
Episodic Policy Gradient Training

Hung Le, Majid Abdolshah, Thommen K. George, Kien Do, Dung Nguyen, Svetha Venkatesh
Applied AI Institute, Deakin University, Geelong, Australia

{thai.le, m.abdolshah, thommen.karimpanalgeorge, k.do, dung.nguyen, svetha.venkatesh}@deakin.edu.au

Abstract

We introduce a novel training procedure for policy gradi-
ent methods wherein episodic memory is used to optimize
the hyperparameters of reinforcement learning algorithms on-
the-fly. Unlike other hyperparameter searches, we formulate
hyperparameter scheduling as a standard Markov Decision
Process and use episodic memory to store the outcome of
used hyperparameters and their training contexts. At any pol-
icy update step, the policy learner refers to the stored ex-
periences, and adaptively reconfigures its learning algorithm
with the new hyperparameters determined by the memory.
This mechanism, dubbed as Episodic Policy Gradient Train-
ing (EPGT), enables an episodic learning process, and jointly
learns the policy and the learning algorithm’s hyperparame-
ters within a single run. Experimental results on both contin-
uous and discrete environments demonstrate the advantage of
using the proposed method in boosting the performance of
various policy gradient algorithms.

Introduction
The current success of deep reinforcement learning relies
on the ability to use gradient-based optimizations for policy
and value learning (Mnih et al. 2015; Silver et al. 2017).
Approaches such as policy gradient (PG) methods have
achieved remarkable results in various domains including
games (Mnih et al. 2016; Schulman et al. 2017; Wu et al.
2017; Fujimoto, Hoof, and Meger 2018), robotics (Kohl and
Stone 2004; Peters and Schaal 2006) or even natural lan-
guage processing (Ziegler et al. 2019). However, the excel-
lent performance of PG methods is heavily dependent on
tuning the algorithms’ hyperparameters (Duan et al. 2016;
Zhang et al. 2021). Applying a PG method to new environ-
ments often requires different hyperparameter settings and
thus retuning (Henderson et al. 2018). The large amount of
hyperparameters severely prohibits machine learning prac-
titioners from fully utilizing PG methods in different rein-
forcement learning environments.

As a result, there is a huge demand for automating hy-
perparameter selection for policy gradient algorithms, and
it remains a critical part of the Automated Machine Learn-
ing (AutoML) movement (Hutter, Kotthoff, and Vanschoren

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

2019). Automatic hyperparameter tuning has been well ex-
plored for supervised learning. Simple methods such as grid
search and random search are effective although computa-
tionally expensive (Bergstra and Bengio 2012; Larochelle
et al. 2007). Other complex methods such as Bayesian Op-
timization (BO (Snoek, Larochelle, and Adams 2012)) and
Evolutionary Algorithms (EA (Fiszelew et al. 2007)) can ef-
ficiently search for optimal hyperparameters. Yet, they still
need multiple training runs, have difficulty scaling to high-
dimensional settings (Rana et al. 2017) or require exten-
sive parallel computation (Jaderberg et al. 2017). Recent
attempts introduce online hyperparameter scheduling, that
jointly optimizes the hyperparameters and parameters in sin-
gle run overcoming local optimality of training with fixed
hyperparameters and showing great potential for supervised
and reinforcement learning (Jaderberg et al. 2017; Xu, van
Hasselt, and Silver 2018; Paul, Kurin, and Whiteson 2019;
Parker-Holder, Nguyen, and Roberts 2020).

However, one loophole remains. These approaches do
not model the context of training in the optimization pro-
cess, and the problem is often treated as a stateless bandit
or greedy optimization (Paul, Kurin, and Whiteson 2019;
Parker-Holder, Nguyen, and Roberts 2020). Ignoring the
context prevents the use of episodic experiences that can be
critical in optimization and planning. As an example, we hu-
mans often rely on past outcomes of our actions and their
contexts to optimize decisions (e.g. we may use past ex-
periences of traffic to not return home from work at 5pm).
Episodic memory plays a major role in human brains, facili-
tating recreation of the past and supporting decision making
via recall of episodic events (Tulving 2002). We are mo-
tivated to use such a mechanism in training wherein, for
instance, the hyperparameters that helped overcome a past
local optimum in the loss surface can be reused when the
learning algorithm falls into a similar local optimum. This is
equivalent to optimizing hyperparameters based on training
contexts. Patterns of bad or good training states previously
explored can be reused, and we refer to this process as select-
ing hyperparameters. To implement this mechanism we use
episodic memory. Compared to other learning methods, the
use of episodic memory is non-parametric, fast and sample-
efficient, and quickly directs the agents towards good be-
haviors (Lengyel and Dayan 2008; Kumaran, Hassabis, and
McClelland 2016; Blundell et al. 2016).

The Thirty-Sixth AAAI Conference on Artificial Intelligence (AAAI-22)

7317

Policy/Value models Update phase: Hyper-agent in the Hyper-RL

Hyper
-state

(1)
(4)

H
yp
er
-a
ct
io
n

Environment phase: RL-
agent in the main RL

(5)

(3)

Hyper-reward

(2)

Figure 1: Hyper-RL structure. The hyper-state (green circle) is captured from the PG models’ parameters and gradients at every
Hyper-RL step (1). Given the hyper-states, the hyper-agent takes hyper-actions, choosing hyperparameters for the PG method
to update the models (2). The update lasts U steps. After the last update step (3), the RL agent starts environment phase with the
current policy, collecting an empirical return G after T environment steps (4). G is used as the hyper-reward for the last policy
update step (blue diamond) (5). Other update steps (red diamond) are assigned with hyper-reward 0.

