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Abstract

Strategic classification, i.e. classification under possible
strategic manipulations of features, has received a lot of at-
tention from both the machine learning and the game theory
community. Most works focus on analysing properties of the
optimal decision rule under such manipulations. In our work
we take a learning theoretic perspective, focusing on the sam-
ple complexity needed to learn a good decision rule which
is robust to strategic manipulation. We perform this analysis
by introducing a novel loss function, the strategic manipula-
tion loss, which takes into account both the accuracy of the
final decision rule and its vulnerability to manipulation. We
analyse the sample complexity for a known graph of possi-
ble manipulations in terms of the complexity of the function
class and the manipulation graph. Additionally, we initialize
the study of learning under unknown manipulation capabil-
ities of the involved agents. Using techniques from transfer
learning theory, we define a similarity measure for manipula-
tion graphs and show that learning outcomes are robust with
respect to small changes in the manipulation graph. Lastly,
we analyse the (sample complexity of) learning of the ma-
nipulation capability of agents with respect to this similarity
measure, providing novel guarantees for strategic classifica-
tion with respect to an unknown manipulation graph.

1 Introduction

In many scenarios where a decision rule is learned from
data, the publication of this decision rule has an effect on
the distribution of the underlying population that may harm
the quality of the rule. For example, applicants for a loan
may change details in their bank account to receive a bet-
ter score, people may join a gym or sports club without ever
intending to participate, in order to get a better health insur-
ance policy, or students may employ different strategies such
as registering to volunteer, or joining rare clubs (without at-
tending either) to appear better on college applications.
Effects and incentives resulting from strategic behavior
in classification scenarios have received substantial attention
from both machine learning and game-theoretic perspectives
in recent years (Hardt et al. 2016; Milli et al. 2019; Hagh-
talab et al. 2020; Tsirtsis and Rodriguez 2020; Zhang and
Conitzer 2021). Most works study this as a two-player game
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between an institution that publishes a decision rule and a
population of best responding agents to be classified. Given
the classifier, these agents may change their feature repre-
sentations in order to obtain a more favorable classification
outcome. To prevent the induced additional classification
error the institution will publish a modified predictor, not
transparently reflecting the underlying intent and potentially
causing additional harm to sub-populations that may be less
equipped to perform the required changes to their represen-
tations (Hu, Immorlica, and Vaughan 2019).

In this work, we propose a learning theoretic take on
this scenario. In machine learning, it is common to model
desiderata for a learning outcome in form of a loss func-
tion. The goal of the learning process is then to identify a
predictor that minimizes this loss in expectation over a data-
generating distribution. Thus, we here define a novel loss
function for learning under strategic manipulations. The aim
of this loss is to induce a combination of two (potentially
competing) requirements: achieving low classification error
taking into account that individuals being classified may ma-
nipulate their features, and discouraging such feature ma-
nipulations overall. Prior work has shown that these may
be conflicting requirements (Zhang and Conitzer 2021). Our
proposed loss function thus aims to induce a balanced com-
bination of these requirements rather than strictly enforcing
one, and then only observing the effect on the other (as is
implied by frameworks that aim to minimize classification
error under best-responding agents (Hardt et al. 2016; Milli
et al. 2019) or enforcing incentive-compatibility (Zhang and
Conitzer 2021)).

To define our strategic manipulation loss we employ an
abstraction of the plausible feature manipulations in form of
a manipulation graph (Zhang and Conitzer 2021). An edge
x — X’ in this graph indicates that an individual with fea-
ture vector x may change their features to present as x’ if
this leads to a positive classification, for example since the
utility of this change in classification exceeds the cost of the
change between these vectors. We define our strategic loss
in dependence of this graph and carefully motivate the pro-
posed loss in terms of requirements and effects from pre-
vious literature. We then analyze the sample complexity of
learning with this loss function. We identify sufficient con-
ditions for proper learnability that take into account the in-
terplay between a hypothesis class and an underlying ma-



nipulation graph. Moreover, we show that every class that
has finite VC-dimension is learnable with respect to this
loss by drawing a connection to results in the context of
learning under adversarial perturbations (Montasser, Han-
neke, and Srebro 2019). This effect may be surprising, since
it presents a contrast to learning VC-classes with the sole
requirement of minimizing classification error under strate-
gic feature manipulations, which has been shown can lead
to some VC-classes not being learnable (Zhang and Conitzer
2021). Thus, our analysis shows that balancing classification
error with disincentivizing feature manipulations can reduce
the complexity of the learning problem.

