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Abstract

Group Lasso is an important sparse regression method in ma-
chine learning which encourages selecting key explanatory
factors in a grouped manner because of the use of {5 1-norm.
In real-world learning tasks, some chunks of data would be
added into or removed from the training set in sequence due
to the existence of new or obsolete historical data, which is
normally called dynamic or lifelong learning scenario. How-
ever, most of existing algorithms of group Lasso are limited to
offline updating, and only one is online algorithm which can
only handle newly added samples inexactly. Due to the com-
plexity of ¢2 1-norm, how to achieve accurate chunk incre-
mental and decremental learning efficiently for group Lasso
is still an open question. To address this challenging prob-
lem, in this paper, we propose a novel accurate dynamic up-
dating algorithm for group Lasso by utilizing the technique
of Ordinary Differential Equations (ODEs), which can incor-
porate or eliminate a chunk of samples from original training
set without retraining the model from scratch. Specifically,
we introduce a new formulation to reparameterize the ad-
justment procedures of chunk incremental and decremental
learning simultaneously. Based on the new formulation, we
propose a path following algorithm for group Lasso regard-
ing to the adjustment parameter. Importantly, we prove that
our path following algorithm can exactly track the piecewise
smooth solutions thanks to the technique of ODEs, so that the
accurate chunk incremental and decremental learning can be
achieved. Extensive experimental results not only confirm the
effectiveness of proposed algorithm for the chunk incremen-
tal and decremental learning, but also validate its efficiency
compared to the existing offline and online algorithms.

Introduction

Group Lasso (Yuan and Lin 2006) considers the problem
of selecting grouped variables for explanatory prediction in
regression, which has been successful in many practical ap-
plications of machine learning (Ma, Song, and Huang 2007;
Chatterjee et al. 2012; Rao et al. 2015; Zhang et al. 2019;
Huo et al. 2020) and statistical analysis (Yuan and Lin 2006;
Bach 2008; Lim and Hastie 2015). The utilizing of group
Lasso penalty (also called /3 ;-norm penalty) leads coeffi-
cient that only contains a few of wanted groups rather than
sparsity in individual elements, which can be viewed as an
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important extension of Lasso (Tibshirani 1996) model. Con-
sidering attractive features and their good generalization per-
formance, group Lasso have received considerable interest
in machine learning community and has been intensively
studied. Some relevant models include group Lasso for lo-
gistic regression (Meier, Van De Geer, and Biihimann 2008),
overlapped group Lasso (Jacob, Obozinski, and Vert 2009)
and sparse group Lasso (Simon et al. 2013). More than that,
(Casella et al. 2010) proposed a fairly general fully Bayesian
formulation which could accommodate various Lasso vari-
ations (e.g. Bayesian group Lasso), and (Simon and Tibshi-
rani 2012) put up the standardized group Lasso.

In lots of real-world application scenarios, e.g., cloud
computing (Armbrust et al. 2010) and federated learning
system (McMahan et al. 2017), the new chunk of data is con-
tinuously being generated at unpredictable rates and comes
in different sizes. One way to handle the coming data stream
is to perform online training as new samples come. There-
fore, the training of a system must be conducted sequen-
tially in online fashion (also called dynamic updating). More
than that, to train in a dynamic scene, we are demanded to
drop some wrong or obsolete historical data from the exist-
ing set. Thus incremental and decremental learning (Giraud-
Carrier 2000; Gepperth and Hammer 2016) are very im-
portant learning paradigm, because the model can refine its
knowledge without re-training from scratch.

Nowadays most of existing algorithms for group Lasso
are trained offline in batch-mode (Ida, Fujiwara, and
Kashima 2019; Zhang et al. 2020), which is not applicable
for real-time scenario, thus developing an efficient algorithm
that copes with input data supplied in sequence is a desirable
but challenging task for researchers. The online optimization
framework (Zinkevich 2003; Bottou and LeCun 2004) is an
important learning system to handle incremental learning,
but to the best of our knowledge, existing online algorithms
for group Lasso, DA-GL (Yang et al. 2010) and ADA-GL
(Li et al. 2014) give an inexact solution and has been con-
fined to incremental updating only. Some related works are
summarized in Table 1. Due to the complexity of /3 ;-norm,
it is still unknown how to achieve accurate chunk incremen-
tal and decremental learning efficiently for group Lasso.