This problem of formulating methods that can take
the training context into consideration and using them as
episodic experiences in optimizing hyperparameters remains
unsolved. The first challenge is to effectively represent the
training context of PG algorithms that often involve a large
number of neural network parameters. The second chal-
lenge is sample-efficiency. Current performant hyperparam-
eter searches (Jaderberg et al. 2017; Parker-Holder, Nguyen,
and Roberts 2020) often necessitate parallel interactions
with the environments, which is expensive and not always
feasible in real-world applications. Ideally, hyperparameter
search methods should not ask for additional observations
that the PG algorithms already collect. If so, it must be
solved as efficiently as possible to allow efficient training
of PG algorithms.

We address both these issues with a novel solution,
namely Episodic Policy Gradient Training (EPGT)–a PG
training scheme that allows on-the-fly hyperparameter op-
timization based on episodic experiences. The idea is to for-
mulate hyperparameter scheduling as a Markov Decision
Process (MDP), dubbed as Hyper-RL. In the Hyper-RL, an
agent (hyper-agent) acts to optimize hyperparameters for the
PG algorithms that optimize the policy for the agent of the
main RL (RL-agent). The two agents operate alternately: the
hyper-agent acts to reconfigure the PG algorithms with dif-
ferent hyperparameters, which ultimately changes the policy
of the RL agent (update phase); the RL agent then acts to
collect returns (environment phase), which serves as the re-
wards for the hyper-agent. To build the Hyper-RL, we pro-
pose mechanisms to model its state, action and reward. In
particular, we model the training context as the state of the
Hyper-RL by using neural networks to compress the param-
eters and gradients of PG models (policy/value networks)
into low-dimensional state vectors. The action in the Hyper-
RL corresponds to the choice of hyperparameters and the
reward is derived from the RL agent’s reward.

We propose to solve the Hyper-RL through episodic
memory. As an episodic memory provides a direct binding
from experiences (state-action) to final outcome (return), it
enables fast utilization of past experiences and accelerates
the searching of near-optimal policy (Lengyel and Dayan
2008). Unlike other memory forms augmenting RL agents
with stronger working memory to cope with partial obser-

vations (Hung et al. 2019; Le, Tran, and Venkatesh 2020)
or contextual changes within an episode (Le and Venkatesh
2020), episodic memory persists across agent lifetime to
maintain a global value estimation. In our case, the memory
estimates the value of a state-action pair in the Hyper-RL
by nearest neighbor memory lookup (Pritzel et al. 2017).
To store learning experience, we use a novel weighted av-
erage nearest neighbor writing rule that quickly propagates
the value inside the memory by updating multiple memory
slots per memory write. Our episodic memory is designed to
cope with noisy and sparse rewards in the Hyper-RL.

Our key contribution is to provide a new formulation for
online hyperparameter search leveraging context of previous
training experiences, and demonstrate that episodic mem-
ory is a feasible way to solve this. This is also the first time
episodic memory is designed for hyperparameter optimiza-
tion. Our rich set of experiments shows that EPGT works
well with various PG methods and diverse hyperparameter
types, achieving higher rewards without significant increase
in computing resources. Our solution has desirable proper-
ties, it is (i) computationally cheap and run once without par-
allel computation, (ii) flexible to handle many hyperparam-
eters and PG methods, and (iii) shows consistent/significant
performance gains across environments and PG methods.

Methods
Hyperparameter Reinforcement Learning
(Hyper-RL)
In this paper, we address the problem of online hyperparam-
eter search. We argue that in order to choose good values,
hyperparameter search (HS) methods should be aware of the
past training states. This intuition suggests that we should
treat the HS problem as a standard MDP. Put in the context
of HS for RL, our HS algorithm becomes a Hyper-RL al-
gorithm besides the main RL algorithm. In Hyper-RL, the
hyper-agent makes decisions at each policy update step to
configure the PG algorithm with suitable hyperparameters
ψ. The ultimate goal of the Hyper-RL is the same as the
main RL’s: to maximize the return of the RL agent.

To construct the Hyper-RL, we define its state sψ , action
aψ and reward rψ . Hereafter, we refer to them as hyper-
state, hyper-action and hyper-reward to avoid confusion with

7318

the main RL’s s, a and r. Fig. 1 illustrates the operation of
Hyper-RL. In the update phase, the Hyper-RL runs for U
steps. At each step, taking the hyper-state captured from the
PG models’ parameters and gradients, the hyper-agent out-
puts hyper-actions, producing hyperparameters for PG algo-
rithms to update the policy/value networks accordingly. Af-
ter the last update (blue diamond), the resulting policy will
be used by the RL agent to perform the environment phase,
collecting returns after T environment interactions. The re-
turns will be used in the PG methods, and utilized as hyper-
reward for the last policy update step. Below we detail the
hyper-action, hyper-reward and hyper-state.

Hyper-action A hyper-action aψ defines the values for
the hyperparameters ψ of interest. For simplicity, we assume
the hyper-action is discrete by quantizing the range of each
hyperparameter into B discrete values. A hyper-action aψ se-
lects a set of discrete values, each of which is assigned to a
hyperparameter (see more Appendix A.2).

Hyper-reward The hyper-reward rψ is computed based
on the empirical return that the RL agent collects in
the environment phase after hyperparameters are selected
and used to update the policy. The return is G =

Est:t+T ,at:t+T

[∑T
k=0 γ

krt+k

]
where t and T are the envi-

ronment step and learning horizon, respectively. Since there
can be U consecutive policy update steps in the update phase,
the last update step in the update phase receives hyper-
reward G while others get zero hyper-reward, making the
Hyper-RL, in general, a sparse reward problem. That is,

r
ψ
i =

{
G if i = U

0 otherwise
(1)

To define the objective for the Hyper-RL, we treat the up-
date phase as a learning episode. Each learning episode can
lasts for multiple of U update steps and for each step i in
the episode, we aim to maximize the hyper-return G

ψ
i =∑Un

j≥i r
ψ
j where n ∈ N+. In this paper, n is simply set to

1 and thus, Gψi = G.
Hyper-state A hyper-state sψ should capture the current

training state, which may include the status of the trained
model, the loss function or the amount of parameter update.
We fully capture sψ if we know exactly the loss surface and
the current value of the optimized parameters, which can re-
sult in perfect hyperparameter choices. This, however, is in-
feasible in practice, thus we only model observable features
of the hyper-state space. The Hyper-RL is then partially ob-
servable and noisy. In the following, we propose a method
to represent the hyper-state efficiently.

