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Abstract
Inferring the causal structure of a set of random variables
is a crucial problem in many disciplines of science. Over
the past two decades, various approaches have been pro-
posed for causal discovery from observational data. How-
ever, most of the existing methods are designed for either
purely discrete or continuous data, which limit their practical
usage. In this paper, we target the problem of causal struc-
ture learning from observational mixed-type data. Although
there are a few methods that are able to handle mixed-type
data, they suffer from restrictions, such as linear assump-
tion and poor scalability. To overcome these weaknesses, we
formulate the causal mechanisms via mixed structure equa-
tion model and prove its identifiability under mild condi-
tions. A novel locally consistent score, named CVMIC, is
proposed for causal directed acyclic graph (DAG) structure
learning. Moreover, we propose an efficient conditional inde-
pendence test, named MRCIT, for mixed-type data, which is
used in causal skeleton learning and final pruning to further
improve the computational efficiency and precision of our
model. Experimental results on both synthetic and real-world
data demonstrate that our proposed hybrid model outperforms
the other state-of-the-art methods. Our source code is available
at https://github.com/DAMO-DI-ML/AAAI2022-HCM.

Introduction
Discovering the underlying causal relations among multiple
variables is beneficial in many applications, such as gene
regulatory network reconstruction (Neto et al. 2010), under-
standing climate changes (Ebert-Uphoff and Deng 2012), and
quantum analysis (Wood and Spekkens 2015). Conduction
of experiments for causal relation identification (Glymour,
Zhang, and Spirtes 2019) is usually expensive, time con-
suming and even unethical. Therefore, discovering the causal
relations from purely observational data, commonly known as
causal discovery or causal structure learning (Heinze-Deml,
Maathuis, and Meinshausen 2018), is desired. In the real-
world scenario, mixed-type data comprising both categorical
and continuous variables is commonly observed, e.g., demo-
graphic attributes such as gender and occupation are often
mixed with professional details including shopping behav-
iors in e-commerce. However, mixed-type data receives less
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attention in the causal discovery literature where techniques
involving purely discrete or continuous variables have been
advanced. The goal of this paper is to conduct causal dis-
covery from i.i.d. samples with mixed-type variables whose
distribution is Markov w.r.t. an underlying causal directed
acyclic graph (DAG).

Structural equation models (SEMs) (Pearl 2009) and
causal Bayesian network are the two major categories of
causal discovery methods. SEMs formulate causal relations
through specifying the equations between effects and causes,
where additive noise models (ANM) (Peters et al. 2014;
Bühlmann et al. 2014) and post-nonlinear (Zhang and Hyvari-
nen 2012) causal models have been widely and successfully
applied for continuous variables. Peters et al. (Peters, Janzing,
and Scholkopf 2011) propose ANM for processing discrete
variables. Methods for causal Bayesian networks fall into
two main categories: constraint-based and score-based ones.
Constraint-based methods conduct conditional independence
tests (CITs) to assess presence of edges. Log-likelihood ratio
G-test and Pearson’s X2 are the typical CITs used on finite
discrete variables. Pearson’s correlation coefficient, kernel-
based (Zhang et al. 2012; Strobl, Zhang, and Visweswaran
2019) CITs and mutual information-based CITs (Runge
2018) are the CITs commonly used for continuous vari-
ables. Score-based methods evaluate the quality of candidate
causal structure using some properly defined score functions.
Bayesian Information Criterion (BIC) (Schwarz et al. 1978)
and Bayesian Dirichlet equivalent uniform (BDeu) (Buntine
1991) are the most commonly used score functions for con-
tinuous and discrete data, respectively. Recently in (Zheng
et al. 2018), Zheng et al. propose a continuous optimization
framework for DAG structure learning and several exten-
sions (Zheng et al. 2020; Yu et al. 2019) are built with the sim-
ilar procedure. Unfortunately, all the aforementioned meth-
ods are designed for purely continuous or discrete data. To
handle mixed-type variables, traditional methods either dis-
cretize continuous variables (Monti and Cooper 1998; Dojer
2016) or convert the conditional distributions of mixed-type
variables into the same type (Romero, Rumí, and Salmerón
2006). More recently, the latent-LiNGAM proposed by Ya-
mayoshi (Yamayoshi, Tsuchida, and Yadohisa 2020) intro-
duces link functions to generate discrete variables. Copula
PC (Cui, Groot, and Heskes 2016) algorithm relaxes the
rank-based measures of correlation in the continuous space

The Thirty-Sixth AAAI Conference on Artificial Intelligence (AAAI-22)

7435



Skeleton learning
via PC-stable
and MRCIT

Causal DAG structure
learning via greedy
search and CVMIC

Pruning via MRCIT
Ã Â

Figure 1: The framework of the proposed hybrid method. Ã is the output of the skeleton learning stage, i.e., a symmetric matrix
to represent the adjacency matrix of an undirected graph. Â is the output of the second stage, i.e., adjacency matrix of a DAG.

