forecasting length
of 12h for logarithmic and horizon maps.

5.5. Advantages of Horizon Map
In this part, we discussed two maps: logarithmic and horizon
maps, which are established for two local spaces: tangent
and cylindrical-tangent space, respectively. Here we com-
pare the performance of our model with two different maps
and spaces, to illustrate the advantages of the horizon maps
as shown in Table.4.

5.6. Ablation Study
Decomposition of the kernel. As our kernel includes
three terms shown in Eq. 15, i.e. MLP term, distance scal-
ing term and angle scaling term, we decompose the kernel
to further validate the proposed kernel empirically.

From Table. 5, we conclude that the ‘Distance’ scaling
term is of the least importance in that the performance of
‘MLP + Angle’ is almost the same as it obtained by ‘MLP
+ Angle + Distance’, and the kernel only composed of ‘Dis-
tance’ usually performs worst.

Further analysis. There are several hyper-parameters
(neighbor number K, number of layers and hidden units)
determining the performance of our methods. We conduct
experiments to explore their impacts on the performance em-
pirically. More results are shown in Appendix D4.

6. Conclusion
We proposed a local conditional convolution to capture and
imitate the meteorological flows of local patterns on the

Composition Metrics Temp. Cloud. Humidity. Wind.

Angle MAE 3.1673 1.7787 0.6653 3.3753
RMSE 4.8939 2.8745 1.0054 5.1317

Distance MAE 16.5671 2.7308 1.3443 4.0531
RMSE 21.7427 3.7995 1.8692 5.2275

MLP MAE 1.8815 1.9047 0.6208 2.8672
RMSE 2.9691 3.1022 0.9482 4.2902

MLP +
Distance

MAE 1.4505 1.8743 0.6289 2.5454
RMSE 2.1754 3.0627 0.9388 3.8815

MLP +
Angle

MAE 1.1205 1.4919 0.4538 1.2991
RMSE 1.7957 2.4398 0.7082 2.0763

Angle +
Distance

MAE 1.4986 1.6907 0.5378 1.8932
RMSE 2.1755 2.7215 0.8007 3.0245

MLP+Angle
+Distance

MAE 1.1688 1.4906 0.4531 1.3260
RMSE 1.8825 2.4559 0.7078 2.1292

Table 5: MAE and RMSE comparison in forecasting length
of 12h in different combinations of kernels. Results with un-
derlines are the best performance achieved by baselines, and
results with bold are the overall best.

whole sphere, which is based on the assumption: smoothness
of location-characterized patterns. An MLP and reweighting
terms with continuous relative positions of neighbors and
center as inputs are employed as convolution kernel to han-
dle uneven distribution of nodes.

Empirical study shows the method achieves improved per-
formance. Further analysis reveals two existing problems of
our method: the over-smoothness of the learned local pat-
terns (Sec. 5.3.) and instability of the training process (Sec.
5.4.), which would be our future research issues to focus on.
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