Hyper-state representation Our hypothesis is that one
signature feature of the hyper-state is the current value
of optimized parameters θ and the derivatives of the PG
method’s objective function w.r.t θ. We maintain a list of the
last Norder first-order derivatives: {∇θn}Norder

n=1 , which pre-
serves information of high-order derivatives (e.g. a second-
order derivative can be estimated by the difference between
two consecutive first-order derivatives). Let us denote the
parameters and their derivatives, often in tensor form, as

Algorithm 1: Episodic Policy Gradient Training.
Require: A parametric policy function πθ of the main RL

algorithm PGψ(πθ, G) where ψ is the set of hyper-
paramters for training πθ andG the empirical return col-
lected by function Agent(πθ).

1: Initialize the episodic memory M = ∅
2: for episode = 1, 2, ... do {loop over learning episodes}
3: Initialize a buffer D = ∅{storing hyper-state, action,

and reward within a learning episode}
4: for i = 1, . . . U do {loop over policy updates}
5: Compute φ(sψi). Select a

ψ
i by ε-greedy with

Q
(
s
ψ
i , a

ψ
)

= M.read
(
φ
(
s
ψ
i

)
, aψ
)

(Eq. 3)

6: Convert aψi to the hyperparameter values ψi and
update θ ← PGψi

(πθ, G)

7: Compute rψi (Eq. 1). Add (φ(sψi), aψi , r
ψ
i) to D

8: if i == U then G = Agent(πθ)
9: end for

10: Update episodic memory with M.update(D) (Eq. 4)
11: end for

θ =
{
W 0
m

}M
m=1

and ∇θn = {Wn
m}

M
m=1 where M is the

number of layers in the policy/value network. {θ,∇θn} can
be denoted jointly {Wn

m}
Norder,M
n=0,m=1 or {Wn

m} for short (see
Appendix B.4 for dimension details of Wn

m).
Merely using {Wn

m} to represent the learning state is still
challenging since the number of parameters is enormous as it
often is in the case of recent PG methods. To make the hyper-
state tractable, we propose to use linear transformation to
map the tensors to lower-dimensional features and concate-
nate them to create the state vector sψ = [snm]

Norder,M
n=0,m=1 .

Here, snm is the feature of Wn
m, computed as

snm = vec (Wn
mC

n
m) (2)

where Cnm ∈ Rdnm×d is the transformation matrix, dnm the
last dimension of Wn

m (dnm � d) and vec (·) the vectorize
operator, flattening the input tensor. To make our represen-
tation robust, we propose to learn the transformation Cnm as
described in the next section.

Learning to represent hyper-state and memory key We
map sψ to its embedding by using a feed-forward neural
network φ, resulting in the state embedding φ

(
sψ
)
∈ Rh.

φ
(
sψ
)

later will be stored as the key of the episodic mem-
ory. We can just use random φ and Cnm for simplicity. How-
ever, to encourage φ

(
sψ
)

to store meaningful information of
sψ , we propose to reconstruct sψ from φ

(
sψ
)

via another
decoder network ω and minimize the following reconstruc-
tion errorLrec =

∥∥ω (φ (sψ))− sψ
∥∥2
2
. Similar to (Blundell

et al. 2016), we employ latent-variable probabilistic models
such as VAE to learn Cnm and update the encoder-decoder
networks. Thanks to using Cnm projection to lower dimen-
sional space, the hyper-state distribution becomes simpler
and potential for VAE reconstruction. Notably, the VAE is
jointly trained online with the RL agent and the episodic
memory (more details in Appendix A.3).

7319

-1000

100

 -100

 -10

 -1
 0
 1

 10

Step Step

DQNDe fa u lt (A2 C) EPGTM a x lr M in lr RN D

(a)

2 0 0

1 0 0

0

1 0 0

00 20K
0 20K 0 4M2M 4M

DQN

EPGT

8e-4

9e-4

8e-4

5e-4

1e-3

1.5e-3

RND

(b)

DQN

EPGT

0.005

0.001

0.004

0.002

0.004

0.002

RND

Figure 2: Performance on (a) MountainCarContinuous (log scale) and (b) BipedalWalker over env. steps. In each plot, average
return is on the left with mean and std. over 10 runs. The right is smoothed (taking average over a window of 100 steps) learning
rate α found by the baselines (first 3 runs).

Episodic Control for Solving the Hyper-RL
Theoretically, given the hyper-state, hyper-action and hyper-
reward clearly defined in the previous section, we can use
any RL algorithm to solve the Hyper-RL problem. However,
in practice, the hyper-reward is usually sparse and the num-
ber of steps of the Hyper-RL is usually much smaller than
that of the main RL algorithm (U� T). It means parametric
methods (e.g. DQN) which require a huge number of update
steps are not suitable for learning a good approximation of
the Hyper-RL’s Q-value function Q

(
s
ψ
i , a

ψ
i

)
.

To quickly estimate Q
(
s
ψ
i , a

ψ
i

)
, we maintain an episodic

memory that lasts across learning episodes and stores
the outcomes of selecting hyperparameters from a given
hyper-state. We hypothesize that the training process in-
volves hyper-states that share similarities, which is suit-
able for episodic recall using KNN memory lookup. Con-
cretely, the episodic memory M binds the learning expe-
rience

(
φ
(
s
ψ
i

)
, aψi

)
–the key, where φ is an embedding

function, to the approximated expected hyper-return ~G
ψ
i –the

value. We index the memory using key
(
φ
(
s
ψ
i

)
, aψi

)
to ac-

cess the value, a.k.a M
[
φ
(
s
ψ
i

)
, aψi

]
= ~G

ψ
i . Computing and

updating the Q
(
s
ψ
i , a

ψ
i

)
corresponds to two memory op-

erators: read and update. The read
(
φ
(
s
ψ
i

)
, aψi

)
takes

the hyper-state embedding plus hyper-action and returns the
hyper-state-action value Q

(
s
ψ
i , a

ψ
i

)
. The update (D) takes

a buffer D containing observations (sψi , a
ψ
i , r

ψ
i)Ui=1, and up-

dates the content of the memory M. The details of the two
operators are as follows.