to handle discrete variables. Causal MGM (Sedgewick et al.
2016) uses likelihood ratio test to conduct CITs, where lin-
ear regression and Multinomial logistic regression are per-
formed for continuous and categorical variables, respectively.
The conditional Gaussian (CG) score (Andrews, Ramsey,
and Cooper 2018) and degenerate Gaussian (DG) score (An-
drews, Ramsey, and Cooper 2019) are proposed to adapt
multivariate Gaussian model on mixed-type variables. The
above-mentioned methods all rely on linear assumption of the
causal mechanism that makes them restrictive. In (Andrews,
Ramsey, and Cooper 2018), Andrews et al. propose the Mixed
Variable Polynomial (MVP) score, which uses polynomial
functions to model nonlinear causal relationships. The gen-
eralized score (GS) for causal discovery (Huang et al. 2018)
can manipulate mixed-type and even multi-dimensional data
while uncovering the nonlinear relations between variables.
However, the MVP model has a strong assumption on the
functional forms of causal mechanisms and the GS does
not scale well as it requires regressions in the Reproducing
Kernel Hilbert Space (RKHS).

To overcome the aforementioned limitations, we formulate
the nonlinear causal mechanism for mixed-type data via a
mixed-SEM, where causal mechanisms generating discrete
variables are modeled as classifications and those generating
continuous variables are formulated as nonlinear additive
noise models (NAMs) (Hoyer et al. 2008). We propose a
generalized score function, Cross-Validation based Mixed
Information Criterion (CVMIC), to evaluate the quality of a
candidate mixed-SEM. To efficiently search for the optimal
mixed-SEM from the combinatorial DAG space, we develop
a three-phase hybrid inference algorithm as illustrated in Fig-
ure 1: 1) A skeleton (i.e. edges without their orientations)
is firstly learnt to reduce the search space, and we combine
PC-stable algorithm (Colombo and Maathuis 2014) with our
newly proposed CIT method that handles mixed-type data
(named as Mixed-type Randomized CIT, MRCIT) to learn
the skeleton structure. 2) Constrained by the skeleton struc-
ture, a greedy search procedure is then applied for DAG
structure learning that starts with an empty DAG and greedily
adds the edge corresponding to the largest gain in CVMIC
score. 3) MRCIT is used again to prune the learned causal
structure with a relatively larger conditional set aiming at
reducing false positives. The proposed algorithm is named as
“HCM” abbreviated for “Hybrid Causal discovery on Mixed-
type data”.

The main contributions of our work are:
• We propose a mixed-SEM to formulate the nonlinear

causal mechanism on mixed-type data, and prove its iden-
tifiability in the bivariate case.

• We propose an efficient conditional independence test for
mixed-type data, named MRCIT.

• We propose a locally consistent information criterion, i.e.,
CVMIC, for causal DAG structure learning.

The rest of this paper is organized as follows: In section 2,
we introduce the mixed-SEM and provide formal proof of its
identifiability. The hybrid learning framework along with the
details of the designed MRCIT and CVMIC are discussed in
Section 3. In section 4, we elaborate experimental analysis
on both synthetic and real-world data sets. And section 5
concludes our work.

Mixed Structural Equation Model
In this paper, a lowercase letter (e.g., x) denotes a specific
value of a corresponding random variable (e.g., X), bold
lowercase letters denote vectors (e.g., x ), and calligraphic
uppercase letters signify sets (e.g., X ). X, xi, x∗,j , and xi,j

represent the observations of all instances, observation of the
i-th instance, j-th feature of all observed instances, and the
j-th feature of the i-th observed instance, respectively.

Given n random variables, i.e., X = {X1, X2, · · · , Xn},
the causal relations among them can be organized as a DAG
G(V, E), where each Xi can be either categorical (Xi ∈
{1, · · · , ci}) or continuous (Xi ∈ R). V = {1, 2, · · · , n} is
a set of n vertices/nodes, and each node is corresponding to
a variable in X . E ⊆ V × V is a set of directed edges, and
j → i is an edge representing that variable Xj is a direct
cause of variable Xi. PG

(i) denotes the index set of parent

variables for Xi given the causal graph G, and note that PG
(i)

can be ∅ for some Xi. A general SEM is defined as:

{Xj = fj(XPG
(j)
, Ej)|j = 1, · · · , n}, Ej⊥⊥XPG

(j)

and E1, · · · , En are mutually independent, (1)

where each variable is generated as a function of its directed
causes and some noises, with causes and noises being inde-
pendent. In this paper, we formulate a mixed-SEM to encode
causal mechanism of mixed-type data. When Xj is continu-
ous, the nonlinear additive noise model (NAM) (Hoyer et al.
2008) Xj = fj(XPG

(j)
) + Ej is used to formulate its genera-

tion. Therefore, its conditional distribution w.r.t. fj is:

Pr(xi,j |XPG
(j)
=xi,PG

(j)
,fj)=Pr

(
Ej=xi,j−fj(xi,PG

(j)
)|XPG

(j)