To fill this gap, in this paper we contribute with a novel
updating algorithm about group Lasso for a chunk of new
samples, Chunk Incremental (Decremental) Group Lasso



Problem Reference Exact Incremental Decremental Chunk
Lasso (Duchi and Singer 2009; Xiao 2010) No Yes No No
Lasso (Garrigues and Ghaoui 2008) Yes Yes Yes No
group Lasso (Yang et al. 2010) No Yes No No
group Lasso (Lietal. 2014) No Yes No Incremental only
group Lasso Our Yes Yes Yes Yes

Table 1: Representative dynamic updating algorithms for (group) Lasso.

Algorithm, namely “CIGL” (“CDGL”), where the updated
model is exactly the same as a model trained from scratch
using the entire dataset. Specifically, we introduce a new
function to reparameterize the adjustment procedure, based
on its new variable 6 we build the difference equation and
rewrite it with the Taylor expansion of infinite order to build
an ODE, so as to compute the solution path as the adjust-
ment is taking place. The idea of solution paths is to compute
a compact representation of all optimal solutions, the opti-
mal solution set forms a number of piecewise smooth curves
in the solution space (Rosset and Zhu 2007). The Figure 1
shows an example of the piecewise smoothness for the so-
lutions of group Lasso with respect to successively varied
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Figure 1: Piecewise smooth path of 6 when adjusting one
new sample, where one piecewise smooth curve corresponds

to one variable in group Lasso.

Hence, our provably accurate algorithm can be applied to
both incremental and decremental learning without retrain-
ing a model from scratch. The new algorithm enjoys high
efficiency as it only requires to solve the first-order ODEs in
most cases. The main contributions of this paper are sum-
marized as follows.

* We design a novel framework for dynamic updating
without retraining the model on whole dataset, where the
dynamic changes can include both addition and deletion
of chunk of samples.

e We are the first to propose a chunk incremental and
decremental algorithm for group Lasso. Our experiments
reveal that proposed algorithm has competitive accuracy,
while being significantly faster than conventional batch
training.

* In this paper we prove its accuracy and assess the com-
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putational cost and application limitations. Moreover, we
provide theoretical guidance to its flexible extension.

Formulation of Dynamic Group Lasso

In this part, we introduce our learning framework of dy-
namic updating for group Lasso when incorporating or re-
moving data.

A Revisit of Group Lasso

Given the dataset X € R™*™ with n observations and la-
bel vector y € R", we assume that y is centered, i.e.,
Y1 yi = 0, and each feature of the training set X is stan-
dardized. Let w, be the partitioning of w according to the g-
th group. We consider a group Lasso regression model with-
out the intercept, which is expressed as

G
o1
min || Xw —y|* +ad Vg lwglly,. (1)
g=1

There has a total of G groups. d, is the number of elements
in wy. The a > 0 is the regularization parameter to balance
the prediction loss and {5 ; regularization term. We define
the active set .4 that contains indices of the groups of w that
wy # 0, 80 as to store active components or groups, i.e., we

wa
wz
Remark 1 Consider d, = 1 for all g, group Lasso (1) re-
duces to the ordinary Lasso model.

have w = { ] , Where w— remains 0.

Formulation of Dynamic Updating

The proposed Updating Factor in Objective (UFO) is for-
mally defined as follows.

Definition 1 (UFO) A rational ¢¢ can be used to reparam-
eterize the addition or subtraction procedure of a chunk data
Xnew € RVNX™ which satisfies the following conditions:

1. ¢g is monotonically increasing function w.r.t. 0 in closed
interval [0, 1].

2. ¢g has the properties of continuity and smoothness, mean-
while ¢glo=o = 0, dglo=1 = 1 should be kept.