Memory reading Similarly to (Pritzel et al. 2017), we
estimate the state-action value of any s

ψ
i -aψi pair by:

Q
(
s
ψ
i , a

ψ
i

)
= read

(
s
ψ
i , a

ψ
i

)
(3)

=

∑|N (i)|
k=1 Sim (i, k) M

[
φ
(
s
ψ
k

)
, aψi

]
∑|N (i)|
k=1 Sim (i, k)

where N (i) denotes the neighbor set of the embedding
φ
(
s
ψ
i

)
in M and φ

(
s
ψ
k

)
the k-th nearest neighbor. N (i)

includes φ
(
s
ψ
i

)
if it exists in M. Sim (i, k) is a kernel mea-

suring the similarity between φ
(
s
ψ
k

)
and φ

(
s
ψ
i

)
.

Memory update To cope with noisy observations from
the Hyper-RL, we propose to use weighted average to write
the hyper-return to the memory slots. Unlike max writing
rule (Blundell et al. 2016) that always stores the best return,
our writing propagates the average return inside the mem-
ory, which helps cancel out the noise of the Hyper-RL. In
particular, for each observed transition in a learning episode
(stored in the buffer D), we compute the hyper-return Gψi . The
hyper-return is then used to update the memory such that the
action value of φ

(
s
ψ
i

)
’s neighbors is adjusted towards Gψi

with speeds relative to the distances (Le et al. 2021):

M
[
φ
(
s
ψ
k

)
, aψi

]
← M

[
φ
(
s
ψ
k

)
, aψi

]
+ β

∆ikSim (i, k)∑|N (i)|
k=1 Sim (i, k)

(4)

where φ
(
s
ψ
k

)
is the k-th nearest neighbor of φ

(
s
ψ
i

)
in

N (i), ∆ik = G
ψ
i − M

[
φ
(
s
ψ
k

)
, aψi

]
, and 0 < β < 1 the

writing rate. If the key
(
φ
(
s
ψ
i

)
, aψi

)
is not in M, we also

add
(
φ
(
s
ψ
i

)
, aψi , G

ψ
i

)
to the memory. When the stored tu-

ples exceed memory capacity Nmem, the earliest added tu-
ple will be removed.

Under this formulation, M
[
φ
(
s
ψ
i

)
, aψi

]
is an approx-

imation of the expected hyper-return collected by taking
the hyper-action a

ψ
i at the hyper-state s

ψ
i (see Appendix

C for proof). As we update several neighbors at one write,
the hyper-return propagation inside the episodic memory is
faster and helps to handle the sparsity of the Hyper-RL. Un-
less stated otherwise, we use the same neighbor size |N (i)|
for both reading and writing process, denoted asK for short.

Integration with PG methods Our episodic control

7320

mechanisms can be used to estimate the hyper-state-action-
value of the Hyper-RL. The hyper-agent uses that value to
select the hyper-action through ε-greedy policy and sched-
ule the hyperparameters of PG methods. Algo. 1, Episodic
Policy Gradient Training (EPGT), depicts the use of our
episodic control with a generic PG method. Our code can
be found at https://github.com/thaihungle/EPGT

Experimental Results
Across experiments, we examine EPGT with different PG
methods including A2C, ACKTR and PPO. We benchmark
EPGT against the original PG methods with tuned hyperpa-
rameters and 4 recent hyperparameter search methods. The
experimental details can be found in the Appendix B.

Why Episodic Control?
In this section, we validate the choice of episodic control to
solve the proposed Hyper-RL problem. As such, we choose
A2C as the PG method and examine EPGT, random hyper-
action (RND) and DQN (Mnih et al. 2015) as 3 methods to
schedule the learning rate (α) for A2C. We also compare
with A2C using different fixed-α within the search range
(default, min and max learning rates). We test on 2 envi-
ronments: Mountain Car Continuous (MCC) and Bipedal
Walker (BW) with long and short learning rate search ranges
([4×10−5, 10−2] and [2.8×10−4, 1.8×10−3], respectively).

Fig. 2 demonstrates the learning curves and learning rate
schedules found by EPGT, RND and DQN. In MCC, the
search range is long, which makes RND performance un-
stable, far lower than the fixed-α A2Cs. DQN also strug-
gles to learn good α schedule for A2C since the number
of trained environment steps is only 20,000, which corre-
sponds to only 4,000 steps in the Hyper-RL. This might not
be enough to train DQN’s value network and leads to slower
learning. On the contrary, EPGT helps A2C achieve the best
performance faster than any other baseline. In BW, thanks
to shorter search range and large number of training steps,
RND and DQN show better results, yet still underperform
the best fixed-α A2C. By contrast, EPGT outperforms the
best fixed-α A2C by a significant margin, which confirms
the benefit of episodic dynamic hyperparameter scheduling.

Besides performance plots, we visualize the selected val-
ues of learning rates over training steps for the first 3 runs of
each baseline. Interestingly, DQN finds more consistent val-
ues, often converging to extreme learning rates, indicating
that the DQN mostly selects the same action for any state,
which is unreasonable. EPGT, on the other hand, prefers
moderate learning rates, which keep changing depending on
the state. Compared to random schedules by RND, those
found by EPGT have a pattern, either gradually decreas-
ing (MCC) or increasing (BW). In terms of running time,
EPGT runs slightly slower than A2C without any scheduler,
yet much faster than DQN (see Appendix’s Table 5).