)
=Pr

(
Ej=xi,j−fj(xi,PG

(j)
)
)
, (2)

where the distributions of the noises {Ej |j = 1, · · · , n} are
not presumed so that the proposed model has high general-
ization ability. When Xj is discrete, it is generated via:

Xj = argmax
k∈{1,··· ,cj}

fj,k

(
XPG

(j)

)
+ Ej,k, (3)
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where fj,k(·) is a numerical function of the k-th category
of Xj , and Xj has cj unique values in total. Its conditional
distribution is realized via softmax function when noise term
Ej,k follows Gumbel distribution:

Pr(Xj= l|XPG
(j)
=xi,PG

(j)
,fj)=

exp
(
fj,l(xi,PG

(j)
)
)

cj∑
c=1

exp
(
fj,c(xi,PG

(j)
)
) . (4)

Given the causal graph G, under the causal Markov condition,
the joint distribution Pr(X = xi) can be decomposed as the
product of conditional distributions,

Pr(X = xi) =
n∏

j=1

Pr(Xj = xi,j |XPG
(j)

= xi,PG
(j)
), (5)

Note that, fj(·) in Eq.(2) and fj,k(·) in Eq.(3) are nonlinear
functions and the function classes of them are not specified.
In our implementation, the LightGBM (Ke et al. 2017) is
employed to model the causal mechanisms to achieve high
generalisability. In addition, in LightGBM multiple regular-
ization (e.g., L1 and L2 norms) and constraint (e.g., depth of
tree) are introduced in the process of tree construction and
hence Eq.(4) does not suffer from non-identifiable w.r.t. its
parameters as the vanilla multi-logit model.

Identifiability of the Mixed-SEM
Identifiability is an essential requirement of causal models,
and the formal definition of identifiability is given as follows:
Definition 1 (Identifiability). Given data distribution Pr(X )
generated by a SEM with graph G, in particular, Pr(X ) is
Markov w.r.t. G. We call G identifiable from Pr(X ) if Pr(X )
cannot be generated by a SEM with a different graph G′ ̸= G.

Based on (Peters et al. 2014, Remark 30) we conclude
that the identifiability of a SEM in the bivariate case can be
straightforward generalized under mild assumptions to the
one in the multivariate case. Thus, here we focus on studying
the identifiability of the above mixed-SEM in the bivariate
case. In general, there are three scenarios in a bivariate mixed-
SEM: 1) both variables are continuous, 2) both variables are
categorical, 3) one categorical variable and one continuous
variable. In the first case, our model reduces to the standard
NAM and its bivariate identifiability has been well studied
in an existing work (Hoyer et al. 2008, Theorem 1), which
indicates the bivariate NAM is not identifiable only if the
differential equation for log px has a 3-dimensional space
of solutions. Next, we analyze the identifiability in the re-
maining two cases. The identifiability of SEM in bivariate
case is commonly presented by showing the condition of
non-identifiablity of X → Y and Y → X is restrictive and
hard to satisfy in general (Peters et al. 2014), and we follows
this procedure to present our results in the following.
Lemma 1. Assuming variables X and Y are categorical and
have finite support X ∈ {k1, . . . , kx} and Y ∈ {t1, . . . , ty}.
Let Pr(X,Y ) admits a mixed-SEM from Y to X (Y → X):

X = argmax
k∈{k1,...,kx}

fk(Y ) + Ek, Ek⊥⊥Y, and Ek ∼ Gumbel.

If Pr(X,Y ) also allows a mixed-SEM from X to Y (X→Y ):

Y = argmax
t∈{t1,...,ty}

gt(X) + Et, Et⊥⊥X, and Et ∼ Gumbel,

then for any quadruple (ki, kj , ta, tb), where (ki, kj) ∈
Supp(X) and (ta, tb) ∈ Supp(Y ), functions f and g must
satisfy gta(ki) + gtb(kj) + fki

(tb) + fkj
(ta) = gta(kj) +

gtb(ki) + fki
(ta) + fkj

(tb)

Let us define a function T (X,Y ) = gY (X) − fX(Y )
over X and Y , Lemma 1 indicates that, for any (ki, kj) ∈
Supp(X) and (ta, tb) ∈ Supp(Y ), the four points, i.e.,
{(ki, ta, T (ki, ta)), (kj , tb, T (kj , tb)), (ki, tb, T (ki, tb)),
(kj , ta, T (kj , ta))} are coplanar in a three-dimentional space,
which is hard to achieve in general.
Corollary 1 (Identifiability of Two Categorical Variables).
Lemma 1 shows that Pr(X,Y ) for two categorical variables
admitting mixed-SEMs in both directions falls into a restric-
tive space, which is hard to be satisfied in general. Therefore,
in general, bivariate mixed-SEM is identifiable when both
variables are categorical.
Lemma 2. Assuming variable X is categorical that has finite
support (i.e., X ∈ {k1, . . . , kx}), and Y is a continuous
variable. Let Pr(X,Y ) admit a mixed-SEM from Y to X
(Y → X):

X = argmax
k∈{k1,...,kx}

fk(Y ) + Ek.