Through fusing ¢g into the learning framework, we
can make dynamic updating about X,,,,. Firstly, consider
adding one chunk data, vary 6 from 0 to 1 in

i H< 5o X )“’ - < )

2
Yy

(;59 Ynew

=+ OéRQ(w),
F



where Rq(-) is the regularization term in some specific ma-
chine learning tasks, and ¢y is the UFO defined in Defini-
tion 1, which formulates the processing of taking the newly
added samples into the tralmng set. The X,y € RN >™ and
Ynew € RV are incoming chunk data with A/ samples and
their label, respectively. Here we are supposed to follow the
solution path of w as # increasing until we gain w at 6 = 1.
Conversely, as we vary 6 from 1 to 0, the decremental learn-
ing can then be performed in a similar way.

In Lasso problem, an homotopy algorithm (Garrigues and
Ghaoui 2008) for updating one sample each time has been

developed under the assumption of ¢y &y, Taking the
stationarity condition of Lasso, w 4 can be obtained in the
closed form. However, it’s non-trivial in group Lasso for an-
alytical solutions.

Path Following via ODEs

In this section, we develop an efficient algorithm for solving
the solution path w.r.t. 6 in (2).

Optimality Conditions

. . f .
In particular, we select transformation as ¢y = V0 in 2)
to derive chunk incremental and decremental group Lasso.

Letting C, &f Xy — Xw) +0XL, g (Ynew — Xnew w),

g
where X holds the columns of g-th group, the KKT condi-
tions for group Lasso problem are formulated as follows.

dg
C, =2 e ifge A,
[|w,]| 3)
Cyg=ay/d TgaTge{Tg|||TgH2 } ifge A

We denote R (w

=2 Vdg llwy
Y= < \/éznew >andge(’w) =

Piecewise Smooth Path

Let w*(6) be the minimizer of Gy (w). The following propo-

sition guarantees the continuity of solution path regarding to
6.

Proposition 1 The solution path w* () is continuous of 0,
where 0 € [0, 1].

The detailed proof is provided in Appendix A. Further, in-
spired by the theoretical analysis in (Zhou and Wu 2014)
and (Yau and Hui 2017), we derive a system of ODEs to
compute the solution path w.r.t. . Note that this paper is in-
trinsically different from (Yau and Hui 2017), because we
do not focus on optimal regularization parameter, but on an
artificially parameter 6 to conduct dynamic updating.

- X

2’ \/aXnew ’
~ 2

L HXw - g:JHFmR(w).

Theorem 1 Given a fixed set A, the exact solution path
w* (0) satisfies the following first-order ODE system:

dw’

do
where )?3;)2,4
Xnew,Aw:kL\(a)

= [XE%a+ avzn] XD, a8 @

OXT ) 4 Xnewa + X5 X4 and §

— Ynew-
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We defer the proof of Theorem 1 in Section . By solving
the initial value problem (4) numerically with ODE solvers,
the solution path regarding to € can be computed swiftly be-
fore A changes. We denote such a point where the active
set changes a “transition point”. The path would be smooth
before 6 approaches a transition point, and be non-smooth
graphically at transition points.

Transition Point The emergence of a transition point is
owing to indices change in .4, which is characterized by the
variation w.r.t. the norm value of C,. Meanwhile the ODE
wouldn’t work correctly due to they are non-differentiable
points.

As it’s evident in optimality conditions, a non-zero wy
will decay to 0 as ||C,|| < a/d, is found, meanwhile, index
g is removed from set A. In our implementation, based on
the continuity of solutions given by an ODE solver, we can
set wy = 0 (g € A) as soon as it reaches the opposite sign
(i.e. path pass through 0).

Alternatively, when the norm value of Cy(g € A) comes
to ay/dgy, the g-th group becomes active and will be added
into A. (3) indicates that C4(g € .A) shares the collinearity
with wY. Therefore an extreme short syntropic coefficient
vector eC, may be used as an approximation near transi-
tion point, which will give a start value for the following
ODE solver, where € is a user-defined tuning parameter and
only lead into a controllable approximation. Note that C,
has the property of continuity, but is non-monotonic about
0. With that, we can keep observation on the sign and value
of [|Cyl| — ay/dg for each g in A while solving the solu-
tion path to estimate whether there exists a transition point
potentially.