Moreover, we show that the quality of learning outcomes
under our loss function is robust to inaccuracies in the ma-
nipulation graph. Such a robustness property is important,
since an assumed graph might not exactly reflect agents’ re-
sponses. In fact, it has recently been argued that the model of
best-responding agents is not backed up by empirical obser-
vations on agent distributions after strategic responses (Ja-
gadeesan, Mendler-Diinner, and Hardt 2021). Moreover, dif-
ferent sub-populations may have differences in their manip-
ulation graphs (different capabilities to manipulate their fea-
tures) or a manipulation graph may be inferred from data
and therefore exhibit statistical errors. We introduce a novel
distance measure between manipulation graphs by drawing
connections to learning bounds in transfer learning (Ben-
David et al. 2010; Mansour, Mohri, and Rostamizadeh 2009)
and show that the strategic loss of a learned predictor when
employing a different manipulation graph can be bounded
in terms of this distance measure. Finally, we present some
initial results on how manipulation graphs may be learned
from data.

1.1 Related Work

That learning outcomes might be compromised by agents
responding to published classification rules with strategic
manipulations of their feature vectors was first pointed out
over a decade ago (Dalvi et al. 2004; Briickner and Scheffer
2011) and has received substantial interest from the research
community in recent years initiated by a study by Hardt et al.
that differentiated the field from the more general context of
learning under adversarial perturbations (Hardt et al. 2016).
That study considered strategic responses being induced by
separable cost functions for utility maximizing agents and
studied the resulting decision boundaries for certain classes
of classifiers. Recent years have seen a lot of interest in
better understanding the interplay of various incentives in
settings where a decision rule is published and thereby has
an effect on how the entities that are to be classified might
present themselves to the decision-maker. In particular, vari-
ous externalities to this scenario have been analyzed. A gen-
eral cost to society formalized in form of a “social burden”
incurred by the costs of enforced feature manipulation, has
been shown to occur when institutions anticipate strategic
responses (Milli et al. 2019; Jagadeesan, Mendler-Diinner,
and Hardt 2021). Further, it has been demonstrated how such
a burden may be suffered to differing degrees by various
subgroups of a population that may differ in their capabili-
ties to adapt their features in ways that are favorable to them
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(Milli et al. 2019; Hu, Immorlica, and Vaughan 2019), rais-
ing concerns over fairness in such scenarios.

Recent studies have extended the original game-theoretic
model of a classifier publishing intuition and best respond-
ing subjects. For example, a recent work studied how strate-
gic modification can also be a positive effect and how
that should be taken into consideration by the institution
(Haghtalab et al. 2020). Such a perspective has been con-
nected to underlying causal relations between features and
classification outcome and resulting strategic recommenda-
tions (Miller, Milli, and Hardt 2020; Tsirtsis and Rodriguez
2020). Further, a very recent study has explored how the
model of a best responding agent may be relaxed to bet-
ter reflect empirically observed phenomena (Jagadeesan,
Mendler-Diinner, and Hardt 2021).

Much of previous work considers the scenario of classi-
fication with strategic agents on a population level. A few
recent studies have also analyzed how phenomena observed
on samples reflect the underlying population events (Hagh-
talab et al. 2020). Notably, very recent studies provided first
analyses of learning with strategically responding agents in a
PAC framework (Zhang and Conitzer 2021; Sundaram et al.
2021). The former work studied the sample complexity of
learning VC-classes in this setup and analyzed effects on
sample complexity of enforcing incentive compatibility for
the learned classification rules. Our work can be viewed as
an extension of this analysis. We propose to combine aspects
of incentive compatibility and minimizing negative exter-
nalities such as social burden in form of a novel loss func-
tion that may serve as a learning objective when strategic
responses are to be expected.

Our sample complexity analysis is then hinging on tech-
niques developed in the context of learning under adversarial
perturbations, a learning scenario which has received con-
siderable research attention in recent years (Feige, Mansour,
and Schapire 2015; Cullina, Bhagoji, and Mittal 2018; Mon-
tasser, Hanneke, and Srebro 2019, 2021). While the learn-
ing problems are not identical, we present how strategic be-
haviour can be modeled as a form of “one-sided adversarial
perturbation” and inheritance of resulting learning guaran-
tees.

1.2 Overview on Contributions

In Section 2 we review our notation and then introduce our
new notion of strategic loss and motivate it. Our main con-
tributions can be summarized as follows:

Strategic manipulation loss We propose a novel loss func-
tion for learning in the presence of strategic feature ma-
nipulations. We carefully motivate this loss by relating
it to concepts of social burden and incentive compatibil-
ity (and their potential trade-offs with accuracy) in prior
literature.