If Pr(X,Y ) also allows a mixed-SEM from X to Y (X →
Y ), with the additiveness of noise relaxed as Y = g(X,EY ),
where g is invertible and EY ⊥⊥ X . Then the following
condition must be satisfied∑
x

P (X = x)

[
pEy (g

−1
x (y))p′y(y)

py(y)
−

p′Ey
(g−1

x (y))

g′x(g
−1
x (y))

]
= 0,

where py(y), p′y(y), pEy
(·) and p′Ey

(·) denote the probability
density functions and their gradient w.r.t. y and Ey, respec-
tively. Note that we have rewritten the mixed-SEM from X to
Y as Y = gX(EY ), since X is categorical and we have |X|
functions, i.e. {gk1(EY ), . . . , gkx(EY )}.
Corollary 2 (Identifiability of One Categorical and One
Continuous Variable). Lemma 2 shows that Pr(X,Y ) for
one categorical and one continuous variables admitting
mixed-SEMs in both directions is hard to be satisfied in gen-
eral. Therefore, in general, bivariate mixed-SEM is identifi-
able when one variable is categorical and the other one is
continous.

It is worth mentioning that (Peters et al. 2014, Definition
27) is necessary for adapting the identifiability from the bi-
variate case to the multivariate case in our model. Let us
rewrite (Peters et al. 2014, Definition 27) for mixed-type data.
In multivariate case, our proposed mixed-SEM is identifiable
under the following condition:

For all j ∈ V , i ∈ PG
(j) and all sets S ⊆ V with PG

(j)\i ⊆
S ⊆ NDj\{i, j} (i.e., NDj represents the non-descendents
of j), there is XS = xS , with pS(xS) > 0, s.t., 1) When
both Xi and Xj are categorical, fXj

(Xi|XS=xS
, XS = xS)
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and gXi(Xj |XS=xS
, XS = xS) do not satisfy Eq.(6) for any

quadraple; 2) When one of them (e.g., Yi) is continuous, then
pYi

(Yj |YS=yS
, YS = yS), pEYi

, and their gradients do not
satisfy the nonidentifiable condition in Lemma 2; 3) When
both Xi and Xj are continuous, then (gXi

(Xj |XS=xS
, XS =

xS), EXi
) do not satisfy the nonidentifiable condition (Peters

et al. 2014, Condition 19).

Hybrid Structure Learning Algorithm
To efficiently infer the mixed-SEM from data, we propose a
three-phase hybrid learning framework as shown in Figure 1.
We first introduce the proposed CVMIC and MRCIT, and
then provide implementation details.

CVMIC: Cross-Validation Based Mixed
Information Criterion
Score-based causal inference algorithms conduct causal struc-
ture learning by optimizing a properly defined score function.
Since the maximized likelihood may lead to overfitting in
structure learning, we define a CVMIC score to measure
the fitness of a candidate mixed-SEM on mixed-type data.
Cross-validation (CV) is a widespread strategy for model
selection in machine learning and statistics (Arlot, Celisse
et al. 2010), which evaluates the model’s ability to handle
new data. We utilize CV to identify causal structures since
causal relationship is considered more stable than correlation
and hence more robust to unobserved instances (Bengio et al.
2019). Without loss of generality, we use k-fold CV. In the q-
th round, the log-likelihood of random variable Xj evaluated
on the q-th testing set (XDq

) is formulated as:

L(Xj = xDq,j |PG
(j); f̂

(q)
j )

=
∑
i∈Dq

log
(
Pr(Xj = xi,j |XPG

(j)
= xi,PG

(j)
; f̂

(q)
j )

)
,

where Dq is the index set of the q-th testing set, and f̂
(q)
j is the

maximum likelihood estimation (MLE) of the causal mecha-
nism learned from the q-th training set. The cross-validated
log-likelihood of Xj can be calculated as

∑k
q=1 L(Xj =

xDq,j |PG
(j); f̂

(q)
j ), and inspired by BIC we propose the final

score function for the j-th random variable:

Sj(PG
(j);Xj)=

k∑
q=1

L(Xj=xDq,j |PG
(j); f̂

(q)
j )− log(m)

2
|PG

(j)|,

where m is the sample size. For n random mixed-type vari-
ables, our proposed score function CVMIC is defined as:

S(G;X) =
n∑

j=1

Sj(PG
(j);Xj) (6)

To theoretically evaluate the soundness of our proposed
CVMIC score, we give the definition of local consistency
and prove that CVMIC score is locally consistent. Generally
speaking, local consistency means that optimizing the model
selection criterion leads to selecting an edge does not conflict
with any independence constraint (Chickering 2002).

