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Abstract

We present a novel semidefinite programming (SDP) relax-
ation that enables tight and efficient verification of neural
networks. The tightness is achieved by combining SDP re-
laxations with valid linear cuts, constructed by using the
reformulation-linearisation technique (RLT). The computa-
tional efficiency results from a layerwise SDP formulation
and an iterative algorithm for incrementally adding RLT-
generated linear cuts to the verification formulation. The
layer RLT-SDP relaxation here presented is shown to produce
the tightest SDP relaxation for ReLU neural networks avail-
able in the literature. We report experimental results based
on MNIST neural networks showing that the method out-
performs the state-of-the-art methods while maintaining ac-
ceptable computational overheads. For networks of approx-
imately 10k nodes (1k, respectively), the proposed method
achieved an improvement in the ratio of certified robustness
cases from 0% to 82% (from 35% to 70%, respectively).

Introduction
While progress in training methods for neural networks
(NNs) continues, it is well-known that NNs are suscepti-
ble to adversarial attacks (Goodfellow, Shlens, and Szegedy
2014). This is highly problematic for uses of NNs in safety-
critical systems such as the aircraft domain (Kouvaros et al.
2021; Akintunde et al. 2020b,a; Julian and Kochenderfer
2021; Manzanas Lopez et al. 2021) or in any application
where miss-classifications need to be minimised. The area
of verification of NNs (Liu et al. 2020; Bak, Liu, and John-
son 2021) aims to develop methods to guarantee that NNs
are robust with respect to small perturbations, with particu-
lar emphasis to noise perturbations.

Existing NN verification methods can be divided into two
categories (Liu et al. 2020): complete and incomplete ap-
proaches. Complete approaches guarantee to resolve any
verification query, but may incur high computational cost.
Incomplete approaches normally leverage forms of convex
over-approximations of NNs to enable faster verification.
While incomplete approaches tend to scale to larger net-
works, the looser their approximation is, the more likely it
is that the approach may be unable to verify the problem in-
stance. Thus, one central objective in incomplete approaches
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is to develop tighter convex approximations while retaining
computation efficiency (Salman et al. 2019).

In this paper we provide a novel relaxation method which
combines semidefinite programming (SDP) (Vandenberghe
and Boyd 1996) with the reformulation-linearisation tech-
nique (RLT) (Anstreicher 2009) to verify NNs. The new
SDP relaxation is provably tighter than existing SDP ap-
proaches, whilst enjoying a competitive efficiency.

Related work. Complete approaches to the verification of
NNs are typically based on mixed-integer linear program-
ming (MILP) (Bastani et al. 2016; Lomuscio and Maganti
2017; Tjeng, Xiao, and Tedrake 2019; Anderson et al. 2020;
Botoeva et al. 2020), satisfiability modulo theories (Katz
et al. 2019; Ehlers 2017) or bound propagations combined
with input refinement (Henriksen and Lomuscio 2020, 2021;
Wang et al. 2021; Hashemi, Kouvaros, and Lomuscio 2021).
While these approaches can provide theoretical termination
guarantees, their scalability to large NNs is often problem-
atic. Incomplete approaches for NN verification are nor-
mally based on bound propagations (Weng et al. 2018; Singh
et al. 2019a; Tjandraatmadja et al. 2020; Müller et al. 2021),
combinations between linear programming (LP) and relax-
ations (Ehlers 2017), or duality relaxation (Dvijotham et al.
2018; Wong and Kolter 2018; Dathathri et al. 2020). The tri-
angle relaxation (Ehlers 2017) gives the tightest convex ap-
proximation of a single ReLU node and has inspired several
other approaches (Salman et al. 2019; Li et al. 2020). While
these methods often achieve state-of-the-art (SoA) perfor-
mance, they have limited efficacy: even optimally tuned LP-
based convex relaxations may fail to obtain tight bounds on
the certified robustness ratio (Salman et al. 2019).