Sample complexity analysis We analyze (PAC type) learn-
ability of VC-classes with the strategic loss. We provide
sufficient conditions (and examples of when they are sat-
isfied) for learnability with a proper learner. By drawing
connections and adapting results from learning under ad-
versarial perturbations to our setup, we also show that,



while proper learnability can not always be guaranteed,
every VC-class is learnable under the strategic loss with
an improper learner.

Robustness to inaccurate manipulation information

We investigate the impact of using an approximate
manipulation graph to yield a surrogate strategic loss
function for cases where the true manipulation graph
is not known or not accessible. For this, we introduce
a novel similarity measure on graphs and show that if
graphs are similar with respect to our notion then they
yield reasonable surrogate strategic losses for each other
(Theorem 6).

Learning the manipulation graph We explore the ques-
tion of whether it is possible to learn a manipulation
graph that yields a good surrogate strategic loss. We iden-
tify a sufficient condition for a class of graphs G being
learnable with respect to our previously defined similar-
ity measure for graphs (Theorem 7), which in turn guar-
anteed the learning of a reasonable surrogate loss.

All proofs can be found in the appendix of the full version
(Lechner and Urner 2022).

2 Setup

2.1 Basic Learning Theoretic Notions for
Classification

We employ a standard setup of statistical learning theory for
classification. We let X C R9 denote the domain and )
(mostly Y = {0,1}) a (binary) label space. We model the
data generating process as a distribution P over X x ) and
let Py denote the marginal of P over X'. We use the notation
(x,y) ~ P to indicate that (x, y) is a sample from distribu-
tion P and S ~ P™ to indicate that set S is a sequence (for
example a training or test data set) of n i.i.d. samples from
P. Further, we use notation 1p(x) = P ply = 1 | X]
to denote the regression or conditional labeling function of
P. We say that the distribution has deterministic labels if
np(x) € {0,1} forall x € X.

A classifier or hypothesis is a function h : X — ).
A classifier h can naturally be viewed a subset of X' x ),
namely h = {(x,y) € ¥ x Y | x € X, y = h(x)}. We
let F denote the set of all Borel measurable functions from
X to Y (or all functions in case of a countable domain). A
hypothesis class is a subset of F, often denoted by H C F.
For a loss function ¢ : F x X x )Y — R we denote the
expected loss for a distribution P as L£p and the empirical
loss for a sample S as Lg. We use standard definitions like
PAC learnability, sample complexity, and approximation er-
ror. For further elaborations on these definitions, we refer the
reader to the appendix for an extended definitions section or
a textbook (Shalev-Shwartz and Ben-David 2014).

2.2 Strategic Classification

Learning objectives in prior work The possibilities for
strategic manipulations of a feature vector are often mod-
eled in terms of a cost functionc : X x X — R(J{, so that
¢(x,x’) indicates how expensive it is for an individual with
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feature vector x to present as x’. A natural minimal assump-
tion a cost function should satisfy is ¢(x,x) = 0 for all fea-
ture vectors x. It is then typically assumed that instances
best-respond to a published classifier, in that the individual
x would choose to pay the cost of presenting as x’ as long as
the cost doesn’t exceed the utility that would be gained from
the difference in classification outcome. Assuming the ben-
efit of individual x receiving classification 1 over classifica-
tion 0 is 7, the manipulation would happen if ¢(x,x") < v
and h(x) = 0 while h(x) = 1 for a given classifier. That is,
we can define the best response of an individual with feature
vector x facing classifier h as

br(x, h) = argmax,, ¢ [y - h(x') — c(x,%x")],

with ties broken arbitrarily, and assuming that, if the origi-
nal feature vector x is among those maximizing the above,
then the individual would choose to maintain the original
features. An often assumed learning goal is then performa-
tive optimality (Perdomo et al. 2020; Jagadeesan, Mendler-
Diinner, and Hardt 2021), which stipulates that a learner
should aim to maximize accuracy on the distribution it in-
duces via the agent responses. That is, this objective can be
phrased as minimizing

E

L [h(br(x, h)) # y]
(x,y)~P

An alternative view on this setup, if the agent responses are
deterministic, is to view the above as minimizing the binary

loss of the effective hypothesis h : X — {0,1} that is in-
duced by h and the agents’ best responses br(-,-) (Zhang
and Conitzer 2021), defined as

h(x) = h(br(x, h)). (1)
The goal of performative optimality has been combined
with the notion of social burden that is induced by a clas-
sifier (Milli et al. 2019; Jagadeesan, Mendler-Diinner, and
Hardt 2021). This notion reflects that it is undesirable for a
(truly) positive instance to be forced to manipulate its fea-
tures to obtain a (rightfully) positive classification. This is
modeled by considering the burden on a positive individual
to be the cost that is incurred by reaching for a positive clas-
sification and the social burden incurred by a classifier to be
the expectation with respect to the data-generating process
over these costs:

E

brdp(h) =
(x,y)~P

: ! !/
h =1 =1
min{c(x,x) [ A(x) =1} | y
It has been shown that optimizing for performative optimal-
ity (under the assumption of deterministic best-responses)

also incurs maximal social burden (Jagadeesan, Mendler-
Diinner, and Hardt 2021).