EPGT vs. Online Hyperparameter Search Methods
Our main baselines are existing methods for dynamic tuning
of hyperparameters of policy gradient algorithms, which can
be divided into 2 groups: (i) sequential HOOF (Paul, Kurin,

Model HalfCheetah Hopper Ant Walker
TMG♠ 1,568 378 950 492
HOOF♠ 1,523 350 952 467
HOOF♦ 1,427±293 452±40.7 954±8.57 674±195
EPGT 2,530±1268 603±187 1,083±126 888±425

Table 1: EPGT vs sequential search (A2C as the PG). Bold
denotes statistically better results in terms of Cohen effect
size > 0.5. We train agents for 5 million steps and report the
mean (and std. if applicable) over 10 runs. ♠ is from Paul,
Kurin, and Whiteson (2019) (no std. reported) and ♦ is our
run.

Model BW LLC Hopper IDP
PBT° 223 159 1492 8,893
PB2° 276 235 2,346 8,893
PB2♦ 280 223 2,156 9,253
EPGT 282 235 3,253 9,322

Table 2: EPGT vs parallel search (PPO as the PG). Follow-
ing Parker-Holder, Nguyen, and Roberts (2020), we train
the PPO agents for 1 million steps and report the best me-
dian over 10 runs.° denotes the numbers reported in Parker-
Holder, Nguyen, and Roberts (2020), and ♦ is our run.

and Whiteson 2019) and Meta-gradient (Xu, van Hasselt,
and Silver 2018) and (ii) parallel PBT (Jaderberg et al. 2017)
and PB2 (Parker-Holder, Nguyen, and Roberts 2020). We
follow the same experimental setting (PG configuration and
environment version) and apply our EPGT to the same set of
optimized hyperparameters, keeping other hyperparameters
as in other baselines. We also rerun the baselines HOOF and
PB2 using our codebase to ensure fair comparison. For the
first group, the PG method is A2C and only the learning rate
is optimized, while for the second group, the PG method is
PPO and we optimize 4 hyperparameters (learning rate α,
batch size b, GAE λ and PPO clip ε).

Table 1 reports the mean test performance of EPGT
against Tuned Meta-gradient (TMG) and HOOF on 4 Mu-
joco environments. EPGT demonstrates better results in all
4 tasks where HalfCheetah, Hopper and Walker observe sig-
nificant gain. Notably, compared to HOOF, EPGT exhibits
higher mean and variance, indicating that EPGT can find
distinctive solutions, breaking the local optimum bottleneck
of other baselines.

Table 2 compares EPGT with PBT and PB2 on corre-
sponding environments and evaluation metrics. In the four
tasks used in PB2 paper, EPGT achieves better median best
score for 3 tasks while maintaining competitive performance
in LLC task. We note that EPGT is jointly trained with the
PG methods in a single run and thus, achieves this excellent
performance without parallel interactions with the environ-
ments as PB2 or PBT. Learning curves of our runs for the
above tasks are in Appendix B.3.

EPGT vs. Grid-Search/Manual Tuning
Atari We now examine EPGT on incremental sets of hyper-
parameters. We adopt 6 standard Atari games and train 2 PG

7321

Step

HalfCheetah EPGT RN D

0 500K 1M

0

2K

4K
3e-4
4e-4

0 .1

0 .2

0.95

0.97

5 0

1 0 0

A
vg

.
R
et

u
rn

De fa u lt (PPO)

EPGT

PB2

RN D

Figure 3: Performance on the representative HalfCheetah
task over env. steps. The left is testing return over training
iterations (mean ± std. over 10 runs) and the right hyper-
parameters schedule for PG methods found by EPGT and
RND in the first 3 runs.

methods: ACKTR and PPO for 20 million steps per game.
For ACKTR, we apply EPGT to schedule the trust region ra-
dius δ, step size η and the value loss coefficient lv . For PPO,
the optimized hyperparameters are learning rate α, trust re-
gion clip ε and batch size b. We form 3 hyperparameter sets
for each PG method. For each set, we further perform grid
search near the default hyperparameters and record the best
tuned results. We compare these results with EPGT’s and
report the relative improvement on human normalized score
(Appendix Fig. 9). The results indicate that, for all hyperpa-
rameter sets, EPGT on average show gains up to more than
10% over tuned PG methods. For certain games, the perfor-
mance gain can be more than 30%.

Mujoco Here, we conduct experiments on 6 Mujoco envi-
ronments: HalfCheetah, Hooper, Walker2d, Swimmer, Ant
and Humanoid. For the last two challenging tasks, we train
with 10M steps while the others 1M steps. The set of op-
timized hyperparameters are {α, ε, λ, b}. The baseline De-
fault (PPO) has fixed hyperparameters, which are well-tuned
by previous works, and PB2 uses the same hyperparameter
search range as our method. Random hyper-action (RND)
baseline is included to see the difference between random
and episodic policy in Hyper-RL formulation.

On 6 Mujoco tasks, on average, EPGT helps PPO earn
more than 583 score while PB2 fails to clearly outperform
the tuned PPO (see more in Appendix Fig. 12). Fig. 3 (left)
illustrates the result on HalfCheetah where performance gap
between EPGT and other baselines can be clearly seen. De-
spite using the same search range, PB2 and RND show lower
average return. We include the hyperparameters used by
EPGT and RND throughout training in Fig. 3 (right). Over-
all, EPGT’s schedules do not diverge much from the default
values, which are already well-tuned. However, we can see
a pattern of using smaller hyperparameters during middle
phase of training, which aligns with the moments when there
are changes in the performance.

Ablation Studies
In this section, we describe the hyperparameter selection for
EPGT used in above the experiments. We note that although
EPGT introduces several hyperparameters, it is efficient to

pick reasonable values and keep using them across tasks.
Learning to represent the hyper-state The hyper-state

is captured by projecting the model’s weights and their gra-
dients to a low-dimensional vectors using Cnm. The state is
further transformed to the memory’s key using the mapping
network φ. Here, we validate the choice of using VAE to
learn Cnm and φ by comparing it with random mapping. We
use PG A2C and test the two EPGT variants on Mountain
Car (MC). Fig. 4 (a, left) demonstrates that EPGT with VAE
training learns fastest and achieves the best convergence.
EPGT with random projections can learn fast but shows sim-
ilar convergence as the original A2C.