Definition 2 (Local Consistency). Let X be m i.i.d. samples
drawn form a distribution P (·), G be any DAG, and let G′ be
the DAG resulted from adding the edge i → j in G. A scoring
criterion S(G;X) is locally consistent if the following two
properties hold as the sample size m → ∞:
1. If Xi ̸⊥⊥ Xj |XPG

(j)
, then S(G′;X) > S(G;X).

2. If Xi ⊥⊥ Xj |XPG
(j)

, then S(G′;X) < S(G;X).

Theorem 1. CVMIC score is locally consistent.

The proof of Theorem 1 can be found in Appendix B3.
When the number of samples goes to infinity, the log-

likelihood is globally consistent, i.e., it reaches the minimum
when the true graph structure is estimated. In CVMIC, a
penalty term is added to cross-validated log-likelihood to
encourage each node to have less parents and hence intro-
duce bias and fail to reach minimum when the true graph is
estimated. Since the sample size is limited in practice, the
CVMIC works better than the vanilla log-likelihood even
it is not globally consistent. Moreover, the structure learn-
ing is a NP-hard problem which is not practical to conduct
exhaustive search. Therefore, in structure learning local con-
sistency has more practical value than global consistency. In
Table 1 within Section we have included the method "HCM-
ll", where the log-likelihood is used as score function, and
the results demonstrate the advantage of using CVMIC.

MRCIT: A Randomized Conditional Independence
Test for Mixed-Type Data
As mentioned in Introduction section and Figure 1, in our
hybrid algorithm, CITs are used in both causal skeleton learn-
ing and final pruning to reduce the search space of causal
DAG learning and reduce false positive, respectively. There-
fore, we propose a randomized CIT for Mixed-type Data.
To test whether X1 ⊥⊥ X2|X3, where X3 can be multivari-
ate, a non-parametric methods called KCIT is introduced by
Zhang (Zhang et al. 2012). Strobl et al. (Strobl, Zhang, and
Visweswaran 2019) further propose RCIT utilizing random
Fourier features (RFFs) to get a faster CIT without sacrific-
ing accuracy. However, cases when variables {X1, X2,X3}
involving both continuous and categorical variables are not
considered. Here we extend RCIT to handle mixed-type data.

Let HX be a Hilbert space of function mapping from X to
R, the partial cross-covariance operator is related with CITs
as ∥ΣẌX2·X3

∥2HS = 0 ⇐⇒ ΣẌX2·X3
= 0 ⇐⇒ X1 ⊥⊥

X2|X3, where Ẍ = (X1,X3). CIT is then relaxed to test
for uncorrelatedness between functions in Hilbert spaces, i.e.,
any residual function of (X1,X3) given X3 is uncorrelated
with that of (X2,X3) given X3 if and only if X1 ⊥⊥ X2|X3.
KCITs choose to directly regress out the effect of the condi-
tional set X3 through kernel ridge regression (KRR), where
inverse of kernel KX3 is required that scales cubically with
sample size. To avoid such inversion, Frobenius norm cor-
responding to Hilbert-Schmidt norm in Euclidean space of
CÄB·X3

= E[(Äi − E(Ä|X3))(Bi − E(B|X3))] is used. Ä
and B are RFFs of Ẍ and X2 respectively, which help to
approximate continuous shift-invariant kernels using the fol-
lowing result:k(x, y) =

∫
eiw

T (x−y)dFw = E[φ(x)φ(y)],
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where φ(x) =
√
2 cos(WTx + B),W ∼ PW , B ∼

Uniform([0, 2π]). When estimating non-linear functions of
X3 for E(Ä|X3), the original KRR problem is converted
to f̂(X3) = K(X3,X3)α = φ(X3)

∗w, where solving w
requires inverting a much smaller matrix than that for solving
α. Considering X3 might contain both categorical and con-
tinuous variables in our case, it is improper to apply Gaussian
Kernel for all variables since it might lead to loss of informa-
tion. We use the following formulation to separate kernels
for continuous and categorical variables, and also derive the
corresponding RFFs when estimating the separated kernels.
Denote x = [xct,xca], with xct for continuous and xca for
categorical variables, respectively.

k(x,y)=

∫
eiω

T
ct∆ctdFωct+

∫
eiω

T
ca∆cadFωca≈

1

S
Tr(φ(x)φ(y)∗)

n∑
j=1

k(xj ,x)αj = φct(xct)
∗wct + φca(xca)

∗wca,

where S is the number of RFFs and φ(x) is the concate-
nation of continuous and categorical RFFs. During the ex-
periment, twice of median distance between points in the
input space is set as the kernel width for continuous variables,
while for categorical variable, tiny kernel width is chosen to
approximate the Dirac function.

Implementation
Skeleton Learning Under the causal Markov assumption
and causal faithfulness assumption (Spirtes and Zhang 2016),
we employ PC-stable (Colombo and Maathuis 2014) that
iteratively enlarges the size of the conditional set and dis-
card edges between nodes if their corresponding variables
are (conditional) independent via MRCIT. To accelerate our
algorithm, MRCITs are parallelly tested within each iteration
and the maximum size of the conditional set is set to 1 in our
implementation. Larger conditional sets are not advised as we
wish to identify cause and effect before discarding potential
edges that would lead to false negatives if co-children are
also considered into the conditional sets.