A new loss function for learning under strategic manipu-
lations Arguably, to seek performative optimality (or min-
imize the binary loss over the effective hypothesis class) the
cost function as well as the value v (or function v : X — R)
of positive classification needs to be known (or at least ap-
proximately known). To take best responses into account,
a learner needs to know what these best responses may



look like. In that case, we may ignore the details of the
cost function and value v, and simply represent the collec-
tion of plausible manipulations as a directed graph struc-
ture M = (X, E) over the feature space X' (Zhang and
Conitzer 2021). The edge-set E consists of all pairs (x,x")
with ¢(x,x") < =, and we will also use the notation x — x’
for (x,x’) € E, and write M = (X, E) = (X, —). We note
that this formalism is valid for both countable (discrete) and
uncountable domains.

Given the information in the so obtained manipulation
graph M = (X,—), we now design a loss function for
classification in the presence of strategic manipulation that
reflects both classification errors and the goal of disincen-
tivizing manipulated features as much as possible. Our pro-
posed loss function below models that it is undesirable for a
classifier to assign h(x) = 0 and h(x’) = 1 if feature vec-
tor x can present as x’. This is independent of a true label y
(e.g. if (x,y) is sampled from the data generating process).
If the label y = 0 is not positive, the point gets misclassified
when x presents as x’. On the other hand, if the true label is
1, then either a true positive instance is forced to manipulate
their features to obtain a rightly positive outcome (and this
contributes to the social burden), or, if the choice is to not
manipulate the features, the instance will be misclassified
(prior work has also considered models where true positive
instance are “honest” and will not manipulate their features
(Dong et al. 2018)). Here, we propose to incorporate both
misclassification and contributions to social burden into a
single loss function that a learner may aim to minimize.

Definition 1. We define the strategic loss {7 : F x X X
Y — {0, 1} with respect to manipulation graph (X, —) as
follows:

L ifh(x) #y

1 ifh(x)=0and

Ix' withx — x" and h(x') =1
else

7 (h,x,y) =
0

Note that the first two cases are not mutually exclusive.
The above loss function discretizes the social burden by
assigning a loss of 1 whenever a positive individual is re-
quired to manipulate features. As for the standard classifica-
tion loss, the above point-wise definition of a loss function
allows to define the rrue strategic loss L5 (h) and empirical
strategic loss L3 (h) of a classifier with respect to a distri-
bution P or a data sample S.

2.3 Comparison With Alternative Formalisms for
Strategic Classification

To motivate our proposed loss, we here discuss several sce-
narios where, we’d argue, minimizing the strategic loss leads
to a more desirable learning outcome than learning with a bi-
nary loss, while taking strategic manipulations into account.
As discussed above, a common approach to modeling classi-
fication in a setting where strategic manipulations may occur
is to assume that all agents will best-respond to a published
classifier. That is, if h(x) = 0, h(x') = 1 and x — %/, then
the agent with initial feature vector x will effectively receive
classification 1. A natural modeling is then to consider the
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effective hypothesis h induced h (see Equation 1) and aim
to minimize the classification error with the effective class
H = {f | f = hforsomeh € H} (Zhang and Conitzer
2021). However it has been shown, that the VC-dimension
of H may be arbitrarily larger than the VC-dimension of H,
and may even become infinite (Zhang and Conitzer 2021).
When learning this effective class # with respect to the bi-
nary loss (which corresponds to aiming for performative op-
timality), this will imply that the class is not learnable. By
contrast, we will show below that any class of finite VC-
dimension remains learnable with respect to the strategic
loss (Theorem 5).

It has also been shown that the negative effects in terms
of sample complexity of considering the effective hypoth-
esis class can be avoided by considering only incentive-
compatible hypotheses in H, that is outputting only such
hypotheses that will not induce any feature manipulations
in response to the published classifier (Zhang and Conitzer
2021). While this avoids the growths in terms of VC-
dimension, it may prohibitively increase the approximation
error of the resulting (pruned) class as we show in the ex-
ample below. We would argue that this illustrates how low
sample complexity, in itself, is not a sufficient criterion for
learning success.