Detailed Algorithm

In the updating process, we track the solutions with regard
to 6. After detecting a new turning point, we need to reset A
and recompute solutions. The above procedure is repeated
until we traverse the entire interval [0, 1]. We show the de-
tailed updating algorithm in Algorithm 1.

Remark 2 Note if the whole path is smooth on [0, 1], al-
gorithm needn’t cost extra time on detecting specific loca-
tions and recalculating the solution path, which apparently
reduces the computation complexity when there are no tran-
sition points.

Acceleration Technique Based on our empirical experi-
ence, in most updating processes, there have few changes on
active set. Thus we can firstly solve w using (4) with the
presumption of there are no turning points. Meanwhile we
have to test whether our hypothesis is correct at the end of
the interval.

Proposition 2 We assume that the data matrix
X A is linearly independent w.rt. its columns, then
GXnew AXnew, A + Xf‘XA + aV2R is a real symmetric

positive definite matrix, where 6 € [0, 1].

We provide the detailed proof in our Appendix B. During
the derivation of (4), we essentially solved a linear system.



Algorithm 1:
Lasso
Input: Initial solution wo, X, ¥, Xpnew> Ynew
Output: Optimal w
1: Set A according to wg, § = 0 (or § = 1 for decremen-
tal).

Chunk Incremental (Decremental) Group

2: Partition w4, X 4, Xpew,4 by A.

3: Solve (4) at § = 1 (or @ = 0 for decremental).

4: if (3) was not met then

5 0 = 0 (or § = 1 for decremental).

6 while 6 < 1 (or > 0 for decremental) do

7 Solve (4) and detect transition point simultane-
ously.

8: if g-th group turns to inactive then

9: wy = 0.

10: Remove ¢ from A.

11: else if g-th group becomes active then

12: wy = €Cy.

13: Put g into A.

14: end if

15: Update w 4, X 4 and X,,¢,,, 4 according to the up-
dated A.

16:  end while

17: end if

The above proposition guarantees that Cholesky decompo-
sition can be utilized in the computations to raise the effi-
ciency (Golub and Van Loan 2013). The linearly indepen-
dence in Proposition 2 is easily guaranteed in a majority of
real-world datasets and tasks, especially the sample size is
relatively large. It’s an optional optimization that can be used
when the preconditions of no linear dependence can be en-
sured a priori, and we didn’t use it (along with acceleration)
in each test for fairness.

Theoretical Analysis

In this section, we first provide the theoretical proof to The-
orem 1, then give the complexity analysis of Algorithm 1.

Derivation of ODEs in Theorem 1
~ 2
Recall Go(w) = 1 HX'w - g7HF + aR(w). The KKT

point of the original problem can be obtained by w*(0) =
arg min,, {Ge (w) }. With a change of Af, we can calculate
the difference of the optimal w*, which implies w*(6 +
Af) — w*(0), as follows:

"(0) + Aw) — Gy (w*(0))}

Aw™* = argmin {Gp+ag (w
Aw
&ef arg min{D}.
Aw

By discarding the zero component (i.e. only pay atten-
tion to active set A), and for convemence we define F =
Xaw}(0) —y. Wereset R(w) = 3- . 4 \/dg [|[w?]|, . The
Go(w) can be expanded as

ler= 1 ~p
= _ETE+ 30" 676 4+ aR(w),

Go(w) = 3

&)
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from which will be substituted into the D. After simplifica-
tion and reorganization, we obtain

D= %sz [(9 + Ae)Xnew AXnew,.A + XiXA] A’UJ_A
—+ [(9 + AG)gTXnew,.A + E’TX-A} A’lU_A

P,
+a[R(wh(0) + Awa) — R (wi(9))] + §5T6 - Af.
With utilization of the Taylor series expansion on

R (w () + Aw4) at the value of w (), the D turns into:
- [(e + A0 X pewn + BT X A] Awy
1
+ §A'w£ [(9 + AQ) new AXnew, A + XAXA] Awy