Causal DAG Structure Learning Since the value space of
a discrete variable is limited, the estimated log-likelihood
of a classification model is usually larger than that of a
regression model. As a result, for standard search algo-
rithms, such as hill climbing (Gámez, Mateo, and Puerta
2011) , adding an edge with the largest score may lead to
systematic selection bias, i.e., preference of selecting an
edge directed to a discrete variable. To alleviate this, we
introduce a greedy procedure (summarized as Algorithm ??
in Appendix A) that starts with an empty DAG and adds
the edge corresponding to the largest gain in score during
each iteration. The initial score of the j-th variable is de-
fined as: S(∅, Xj) = 1

n

∑n
i=1 log(Pr(Xj = xi,j)), where

Pr(Xj = xi,j) is the empirical or observational probabil-
ity of Xj = xi,j . The empirical probability for a discrete
variable is calculated via frequency, while for a continuous
variable, it is estimated via kernel density estimation (KDE).
In each iteration, the gain of adding a potential edge l → j

is computed as Sj(PG
(j) ∪ {l};Xj)− Sj(PG

(j);Xj), and the
edge with largest gain will be added to the DAG. To assure
acyclic, a directed-path-matrix (O) will be updated accord-
ingly, and an edge l → j will not be considered as a valid
candidate if oj,l = 1, i.e, there is a path from node j to node
l. Note that, the score of the j-th node and the gain of adding
a potential edge is updated only if the parents set of the j-th
node is updated and hence being efficient. For a continuous
variable, the likelihood in CVMIC score is also estimated via
KDE to avoid assuming the noise distribution. The soundness
of using KDE in likelihood computation is proved in (Cai
et al. 2018). We employ LightGBM (Ke et al. 2017) in this
work for non-parametric estimation of the causal mechanism.
Moreover, the search space has been reduced after skeleton
learning and the algorithm is feasible for up to hundreds of
nodes.

Pruning In the previous stage, an edge will be greedily
added as long as it does not break the DAG constraint. This
setting helps us to avoid choosing an intractable threshold
for determining the minimum score gain of adding an edge.
However, this setting tends to add more “superfluous” edges
and pruning is required to improve precision of the inference.
Pruning is conducted via MRCITs to test independence of
each parent-child pair conditioning on all the other direct
causes of the child, and remove “superfluous” edges if the
corresponding parent and child are conditional independent.

Experimental Result
Comparison Methods and Experiment Setup
We compare our proposed HCM algorithm with six related
state-of-the-art methods, which are capable of conducting
causal discovery on mixed-type data. These methods are:
Copula PC (CPC), Causal MGM (MGM), Conditional Gaus-
sian (CG) score, Degenerate Gaussian (DG) score, Mixed
Variable Polynomial (MVP) score, and the generalized score
(GS) for causal discovery. The last two competed models
are able to handle nonlinear causal mechanisms. We also
compare our model with a hybrid method, i.e., Max-Min
Hill-Climbing (MMHC) algorithm, by discretizing the con-
tinuous variable. In all experiments, thresholds of the p-value
in CITs are set to 0.05. We use the default kernel functions
in GS. Regularization parameters in MGM are tuned and the
best result in each synthetic data is reported. The remain-
ing comparison methods, i.e, DG, CG, MVP, do not have
complex hyper-parameters to tune and hence all correspond-
ing experiments are conducted with default settings. All of
our experiments are conducted on a machine with 2.6 GHz
6-Core Intel i7 CPU and 16GB DDR4 2667 MHz RAM.

Synthetic Data Generated from Benchmark
Simulator
Real data sets with mixed-type variables and ground truth
of causal DAG structures are very hard to find. Therefore,
we use a benchmark simulator in Tetrad ?? to generate six
data sets based on DAGs with different numbers of nodes
(n = 50, 100) and different average node degrees (3, 10, 20).
Note that the graph is more dense when the node degree
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Avg Method # of nodes = 50 # of nodes = 100
Deg. Prec. Rec. F1 SHD Prec. Rec. F1 SHD

3

HCM 0.600 0.640 0.619 35 0.610 0.700 0.652 77
HCM-RCIT 0.597 0.533 0.563 39 0.454 0.393 0.421 107
HCM-ll 0.436 0.453 0.444 49 0.517 0.593 0.553 94
HCM-nocv 0.422 0.467 0.443 51 0.506 0.567 0.535 94
MVP 0.800 0.267 0.400 56 0.793 0.433 0.560 92
CG 0.536 0.400 0.458 60 0.795 0.440 0.567 93
DG 0.548 0.453 0.496 51 0.687 0.527 0.596 83
MGM 0.500 0.093 0.157 64 0.492 0.200 0.284 102
CPC 0.451 0.427 0.438 85 0.449 0.233 0.307 275
MMHC 0.846 0.440 0.579 44 0.733 0.440 0.550 91