Example 1. Consider X = N and a manipulation graph
that includes edges n — n+ 1and n — n — 1 for all
n € N. This is a reasonable structure, considering that the
cost of moving the (one-dimensional) feature by 1 is worth
a positive classification outcome. However, the only two hy-
potheses that are incentive compatible in this case are the
two constant functions hg : X — {0} and hy : X — {1}.
Thus, requiring incentive compatiblity forces the learner to
assign all points in the space with the same label. This class,
in fact, has low sample complexity. However, arguably, re-
stricting the learning to such a degree (and suffering the
resulting classification error, which will be close to 0.5 for
distributions with balanced classes), is, in most cases not a
reasonable price to pay for dis-incentivising feature manip-
ulations.

The following example illustrates how our loss function
can be viewed as incorporating the notion of social burden
directly into the loss.

Example 2. Let’s again consider a domain X N
and a manipulation graph M with edges n — n + 1
for all n € N. We consider distributions that have sup-
port {(1,0),(2,0),(3,1), (4, 1)}, thus only these four points
have positive probability mass and a hypothesis class of
thresholds H = {h, | a € R}, with he(x) = 1 [x > al. The
true labeling on these distributions is n(x) = ha5(x). On
all distributions, where all four points have positive mass
the performatively optimal hypothesis (or effective hypoth-
esis of minimal binary loss) however is hss. The social
burden incurred then is brdp(hss) = P((3,1)) - ¢(3,4).
It is important to note that the performative optimality of
hs.s is independent of the distribution P over the points.
A learner that minimizes the strategic loss, on the other
hand, will take the distribution P into account and out-
put has if P((2,0)) < P((3,1)), while outputting hs 5 if



P((2,0)) > P((3,1)). If the difference in mass of these
points (or the margin areas in a more general setting) is sig-
nificant, then minimizing the strategic loss will opt for allow-
ing a small amount of manipulation in turn for outputting a
correct classification rule in case P((2,0)) < P((3,1));
and it will opt for changing the classification rule, accept a
small amount of social burden in exchange for preventing a
large amount of manipulations and resulting classification
errors, in case P((2,0)) > P((3,1)). We would argue that
this reflects a desirable learning outcome.

3 Learnability With the Strategic Loss
3.1 Warm Up: Loss Classes and Learnability

It is well known that a class H is learnable (with respect
to the set of all distributions) if the loss class induced by a
0/1-valued loss function ¢ has finite VC-dimension. In the
case of the binary classification loss, this is in fact a charac-
terization for learnability (and the VC-dimension of the loss
class is identical to the VC-dimension of the hypothesis class
‘H). In general, bounded VC-dimension of the loss class is a
sufficient condition for learnability (the VC-dimension pro-
vides an upper bound on the sample complexity), but it is not
a necessary condition (it doesn’t, in general, yield a lower
bound on the sample complexity of learning a class H with
respect to some loss £). We start by reviewing these notions
for the classification loss and then take a closer look at the
loss class induced by the strategic loss.

Let ¢ be a loss function and & be a classifier. We define
the loss set hy C X x ) as the set of all labeled instances
(x,y) on which h suffers loss 1. The loss class H; is the
collection of all loss sets (in the literature, the loss class is
often described as the function class of indicator functions
over these sets). In the case of binary classification loss £/ L
the loss set of a classifier h is exactly the complement of
h in X x ). That is, in this case the loss set of h is also
a binary function over the domain X (namely the function
x — |h(x)—1|). For the strategic loss on the other hand, the
loss set of a classifier & is not a function, since it can contain
both (x,0) and (x,1) for some points x € X, namely if
h(x) = 0 and there exists an x’ with x — x’ and h(x') = 1.
For a class H we let H 0,1 denote the loss class with respect
to the binary loss and H,— the loss class with respect to the
strategic loss.

Definition 2. Let Z be some set andU C 2% be a collection
of subsets of Z. We say that a set S C Z is shattered by U if

{UNS|Uecu} =25,

that is, every subset of S can be obtained by intersecting S
with some set U from the collection U. The VC-dimension
of U is the largest size of a set that is shattered by U (or co
if U can shatter arbitrarily large sets).

It is easy to verify that for the binary loss, the VC-
dimension of H as a collection of subsets of X' x ) is iden-
tical with the VC-dimension of H,,1 (and this also coin-
cides with the VC-dimension of H as a binary function class
(Shalev-Shwartz and Ben-David 2014); VC-dimension is of-
ten defined for binary functions rather than for collection of
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subsets, however, this is limiting for cases where the loss
class is not a class of functions).