- [(VR)TAw A+ §Aw§ (V°R) Aw 4+

o0

Z ; (VPR) (Aw4)?| + %STS- Ab

- [(0 + AG)STXMW A+ ETX A+ a(VR)T] Aw 4+

Aw [(9 + A0) X ey aXnew, A + XiX4+aVv R]

DN =

CAw g+ 5T5 A0+az (VPR) (Aw,)P,

p=3

where VPR(p > 1) is coefficient matrix in high-
dimensional space. Specifically, V2R = diag(By,- - , Bx)
is a block diagonal matrix that the off-diagonal elements

Vg (Ilw? P T—wwT)

Tw 9 €A

where Z denotes identity matrix. As mentioned before,
Aw* = argmina,, D, according to the stationarity con-
dition (Boyd, Boyd, and Vandenberghe 2004), we get:

are 0, where B,

o0

1 D / *\p—1
= a;m (VPR) (Aw})

oD

D(Awa) *

[0+ A0)X]

new,A

Xnewa + X5Xa + oV R] Aw’+

(B+A0)XT (6)

new,

40+ X E+aVR =0,

where (-)’ is derivative note. Then, we rewrite (3) as:

XYE +0X!,, 40 +aVR =0. (7)

Consequently, those terms vanish in (6). We now construct
the difference equation about 6:

2 (VPR) (Aw*)P !
a Z Ep — 1)| ( AAQ) [(0 + Ag)Xnew _AXnew,.A
p=3 ’
TP
T 2 Aw .A
+ X3Xa+aVR] e +XnewA5_



By taking limit A@ — 0 on both sides, the above difference
equation turns into ordinary differential equation system. At
first, we calculate limitation on T, as:

= (VPR) [w (0 + AG) — w (0)]"
Yy =2 G A Y] ’

which satisfies the hypotheses H; of L'Hospital’s rule (Tay-
lor 1952), along with the application of Proposition 1 we
have:

A3 Gy o) w0 o)
SR
_;(p_Q)! 0=0.

Here we have the integral ingredients to derive the ODE for
exact solution path w.r.t. 6:
dw’ Aw’
Ao~ Abso Af
= lim —[(0+AOXT Xnew XTx
Aégo [( + ) new,A > 7A+ AN A

+aVPR] T XTI, 40,
which derives the conclusion of Theorem 1.

Complexity

In each iteration of Algorithm 1, we mainly solve the (4) and
compute the C,, which has an overall computational cost of
order O(|A|?) and O((m + N)n) (or O((m — N')n) for
decremental cases).

For m > n, the solution of (1) could be non-unique (Roth
and Fischer 2008), but the solution path can still be obtained
as we solve the ODEs with initial value. When m > n the
assumption in Proposition 2 can not be held, and under this
exceptional circumstances ODE takes longer time than the
batch-mode mainly due to the heavier matrix computation
burden on the right-hand side of (4).

Experiments

In this section, we first provide the experimental setup and
then present our experimental results and discussion.

Experimental Setup

Our experiments are delivered from three perspectives.
Correctness. To assess the validity of our derivation at first,
we employ several well-known datasets, e.g., Boston house-
prices (Harrison Jr and Rubinfeld 1978), to make direct
comparisons of numerical solutions wg, w; and ws, which
on behalf of batch training on 5% samples (i.e., initial solu-
tion feed into algorithm), incremental training (i.e., add sin-
gle sample each time) and batch training on 100% samples,
respectively.

Accuracy. To prove the practicability of Algorithm 1, we
compare the training process of CIGL and CDGL with batch
algorithm and existing online framework for group lasso us-
ing dual averaging method, i.e., DA-GL (Yang et al. 2010).
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Dataset Size  Dimension
Yolanda 50000 100
BNG(libras_move) 30000 90
satellite_image 6435 37
BNG(wisconsin) 50000 32
cpu_act 8192 22
MR#1 100 1000
MR#2 100 2000
MR#3 100 3000

Table 2: Summary of the real-world dasetsets and synthetic
data in experiments.