10

HCM 0.566 0.296 0.388 156 0.615 0.385 0.474 289
HCM-RCIT 0.474 0.133 0.208 181 0.593 0.234 0.336 324
HCM-ll 0.543 0.281 0.370 162 0.442 0.278 0.341 331
HCM-nocv 0.491 0.256 0.337 168 0.415 0.268 0.326 345
MVP 0.800 0.099 0.175 184 0.756 0.166 0.272 349
CG 0.889 0.158 0.268 173 0.814 0.234 0.364 324
DG 0.750 0.148 0.247 178 0.674 0.217 0.328 331
MGM 0.632 0.059 0.108 187 0.505 0.112 0.184 331
CPC 0.535 0.227 0.318 195 0.509 0.137 0.215 447
MMHC 0.907 0.192 0.317 166 0.851 0.237 0.370 317

20

HCM 0.486 0.176 0.258 347 0.676 0.335 0.448 309
HCM-RCIT 0.451 0.119 0.188 353 0.514 0.174 0.260 374
HCM-ll 0.308 0.127 0.179 380 0.438 0.223 0.296 364
HCM-nocv 0.335 0.140 0.197 372 0.425 0.219 0.289 363
MVP 0.593 0.090 0.157 357 0.755 0.093 0.166 390
CG 0.464 0.116 0.186 357 0.667 0.130 0.218 384
DG 0.438 0.109 0.174 362 0.596 0.123 0.204 380
MGM 0.458 0.028 0.054 369 0.480 0.059 0.104 371
CPC 0.510 0.083 0.142 347 0.473 0.081 0.139 516
MMHC 0.762 0.207 0.325 314 0.890 0.170 0.285 357

Table 1: Performance comparison of HCM against the state-
of-the-art methods w.r.t. Precision (Prec.), Recall (Rec.), F1-
score (F1), and Structural hamming distance (SHD) on the
synthetic data sets generated from simulator in Tetrad.

name MILDEW ALARM HAILFINDER HEPAR ANDES
# of nodes 35 37 56 70 223
# of edges 46 46 66 123 338

Table 2: Statistics of each benchmark network structure.

(the number of edges connected to the node) is larger. The
number of instances in these data sets are set to be 100× n,
and the percentage of discrete variables are set to be 50%. In
this simulator, discrete variables are generated via randomly
parameterized Multinomial distribution.

Higher F1 score and lower SHD indicate better perfor-
mance. From results in Table 1 we can observe that our
proposed model outperforms the other methods in most data
sets. Note that, the GS does not scale to these six data sets
and hence the results are not included. In addition, when
the graph is dense, the maximal number of parents of a
node can be as large as 10, making the probability table
of Multinomial distribution very large and hard to estimate
for all methods. Comparing with the model performance of
HCM and "HCM-nocv", we demonstrate the advantage of
using cross-validation in score function. Comparing with
HCM and "HCM-RCIT", where RCIT (Strobl, Zhang, and
Visweswaran 2019) is used for conditional independence test
in step 1 and step 3, we demonstrate the advantage of our

proposed MRCIT. The results in Table 1 also demonstrate the
advantage of using CVMIC (score function in HCM) over
log-likelihood (score function in "HCM-ll").

Ablation study Table 3 presents the results of ablation
study of our HCM. "StablePC+MRCIT" takes MRCIT for
CITs in PC-Stable algorithm (Colombo and Maathuis 2014)
and employs the orientation rules in PC. Therefore, it is a
constraint-based structure learning method based on our pro-
posed MRCIT. In "StablePC+MRCIT", a large number (super
exponential w.r.t. number of nodes) of CITs with large condi-
tional sets are required and hence it can only handle relatively
small/sparse graph. The running time also demonstrates that
HCM scales better than "StablePC+MRCIT" in dense graph.
"HCM_no_step3" represents the result after step 2 without
pruning, and we can observe that step 3 in general can im-
prove the result with relatively small time cost. The ablation
study shows the strength of the hybrid structure in HCM.

Synthetic Data Generated from Benchmark
Network Structures
We also generate mixed-type synthetic data based on some
benchmark network structures in causal discovery1, which
are summarized in Table 2. Let us define the source variables
are the ones without parents and the remaining ones are non-
source. A continuous non-source variable Xj is generated as
Xj = fj(X

G
P(j)

) + Ej , and a discrete non-source variable

Xl is generated as Xl = argmaxk∈{1,··· ,cl} fl,k(X
G
P(l)

) +

El,k. Ej and El,k are the noise terms randomly drawn from
a set of noise distributions. fj and fl,k are the functional
causal mechanisms. cl is the number of unique values in
Xl, which is randomly chosen from 2 to 10. Continuous and
discrete source variables are generated using the selected
noise distribution and Multinomial distribution, respectively.
For each network, we simulate the mixed-type data sets with:
• Various percentages of discrete variables: 0.2 and 0.5.
• Various noise distributions: Normal, Uniform, and Expo-

nential.
• Various functional causal mechanisms: 1) “mixed-

additive” function, i.e., a weighted summation of x, x2,
sinx, sin (x2), tan(x). 2) “modified-sigmoid” function,
i.e., a weighted combination of b·(x+a)

1+|b(x+a)| , where a and b

are randomly chosen coefficients.
In summary, we generate 12 mixed-type data sets for each
network, and the sample size of each data set is set to be
100× n, where n is the number of nodes.