We now show that the VC-dimension of a class H and
its loss class with respect to the strategic loss can have an
arbitrarily large difference. Similar results have been shown
for the binary loss class of the effective class H induced by
a manipulation graph (Zhang and Conitzer 2021). However
the binary loss class of H is different from the strategic loss
class of H and, as we will see, the implications for learnabil-
ity are also different.

Observation 1. For any d € NU{oo} there exists a class H
and a manipulation graph M = (X, —) with VC(H) = 1
and VC(H—) > d.

On the other hand, we prove that the VC-dimension of
the strategic loss class H,— is always at least as large as the
VC-dimension of the original class.

Observation 2. For any hypothesis class H and any manip-
ulation graph M = (X, =), we have VC(H) < VC(H,-).

Standard VC-theory tells us that, for the binary classifica-
tion loss, any learner that acts according to the ERM (Em-
pirical Risk Minimization) principle is a successful learner
for classes of bounded VC-dimension d. For a brief recap
of the underpinnings of this result, we refer the reader to
the supplementary material in the full version (Lechner and
Urner 2022) or to (Shalev-Shwartz and Ben-David 2014).
In the case of general loss classes with values in {0, 1}, the
VC-dimension does not characterize learnability. In particu-
lar, we next show that the VC-dimension of the strategic loss
class does not imply a sample complexity lower bound.

Theorem 3. For every d € N U {oo}, there exists a hy-
pothesis class H with VC(H~) = d that is learnable with
sample complexity O(log(1/8)/€) in the realizable case.

3.2 Sufficient Conditions for Strategic Loss
Learnability

In the previous section, we have seen that the loss class hav-
ing a finite VC-dimension is a sufficient (but not necessary)
condition for learnability with respect to the strategic loss.
We have also seen that the VC-dimension of H,— can be
arbitrarily larger than the VC-dimension of H. To start ex-
ploring what determines learnability under the strategic loss,
we provide a sufficient condition for a class to be properly
learnable with respect to the strategic loss.

Note that for a hypothesis h, the strategic loss set hy—
can be decomposed into the loss set of i with respect to the
binary loss and the component that comes from the strategic
manipulations. We next define the strategic component loss:

Definition 3. We let the strategic component loss with re-
spect to manipulation graph — be defined as
7 (hx) =1[h(x) =0A 3 :x =%, h(x) =1]

We note that 07 (h,x,y) < L%/ (h,x,y) + £+ (h,x). We
will denote the true strategic component loss with respect to
marginal distribution Py as E;:;L.



For the loss sets, we then get

hpn = {(x,y) € X x Y | h(x) #y}, and
{(xy) €eX xY | h(x)=0

AIX i x —x, h(x') =1},

This implies hy— = hyo/1 U hy—, . for all classifiers h € F,
and thereby Hi~ = {hgp, U hys | h € H}. By
standard counting arguments on the VC-dimension of such
unions (see, for example Chapter 6 of (Shalev-Shwartz and
Ben-David 2014) and exercises in that chapter), it can be
shown this decomposition implies that VC(H,~) < dlogd
fOI' d = VC(H@O/l )+VC(H5—>L) = VC(H)+VC(H{—>L )
Thus, if both the class H itself and the class of strategic com-
ponents have finite VC-dimension, then H is properly learn-
able by any learner that is an ERM for the strategic loss:

Theorem 4. Let H be a hypothesis class with finite
VC(H) + VC(Hy—.1) = d < oc. Then H is properly PAC
learnable with respect to the strategic loss (both in the real-
izable and the agnostic case).

Whether the class of strategic components has finite VC-
dimension intrinsically depends on the interplay between the
hypothesis class H and the graph structure of the manipula-
tion graph. In Observation 1, we saw that the graph struc-
ture can yield the strategic component sets to have much
larger complexity than the original class. In the appendix,
Section B, we provide a few natural examples, where the
VC-dimension of the strategic components is finite.

Theorem 4 provides a strong sufficient condition under
which any empirical risk minimizer for the strategic loss
is a successful agnostic learner for a class of finite VC-
dimension. We believe, in many natural situations the con-
ditions in that theorem will hold, and analyzing in more de-
tail which graph structure, combinations of graphs structures
and hypothesis classes or classes of cost function lead to the
strategic component sets having finite VC-dimension is an
intriguing direction for further research.