We conduct training tasks on real-world data and man-
made regression datasets (MR#1). Table 2 summarizes these
datasets we used. We select 25% samples in training set
to perform chunk incremental updating. Moreover, we uti-
lize the well-trained model to restore a degenerate model
by chunk decremental updating for 25% samples in trained
model. We compare the average Root Mean Squared Error
(aRMSE) between several methods in five runs. For online
DA-GL, we train it by successive addition of single data to
simulate chunk updating. The « with different values are
chosen to justify the effectiveness of our algorithm under
various sparsity patterns.
Efficiency. For demonstrating the performance of our algo-
rithm, we evaluate average processing times in 10 runs when
executing one chunk updating (N' = 5) using our “CIGL
(CDGL)” and other methods (i.e., conventional batch-mode
& existing online framework) under diverse data scales.
Additionally, we test the training time on m > n cases
based on MR#1~3. In order to verify the influence of
high-dimensional situation on efficiency, in our generated
MR#1~-3, we keep the data size while increasing number
of variable dimensions.

Implementation

We implement our Algorithm 1 in Python 3.7. Specifically,
we adopt a widely-used batch training algorithm of group
Lasso using FISTA optimiser (Beck and Teboulle 2009) with
a gradient-based adaptive restarting scheme' (O’donoghue
and Candes 2015). Besides, we use online learning frame-
work for group Lasso in MATLAB code?. More details are
stated in Appendix C.

Results & Discussions

Firstly, we place the result on Boston house in Table 4,
we can intuitively see that our algorithm yields the opti-
mal w after hundreds of iterations and recovers the right
sparsity pattern. From the generalization error in Table 3,
our algorithm enjoys high precision in both incremental and
decremental updating, which is characterized by the nearest
aRMSE to batch method compared with online framework.

!Code available at https://github.com/yngvem/group-lasso
2Code available at https://hqyang.github.io/tools



Dataset Group | Regularization Incremental Decremental
Partition a DA-GL CIGL Batch-mode | CDGL Batch-mode
0.2 10.066£0.229 10.027 10.027 10.230 10.230
P-15 0.5 10.769+0.495  10.772 10.772 10.791 10.791
Yolanda 0.2 10.089+0.130  10.076 10.076 10.274 10.274
P-25 0.5 10.849+0.133  10.791 10.791 10.791 10.791
02 4.045£0.097  4.031 4.032 G117 4117
P-15 0.4 3.966+0.233  4.287 4287 4341 4341
BNG(libras_move) 0.2 4.00240.099  4.023 4.023 4.109 4.109
P-20 0.4 427340242 4274 4275 4341 4341
02 1.55340.092  1.550 1.550 1.667 1.667
o P-5 0.4 1.868+0.020  1.871 1.871 2.044 2.044
satellite_image 0.2 1.49840.026  1.554 1.554 1.649 1.649
P-10 0.4 1.856+0.336  1.854 1.854 2.099 2.099
02 2094210975 29018 299018 | 29.976  29.976
P-5 0.4 30.16240.703  30.159  30.159 | 30.346  30.346
BNG(wisconsin) 0.2 29.645+0.670 29916 29916 | 29.971 29.971
P-10 0.4 30.142-40.471 30.144  30.144 | 30312 30312
02 20.347+2.497 18.105 18.105 18.866 18.866
P-200 0.4 19.35141.388  18.042 18.042 18.896 18.897
MR#1 0.2 20.34142.687 18.203 18.202 18.550 18.550
P-300 0.4 20.346+0.539  18.053 18.053 18.608 18.609

Table 3: The aRMSE (mean = std.) results. Any variance less than 10~ are omitted. “CIGL (CDGL)” and “Batch-mode”
represent each iteration is trained with a chunk of new samples, or using batch algorithm to retrain from scratch, respectively.
P-i denotes each group has ¢ features and the remaining belongs to one group.