In Figure 2, we present the averaged F1-score and normal-
ized structural hamming distance (N-SHD) (Tsamardinos,
Brown, and Aliferis 2006) to evaluate the performance of
each causal discovery method. Higher F1 score and lower N-
SHD indicate better performance. We can thus observe that
our proposed model outperforms the other methods. Note
that, as the generalized score method (Huang et al. 2018)
does not scale very well, we are not able to get its result after
24 hours on larger graphs, i.e., HAILFINDER, HEPAR, and

1The typologies of networks is available in https://www.bnlearn.
com/bnrepository/
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# of Avg Method Performance Execution time (s)
Nodes Deg. Pre. Rec. F1 SHD Total Step 1 Step 2 Step 3

50

3
HCM 0.600 0.640 0.619 35 467.76 62.82 401.97 2.96
HCM_no_step3 0.600 0.640 0.619 35 464.79 62.82 401.97 NA
StablePC+MRCIT 0.894 0.560 0.689 35 2577.37 NA NA NA

10
HCM 0.566 0.296 0.388 156 1652.65 664.03 865.19 123.43
HCM_no_step3 0.556 0.296 0.386 158 1529.22 664.03 865.19 NA
StablePC+MRCIT 0.667 0.099 0.172 186 3126.86 NA NA NA

20
HCM 0.486 0.176 0.258 347 3314.51 1565.18 1353.93 395.41
HCM_no_step3 0.467 0.181 0.261 353 2919.1 1565.18 1353.93 NA
StablePC+MRCIT 0.660 0.085 0.151 360 10416.45 NA NA NA

100

3
HCM 0.610 0.700 0.652 77 3196.59 1772.2 1381.3 43.09
HCM_no_step3 0.610 0.700 0.652 77 3153.5 1772.2 1381.3 NA
StablePC+MRCIT 0.855 0.473 0.609 82 14938.66 NA NA NA

10
HCM 0.615 0.385 0.474 289 4663.89 2635.24 1758.4 270.24
HCM_no_step3 0.605 0.400 0.482 291 4393.64 2635.24 1758.4 NA
StablePC+MRCIT Fail to get result after 12 hours runing

20
HCM 0.676 0.335 0.448 309 5212.29 2701.26 2111.96 399.07
HCM_no_step3 0.676 0.340 0.340 308 4813.22 2701.26 2111.96 NA
StablePC+MRCIT Fail to get result after 12 hours runing

Table 3: Ablation study of the proposed three-phase hybrid algorithm.

Figure 2: The model performance w.r.t. F1-score and N-SHD
on synthetic data sets. The results are averaged over 12 syn-
thetic data sets for each network.

ANDES. Copula PC is also not scalable to ANDES under the
same experimental setting.

Real-World Application
Credit Data We apply our method on the German credit
data set2, where the original goal is to classify people as good
or bad credit risks based on the attributes of financial history
and personal status. We wish to discover important attributes
that directly cause the target variable, credit risk. The data set
contains 21 variables, with 7 continuous and 14 categorical
where continuous variables include credit amount(CreAm),

2Available at https://archive.ics.uci.edu/ml/datasets/statlog+
(german+credit+data)

Figure 3: Learned causal graph from credit data set. The red
diamond denotes the target, i.e., credit risks. Blue rectangles
are direct causes of credit risks.

installment rate in percentage of disposable income (Install-
Rate), and categorical variables include owned property, sta-
tus of marriage and gender(MarrSex). Figure 3 shows the
learned causal graph. The direct causes of credit risks are
highlighted with blue rectangles, including savings bonds,
credit history, status of existing checking account, duration
in month, purpose and foreign, most of which are financial
related and do not involve demographic information except
being foreign. In addition, separation of financial and de-
mographic attributes is clear in the whole graph, and the
two parts communicate through credit purpose and duration
length. The recovered causal relations are in accordance with
our common understandings and domain knowledge.

Conclusion

In this paper, we propose a hybrid algorithm, named HCM,
for causal structure learning on mixed-type data, i.e., data sets
with both continuous and categorical variables. We propose
a new score CVMIC for accurate causal DAG learning and
a novel conditional independence test MRCIT on mixed-
type data. We also theoretically analyze the identifiability
and local consistency of our proposed model. For future
work, we plan to further improve the computational efficiency
of our approach and extend it to the cases where there are
unobserved confounders in the underlying causal graph.
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