We close this section with two results, both stated in The-
orem 5, on the learnability under the strategic loss in the
general case where the VC-dimension of the strategic com-
ponent sets may be infinite. First, there are classes and ma-
nipulation graphs for which no proper learner is (PAC-) suc-
cessful, even in the realizable case. Second, for any class of
finite VC-dimension and any manipulation graph, there ex-
ists an improper PAC learner. These results follow by draw-
ing a connection from learning under the strategic loss to
learning under an adversarial loss (Montasser, Hanneke, and
Srebro 2019). In the general adversarial loss setup, every do-
main instance x is assigned a set of potential perturbation
U(x), and the adversarial loss of a hypothesis h is then de-
fined as

M(h,x,y) =13 €Ux): h(x') #y].

The strategic loss can be viewed as a one-sided version of
the adversarial loss, where the perturbation sets differ con-
ditional on the label of a point, and where U (x,1) = {x},
while U(x,0) = {x’ € X | x — x'}. The following results
on learnability with the strategic loss then follow by slight
modifications of the corresponding proofs for learning under
adversarial loss.

h[—»,L
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Theorem 5. (Adaptation of Theorem 1 and Theorem 4
in (Montasser, Hanneke, and Srebro 2019))

There exists a hypothesis class H with VC(H) = 1 that is
not learnable with respect to the strategic loss by any proper
learner A for H even in the realizable case. On the other
hand, every class H of finite VC-dimension is learnable (by
some improper learner).

4 Strategic Loss With Respect to an
Approximate Manipulation Graph

In many situations one might not have direct access to the
true manipulation graph M = (V, E), but only to some
approximate graph M’ = (V, E’). In this section, we will
investigate how this change of manipulation graph impacts
the corresponding loss function. We define a criterion for
measuring the similarity of graphs with respect to hypoth-
esis class H and show that similar graphs will yield sim-
ilar strategic losses. That is, we show an upper bound on
the true strategic loss of a hypothesis & (i.e., strategic loss
with respect to the true manipulation graph) in terms of the
graph similarity and the surrogate strategic loss of A (i.e.,
the strategic loss with respect to the approximate graph). We
will use x ~» x’ to denote (x,x’) € E’. As the set of ver-
tices V is always equal to X" in our setting, the graphs M
and M’ are uniquely defined by — and ~~ respectively. We
will therefore use — and M, as well as ~ and M’ inter-
changeably.

We now define the distance between graphs with respect
to a hypothesis class H by the impact a change of manipula-
tion graph has on the strategic component loss of elements of
‘H. This definition and its later use are inspired by works on
domain adaptation (Ben-David et al. 2010; Mansour, Mohri,
and Rostamizadeh 2009).

Definition 4. For two manipulation graphs, given by — and
~, we let their H- Px-distance be defined as
dy,pe(—,~)=sup E [[7(h,x) — 7 (h,x)|]
heH x~Px

We will now bound the strategic manipulation loss L7 (h)
with respect to the true graph — in terms of the strategic
manipulation loss £F (h) with respect to the approximate
graph ~» and the H-Pyx-distance between — and ~-.

Theorem 6. Let H be any hypothesis class and —, ~> two
manipulation graphs. Then for any distribution P over X x
Y and any h € H we have

L5 (h) < L' (h) + L7 (h) + dipy (=)
<2L7(h)+ dy, P (=, ~).
Furthermore, by rearranging the result, we get

1
§£F(h) - dH7PX (_>a W) < ‘C;)(h)

We note that the expression dy; p, (—, ~») is independent
of the labeling and can therefore be estimated from unla-
beled data. Furthermore, we have seen that small dy p,, (—
,~) tightens the upper as well as the lower bound on
L5 (h). Therefore, dy p,(—,~>) is a suitable distance
measure for approximating the structure of the manipulation
graph. In the following section, we will explore learning ~~
with low dy p, (—, ~>) from finite samples.



5 Learning a Manipulation Graph

In the last section, we have assumed to be given an approx-
imate manipulation graph which we can use to learn a clas-
sifier with low strategic loss. We now want to go one step
further and pose the goal of learning a manipulation graph
~ from a predefined class of graphs G such that £~ serves
as a good strategic surrogate loss for £+, From Theorem 6
we already know that £ is a good surrogate loss for £/~
if dy, p, (—,~) is small. This section will thus focus on
learning an approximate manipulation graph ~~€ G with
small dy p,. (—,~).

In order to further specify our learning problem, we will
now describe what the input of such a learning procedure
will look like. For a manipulation graph —, let B_, : X —
2% be the function that maps an instance x to its set of chil-
dren, ie., B, (x) = {x' € X : x — x'}. We note that
a manipulation graph — is uniquely defined by B_,. Thus
we will sometimes use B_, and — interchangeably. The in-
put to our learning procedure will be of the form of samples
S ={(x1,B-(x1)),--., (Xn, B (X))} from the true ma-
nipulation graph —.