We visualize the final representations φ
(
sψ
)

by using t-
SNE and use colors to denote the corresponding average
values V̂

(
sψ
)

=
∑
a M
(
φ
(
sψ
)
, aψ
)

in Fig. 4 (a, right).
The upper figure is randomly projected hyper-states and the
lower VAE-trained ones at 5,000 environment step. From
both figures, we can see that similar-value states tend to lie
together, which validates the hypothesis on existing similar
training contexts. Compared to the random ones, the rep-
resentations learned by VAE exhibit clearer clusters. Clus-
ter separation is critical for nearest neighbor memory ac-
cess in episodic control, and thus explains why VAE-trained
EPGT outperforms random EPGT significantly. Notably,
training the VAE is inexpensive. Empirical results demon-
strates that with reasonable hyper-state sizes, the VAE con-
verges quickly (see Appendix Fig. 6).

Writing rule To verify the contribution of our proposed
writing rule, we test different number of writing neighbor
size (Kw). In this experiment, the reading size is fixed to
3 and different from the writing size. Fig. 4 (b) shows the
learning curves of EPGT using different Kw against the
original PPO. When Kw = 1, our rule becomes single-slot
writing as in (Blundell et al. 2016; Pritzel et al. 2017), which
even underperforms using default hyperparameters. By con-
trast, increasing Kw = 3 boosts EPGT’s performance dra-
matically, on average improving PPO by around 500 score in
Alien game. Increasing Kw further seems not helpful since
it may create noise in writing. Thus, we use Kw = 3 in all
of our experiments. Others showing our average writing rule
is better than traditional max rule and examining different
numbers of general neighbor size K are in Appendix B.4.

Order of representation Finally, we examine EPGT’s
performance with different order of representation (Norder).
Norder = 0 means the hyper-state only includes the parame-
ters θ. Increasing Norder gives more information, providing
better state representations. That holds true in MsPacman
game when we increase the order from 0 to 2 as shown in
Fig. 4 (c). However, when Norder is set to 4, the perfor-
mance drops since the hyper-states now are in a very high
dimension (16K) and VAE does not work well in this case.
Hence, we use Norder = 2 for all of our experiments.

Related Works
Hyperparameter search Automatic hyperparameter tun-
ing generally requires multiple training runs. Parallel search
methods such as grid or random search (Bergstra and Ben-
gio 2012; Larochelle et al. 2007) perform multiple runs con-
currently and pick the hyperparameters that achieve best re-

7322

0 50K 100K
2 0 0

1 8 0

1 6 0

1 4 0

A
v

g
.

R
e

tu
rn

De fa u lt (A2 C)

MC (a)

EPGT (Random)
EPGT (VAE)

-0.1

-0.5

2

-8

-0.1

-0.5
-4 6

7

3

2 18

0 10M 20M
S te pS te p

De fa u lt (PPO)

Alien (b)

2K

1K

EPGT (Kw=1)
EPGT (Kw=3)

EPGT (Kw=5)

0 10M 20M
S te p

De fa u lt (PPO)

4K

1K

MsPacman (c)Random

VAE

EPGT (Norder=0)

EPGT (Norder=2)

EPGT (Norder=4)

Figure 4: (a) Performance (left) and hyper-state representations φ
(
sψ
)

(right) on Mountain Car (MC) using PG A2C where
t-SNE is used to project φ

(
sψ
)

to 2d space, showing the quality of representation learned by VAE (below) versus Random
mapping (above). Performance on Alien (b) and MsPacman (c) using PG PPO with different Kw and Norder, respectively. The
curves are mean and std. over 5 runs.

sult. These methods are simple yet expensive. Sequential
search approaches reduce the number of runs by consec-
utively executing experiments using a set of candidate hy-
perparameters and utilize the evaluation result to guide the
subsequent choice of candidates (Hutter, Hoos, and Leyton-
Brown 2011). Bayesian Optimization approaches (Brochu,
Cora, and De Freitas 2010) exploit the previous experimen-
tal results to update the posterior of a Bayesian model of hy-
perparameters. They have been widely used in hyperparame-
ter tuning for various machine learning algorithms including
deep learning (Snoek, Larochelle, and Adams 2012). Re-
cently, to speed up the process, distributed versions of BO
are also introduced to evaluate in parallel batches of hyper-
parameter settings (Chen et al. 2018).

However, these approaches still suffer from the issue of
computational inefficiency, demanding high computing re-
sources and training time. If applied to RL, they require
more environment interactions, which leads to sample in-
efficiency. The hyperparameters found by these methods
are usually fixed, which can be suboptimal (Luketina et al.
2016). Inspired by biological evolution, population-based
methods initially start as random search then select best per-
forming hyperparameter instances to generate subsequent
hyperparameter candidates (Young et al. 2015).

Recent works propose using evolutionary algorithms to
jointly learn the weights and hyperparameters of neural net-
works under supervised training (Li et al. 2019). In BPT
(Jaderberg et al. 2017) as an example, multiple training are
executed asynchronously and evaluated periodically. Under-
performing models are replaced by better ones whose hy-
perparameters evolve to explore better configurations. This
approach allows hyperparameter scheduling on-the-fly but
still requires a large number of parallel runs and are thus
unsuitable for machines with small computational budget.

On-the-fly hyperparameter search for reinforcement
learning Early works on gradient-based hyperparameter
search focus on learning rate adjustment (Sutton 1992). The
approach has been recently extended to RL by using the
meta-gradient of the return function to adjust the hyperpa-
rameters such as discount factor or bootstrapping parameter

(Xu, van Hasselt, and Silver 2018). Hence, in this approach,
the return needs to be a differentiable function w.r.t the hy-
perparameters, which cannot extend to any hyperparameter
type such as “clip” or policy gradient algorithm.