Group | wop w1y wso
-0. 0. -0.
I -0. 0. 0.
-0. 0. -0.
0. 0. 0.
| 0. 0.
0. 1.2713 1.2712
0. -0.4367 -0.4367
m | -0. 00217 00217
-0. -0.2584 -0.2584
-0. -0.5755 -0.5756
0. -1.3899 -1.3898
Iv | 0. 07064 0.7065
-0.  -2.2596 -2.2596

Table 4: Solutions comparison on Boston house, where w
is initial solution on 5% samples, w; and w; represent so-
lutions on 100% samples using our algorithm or batch train-
ing, respectively.

This indicates the effectiveness and accuracy of our algo-
rithm.

Figure 2 and 3 present the running time. The results
clearly demonstrate that there exists a huge time gap com-
pared to other learning strategies while our CIGL & CDGL
keeping the similar precision. Although online framework
may directly update analytically in a faster way, it’s NOT an
exact algorithm and suffers restriction in incremental learn-
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ing, and more importantly, the parameters such as 7, is ought
to be tuned on the validation dataset to gain an acceptable
performance.

Furthermore, the training time in Figure 4 suggests our al-
gorithm is inefficient in exceptional high-dimensional cases
due to the increased time on solving (4). Particularly, in
m > n, the advantages of CIGL & CDGL algorithm are
gradually erased as m grows.

Application

Aside from online circumstances, our proposed algorithm
can also be adapted to cross validation (CV).

Leave-one-out cross validation. For k-fold CV, utmost
k gives leave-one-out CV (LOOCYV) that gives unbiased es-
timation of model but always costly to compute (Friedman
et al. 2001). We show the histogram of the number of tran-
sition points when solving the group Lasso under LOOCV
in Figure 5, similar results on more datasets are provided in
Appendix D. The histograms found there exists tiny number
of transition points in majority iterations, which demonstrate
our incremental and decremental approach is particularly ef-
ficient given this scenario.

Extensions

Extension 1 (Overlapped group Lasso) We can extend al-
gorithm to overlapped group Lasso (Jacob, Obozinski, and
Vert 2009) while we assume that there exists at least one
feature belonging to distinct groups. In this more general
situation, we can simply duplicate the overlapped vari-
ables as performed similarly in (Jacob, Obozinski, and Vert
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Figure 2: Efficiency comparison of chunk incremental updating. The y-axis denotes running time (in seconds).
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Figure 3: Efficiency comparison of chunk decremental updating. The y-axis denotes running time (in seconds).

sity but also zero coefficients within each active group (i.e.

120 . 2 . .
I 200] et T s within group sparsity). Our idea can apply but a more ef-
So— N p— —— — . . .. . .
R L ) fective manner for detecting transition point still need to be
—— CIGL(a=0.1) == CIGL(a=0.1) explored in future.
= CIGL(a=0.3) ~= CIGL(a=0.3)
=== Batch(a=0.1) 50{ === Batch(a=0.1)
201 e Batch(a=0.3) === Batch(a =0.3)
105507
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Figure 4: Results on MR#2~3. The y-axis denotes running
time (in seconds).

Probability

2 3 4 5 6 7 8
# transition points

2009), then the input data X € R™*™ turns into X S
R™*219l(g = 1,..,G). Thus Algorithm 1 can handle it to

compute the solution in overlapped case. Figure 5: Histogram of LOOCV. The dataset with size

1000 x 100 is generated similar to MR#1~3.
Extension 2 (Sparse group Lasso) Setting the Rq(w) in
equation (2) as aZle Vg [lwgll, +asl|wl|y gives the
sparse group Lasso regularized model (Simon et al. 2013).
We found out that the ODE (4) is also applicable to this
problem. We provide experimental verification in Appendix
D. Meanwhile (3) should be recast as Cqy = a\/dig”qw”ﬁ +

[71, 1] w; = 0
sign(w;) else

Conclusion

To alleviate group Lasso’s extensive computation cost in dy-
namic scenario, the CIGL & CDGL is thus proposed. The

Thus experimental results confirm that our method is more effi-

oy, where u € d||lw||; = {

the threshold condition not only includes group-wise spar-
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cient than the existing online group Lasso and batch algo-
rithm while retaining high accuracy.
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