As a next step in formulating our learning problem, we
will need to define a loss function. As stated above, our
goal is to learn ~~€ G with small dy p,(—,~»). As the
definition of dy p, (—,~>) contains a supremum over all
h € H, we cannot use it as a loss directly (as a loss needs
to be defined point-wise). However, we can formulate a
loss that is closely related and will serve to guarantee low
dy, py (—, ~). Let the graph loss for a manipulation graph
~>, a domain point z, a manipulation set B C X and a hy-
pothesis h as

1 ifh(x)=0A3x" € B: h(x')
AVX" : x ~~ x" implies h(x")
if h(x) =0AVX € B: h(x)
ATX" i x ~» x" and h(x) =1

0 otherwise.

(5 (b~ %, B) = { 1

This loss is indeed closely related to the H-Py-distance as
(8" (h,~, %, B, (x)) = [0 (h,x) — 7% (h, x)|.

The true graph loss with respect to some marginal Py and
true manipulation graph — is then defined by

Lgr (h7“’">) - EXNPX [fgr(h’W’X7B_>(X))].

(Px,—)
Furthermore for a sample S = {(x1, B1), ... (Xn, Bn)} we
define the empirical graph loss as

LE(h~~) = Y £ (h,~, %, By).
(xi,B:)€S
Similar to previous sections, we now want to define a loss
class for H x G. We define g(h, ~») to be the set of all pairs
(x, B) € X x 2% on which (8" (h,~,x, B) = 1. Then the
graph loss class of H x G is defined as

(H x G)per = {g(h,~) :h € Hand ~€ G}.

We will now show that if the VC-dimension of the loss class
(H X G)ger is finite, we can indeed learn G with respect to
¢8". For some examples and more discussion on the VC-
dimension with respect to the loss class (H X G)ger, we refer
the reader to the appendix.

=1
=0
=0
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Lemma 1. Ler VC((H X G)gpr) = d. Then there is
Ngraph ¢ (0,1)? = N, such that for any marginal distribu-
tion Py and any manipulation graph — for a sample S =
{(x1, B(x1)), .-, (Xn, B (xpn)) } of sizen > n(e, d), we
have with probability at least 1 — § over the sample gener-
ation Sy = (x1,...,X,) ~ P forany h € H and any
~~E g

£

(Px,—) (ha W) - l:%‘l(hﬂ M'})| <€

-1
Furthermore, Ngyaph (€,0) € O(%).

We note that the above lemma is agnostic in the sense that
it did not require —€ G. We will now introduce an empirical
version of the H-Py-distance. This will allow us to state
the main theorem of this section and show that it is indeed
possible to learn ~~¢€ G with low dy; p,, (—, ~) if VC((H x
G)eer ) is finite.

Definition 5. Given a sample Sx = {(x1,...,%,)} of do-
main elements x; and two manipulation graphs — and ~~
we can define the empirical H-Sx-distance as

Ay sx (=) = sup > L& (h,~,%i, By (x5)).
heH x; €8x
Theorem 7. Let VC((H X G)pr) = d. Then there is
naist : (0,1)2 = N, such that for every marginal distribu-
tion Py and every manipulation graph — for a sample S =
{(x1, B(x1)), -, (Xn, B (xn))} of size n > n(e, ), we
have with probability at least 1 — § over the sample genera-
tion Sy = (X1,...,%Xp) ~ P% forany ~€ G
d’H,PX (*), W) < d’H,SX (*), W) + €.

Furthermore, nqist (€,9) € O(%).

Combining Theorem 7 and Theorem 6 we can thus con-
clude that it is indeed possible to learn ~~€ G such that using
£~ as a surrogate loss function guarantees a good approxi-
mation on the true strategic loss 7.

6 Conclusion

In this paper, we introduced a new strategic loss, which
incentivizes correct classification under strategic manipula-
tions. We also incorporate the idea of social burden into our
notion of loss. We differentiated this loss from previous for-
mal frameworks designed to mitigate strategic manipulation.
In particular, we showed that optimizing for our strategic
loss can yield satisfactory classification rules, even if there
is no incentive-compatible hypothesis in the class that per-
forms well on the classification task at hand. In addition, the
loss formulation yields desirable effects in terms of sample
complexity. Our work opens various avenues for further in-
vestigations and we hope it will inspire follow-up studies on
the connections between a hypothesis class and the under-
lying manipulation graphs, effects of these connections, as
well as learnability of the manipulation graph.
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