HOOF (Paul, Kurin, and Whiteson 2019) is an alterna-
tive to meta-gradient methods wherein hyperparameter op-
timization is done via random search and weighted impor-
tant sampling. The method relies on off-policy estimate of
the value of the policy, which is known to have high vari-
ance and thus requires enforcing additional KL constraint.
The search is also limited to some specific hyperparameters.
Population-based approaches have been applied to RL hy-
perparameter search. These methods become more efficient
by utilizing off-policy PG’s samples (Tang and Choromanski
2020) and small-size population (Parker-Holder, Nguyen,
and Roberts 2020), showing better results than PBT or BO
in RL domains. However, they still suffer from the inherited
expensive computation issue of population-based training.
All of these prior works do not formulate hyperparameter
search as a MDP, bypassing the context of training, which is
addressed in this paper.

Discussion
We introduced Episodic Policy Gradient Training (EPGT),
a new approach for online hyperparameter search using
episodic memory. Unlike prior works, EPGT formulates the
problem as a Hyper-RL and focuses on modeling the train-
ing state to utilize episodic experiences. Then, an episodic
control with improved writing mechanisms is employed to
search for optimal hyperparameters on-the-fly. Our exper-
iments demonstrate that EPGT can augment various PG
algorithms to optimize different types of hyperparameters,
achieving better results.

Acknowledgements
This research was partially funded by the Australian Gov-
ernment through the Australian Research Council (ARC).
Prof Venkatesh is the recipient of an ARC Australian Laure-
ate Fellowship (FL170100006).

7323

References
Bengio, Y. 2000. Gradient-based optimization of hyperpa-
rameters. Neural computation, 12(8): 1889–1900.
Bergstra, J.; and Bengio, Y. 2012. Random search for hyper-
parameter optimization. Journal of machine learning re-
search, 13(2).
Blundell, C.; Uria, B.; Pritzel, A.; Li, Y.; Ruderman,
A.; Leibo, J. Z.; Rae, J.; Wierstra, D.; and Hassabis,
D. 2016. Model-free episodic control. arXiv preprint
arXiv:1606.04460.
Brochu, E.; Cora, V. M.; and De Freitas, N. 2010. A tuto-
rial on Bayesian optimization of expensive cost functions,
with application to active user modeling and hierarchical re-
inforcement learning. arXiv preprint arXiv:1012.2599.
Chen, Y.; Huang, A.; Wang, Z.; Antonoglou, I.; Schrit-
twieser, J.; Silver, D.; and de Freitas, N. 2018. Bayesian
optimization in alphago. arXiv preprint arXiv:1812.06855.
Duan, Y.; Chen, X.; Houthooft, R.; Schulman, J.; and
Abbeel, P. 2016. Benchmarking deep reinforcement learn-
ing for continuous control. In International conference on
machine learning, 1329–1338. PMLR.
Fiszelew, A.; Britos, P.; Ochoa, A.; Merlino, H.; Fernández,
E.; and García-Martínez, R. 2007. Finding optimal neural
network architecture using genetic algorithms. Advances
in computer science and engineering research in computing
science, 27: 15–24.
Fujimoto, S.; Hoof, H.; and Meger, D. 2018. Addressing
function approximation error in actor-critic methods. In In-
ternational Conference on Machine Learning, 1587–1596.
PMLR.
González, J.; Dai, Z.; Hennig, P.; and Lawrence, N. 2016.
Batch Bayesian optimization via local penalization. In Arti-
ficial intelligence and statistics, 648–657. PMLR.
Henderson, P.; Islam, R.; Bachman, P.; Pineau, J.; Precup,
D.; and Meger, D. 2018. Deep reinforcement learning that
matters. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 32.
Hung, C.-C.; Lillicrap, T.; Abramson, J.; Wu, Y.; Mirza, M.;
Carnevale, F.; Ahuja, A.; and Wayne, G. 2019. Optimizing
agent behavior over long time scales by transporting value.
Nature communications, 10(1): 1–12.
Hutter, F.; Hoos, H. H.; and Leyton-Brown, K. 2011. Se-
quential model-based optimization for general algorithm
configuration. In International conference on learning and
intelligent optimization, 507–523. Springer.
Hutter, F.; Kotthoff, L.; and Vanschoren, J. 2019. Automated
machine learning: methods, systems, challenges. Springer
Nature.
Jaderberg, M.; Dalibard, V.; Osindero, S.; Czarnecki, W. M.;
Donahue, J.; Razavi, A.; Vinyals, O.; Green, T.; Dunning,
I.; Simonyan, K.; et al. 2017. Population based training of
neural networks. arXiv preprint arXiv:1711.09846.
Klein, A.; Falkner, S.; Bartels, S.; Hennig, P.; and Hutter, F.
2017. Fast bayesian optimization of machine learning hy-
perparameters on large datasets. In Artificial Intelligence
and Statistics, 528–536. PMLR.

Kohl, N.; and Stone, P. 2004. Policy gradient reinforcement
learning for fast quadrupedal locomotion. In IEEE Interna-
tional Conference on Robotics and Automation, 2004. Pro-
ceedings. ICRA’04. 2004, volume 3, 2619–2624. IEEE.
Kumaran, D.; Hassabis, D.; and McClelland, J. L. 2016.
What learning systems do intelligent agents need? Comple-
mentary learning systems theory updated. Trends in cogni-
tive sciences, 20(7): 512–534.
Larochelle, H.; Erhan, D.; Courville, A.; Bergstra, J.; and
Bengio, Y. 2007. An empirical evaluation of deep architec-
tures on problems with many factors of variation. In Pro-
ceedings of the 24th international conference on Machine
learning, 473–480.
Le, H.; George, T. K.; Abdolshah, M.; Tran, T.; and
Venkatesh, S. 2021. Model-Based Episodic Memory In-
duces Dynamic Hybrid Controls. In Thirty-Fifth Conference
on Neural Information Processing Systems.
Le, H.; Tran, T.; and Venkatesh, S. 2019. Learning to re-
member more with less memorization. In Proceedings of the
7th International Conference on Learning Representations.
Le, H.; Tran, T.; and Venkatesh, S. 2020. Self-Attentive As-
sociative Memory. In Proceedings of the 37th International
Conference on Machine Learning.
Le, H.; and Venkatesh, S. 2020. Neurocoder: Learning
General-Purpose Computation Using Stored Neural Pro-
grams. arXiv preprint arXiv:2009.11443.
Lengyel, M.; and Dayan, P. 2008. Hippocampal contribu-
tions to control: the third way. In Advances in neural infor-
mation processing systems, 889–896.
Li, A.; Spyra, O.; Perel, S.; Dalibard, V.; Jaderberg, M.; Gu,
C.; Budden, D.; Harley, T.; and Gupta, P. 2019. A general-
ized framework for population based training. In Proceed-
ings of the 25th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, 1791–1799.
Luketina, J.; Berglund, M.; Greff, K.; and Raiko, T. 2016.
Scalable gradient-based tuning of continuous regularization
hyperparameters. In International conference on machine
learning, 2952–2960. PMLR.
Mnih, V.; Badia, A. P.; Mirza, M.; Graves, A.; Lillicrap, T.;
Harley, T.; Silver, D.; and Kavukcuoglu, K. 2016. Asyn-
chronous methods for deep reinforcement learning. In In-
ternational conference on machine learning, 1928–1937.
PMLR.
Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A. A.; Veness,
J.; Bellemare, M. G.; Graves, A.; Riedmiller, M.; Fidje-
land, A. K.; Ostrovski, G.; et al. 2015. Human-level control
through deep reinforcement learning. nature, 518(7540):
529–533.
Parker-Holder, J.; Nguyen, V.; and Roberts, S. J. 2020.
Provably efficient online hyperparameter optimization with
population-based bandits. Advances in Neural Information
Processing Systems, 33.
Paul, S.; Kurin, V.; and Whiteson, S. 2019. Fast Efficient
Hyperparameter Tuning for Policy Gradient Methods. In
Wallach, H.; Larochelle, H.; Beygelzimer, A.; d'Alché-Buc,

7324

F.; Fox, E.; and Garnett, R., eds., Advances in Neural Infor-
mation Processing Systems, volume 32. Curran Associates,
Inc.
Peters, J.; and Schaal, S. 2006. Policy gradient methods for
robotics. In 2006 IEEE/RSJ International Conference on
Intelligent Robots and Systems, 2219–2225. IEEE.
Pritzel, A.; Uria, B.; Srinivasan, S.; Badia, A. P.; Vinyals, O.;
Hassabis, D.; Wierstra, D.; and Blundell, C. 2017. Neural
episodic control. In Proceedings of the 34th International
Conference on Machine Learning-Volume 70, 2827–2836.
JMLR. org.
Rana, S.; Li, C.; Gupta, S.; Nguyen, V.; and Venkatesh, S.
2017. High dimensional Bayesian optimization with elastic
Gaussian process. In International conference on machine
learning, 2883–2891. PMLR.
Schulman, J.; Wolski, F.; Dhariwal, P.; Radford, A.; and
Klimov, O. 2017. Proximal policy optimization algorithms.
arXiv preprint arXiv:1707.06347.
Silver, D.; Schrittwieser, J.; Simonyan, K.; Antonoglou, I.;
Huang, A.; Guez, A.; Hubert, T.; Baker, L.; Lai, M.; Bolton,
A.; et al. 2017. Mastering the game of go without human
knowledge. nature, 550(7676): 354–359.
Snoek, J.; Larochelle, H.; and Adams, R. P. 2012. Practical
Bayesian optimization of machine learning algorithms. In
Proceedings of the 25th International Conference on Neural
Information Processing Systems-Volume 2, 2951–2959.
Sutton, R. S. 1992. Adapting bias by gradient descent: An
incremental version of delta-bar-delta. In AAAI, 171–176.
San Jose, CA.
Tang, Y.; and Choromanski, K. 2020. Online hyper-
parameter tuning in off-policy learning via evolutionary
strategies. arXiv preprint arXiv:2006.07554.
Tulving, E. 2002. Episodic memory: From mind to brain.
Annual review of psychology, 53(1): 1–25.
Wu, Y.; Mansimov, E.; Liao, S.; Grosse, R.; and Ba, J. 2017.
Scalable trust-region method for deep reinforcement learn-
ing using Kronecker-factored approximation. In Proceed-
ings of the 31st International Conference on Neural Infor-
mation Processing Systems, 5285–5294.
Xu, Z.; van Hasselt, H. P.; and Silver, D. 2018. Meta-
Gradient Reinforcement Learning. Advances in Neural In-
formation Processing Systems, 31: 2396–2407.
Young, S. R.; Rose, D. C.; Karnowski, T. P.; Lim, S.-H.;
and Patton, R. M. 2015. Optimizing deep learning hyper-
parameters through an evolutionary algorithm. In Pro-
ceedings of the Workshop on Machine Learning in High-
Performance Computing Environments, 1–5.
Zhang, B.; Rajan, R.; Pineda, L.; Lambert, N.; Biedenkapp,
A.; Chua, K.; Hutter, F.; and Calandra, R. 2021. On the
importance of hyperparameter optimization for model-based
reinforcement learning. In International Conference on Ar-
tificial Intelligence and Statistics, 4015–4023. PMLR.
Ziegler, D. M.; Stiennon, N.; Wu, J.; Brown, T. B.; Radford,
A.; Amodei, D.; Christiano, P.; and Irving, G. 2019. Fine-
tuning language models from human preferences. arXiv
preprint arXiv:1909.08593.

7325