Two lines of research have attempted to alleviate this
problem. The first aims to provide tighter LP relaxations
by exploring interdependencies among multiple neurons and
inputs, e.g., DeepPoly (Singh et al. 2019a), kPoly (Singh
et al. 2019b), OptC2V (Tjandraatmadja et al. 2020), and
PRIMA (Müller et al. 2021). The second seeks alternative,
stronger relaxations beyond LPs. The most promising relax-
ation combining tightness with efficiency is presently based
on SDPs (Raghunathan, Steinhardt, and Liang 2018; Fa-
zlyab, Morari, and Pappas 2022; Batten et al. 2021).

It has been empirically observed that the relaxations gen-
erated with the SDP method in (Raghunathan, Steinhardt,
and Liang 2018) are considerably tighter than standard LP
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relaxations. Using geometric techniques, it has been shown
that the SDP relaxation for a variant of the NN verifi-
cation problem is exact over a single hidden layer under
mild assumptions, but becomes loose for several hidden lay-
ers (Zhang 2020). To obtain tighter SDP relaxations, effec-
tive linear cuts were identified in (Batten et al. 2021); non-
convex cuts were investigated in (Ma and Sojoudi 2020).

SDPs are harder to solve than LPs. To overcome this,
a dual SDP relaxation was formulated and subsequently
solved using a subgradient algorithm in (Dathathri et al.
2020). A layer SDP relaxation has been recently proposed
in (Batten et al. 2021) by exploiting cascading network
structures based on graph decomposition (Zheng, Fantuzzi,
and Papachristodoulou 2021). To the best of our knowledge,
layer SDP provides the tightest relaxations that have so far
been achieved by combining SDP relaxations with trian-
gle relaxations (Ehlers 2017). Even so, the relaxation gap is
still considerable in large NNs, as observed in (Batten et al.
2021). This leads to an increasing number of verification
queries that cannot be resolved as the model size increases,
thereby limiting the applicability of the approach.

Contributions. In this paper, we advance the SoA SDP
relaxations for NN verification by using the RLT (Anstre-
icher 2009) in this context. Specifically, we propose a new
layer RLT-SDP relaxation with valid linear cuts obtained
from RLT that offers provably tighter relaxations. The lin-
ear cuts capture both inter-layer dependencies and intra-
layer interactions of the network, which are presently not
exploited in the existing relaxation methods. Due to the com-
putational cost of using large numbers of linear cuts, we
refine this method by introducing an iterative algorithm to
integrate the RLT-generated linear cuts and the SDP relax-
ation. At each iteration only a portion of linear cuts are
added, with their priorities being determined by the net-
work weights. Our theoretical analysis shows that the re-
laxations here obtained are provably tighter than any other
approach previously considered. In the experiments we re-
port, the method obtained considerably tighter relaxations
than the present SoA leading to several more queries being
answerable.

Problem Statement and Preliminaries
Notation. We use the symbol Rn to denote the n-
dimensional Euclidean space. We use diag(X) to stack the
main diagonals of matrix X as a column, and |X| to get
its absolute value element-wise. We use ⊙ to denote the
element-wise product, and Ib with b > 0 to denote a se-
quence of nonzero integers from 0 to b. We use ∥ · ∥∞ to
refer to the standard ℓ∞ norm.

NN verification problem. We focus on feed-forward
fully-connected NNs with ReLU activations. A NN f(x0) :
Rn0 → RnL+1 with L hidden layers, n0 inputs and nL+1

outputs is defined as follows: x0 is the input, f(x0) is
the output, and x̂i, xi ∈ Rni , i = 1, 2, . . . , L, are the
pre-activation and activation vectors of the i-th layer, re-
spectively. The NN output is f(x0) = WLxL + bL with
xi+1 = ReLU(x̂i+1) and x̂i+1 = Wixi + bi, i ∈ IL−1,
where Wi ∈ Rni+1×ni and bi ∈ Rni+1 are the weights and
biases, respectively. For a vector z ∈ Rn, the ReLU function

is defined as ReLU(z) = [max(z1, 0), · · · , max(zn, 0)]
T.

We focus on classification networks whereby an input x0 is
assigned to the class associated with the NN output with the
highest value: j⋆ = argmaxj=1,2,··· ,nL+1

f(x0)j .
We now present the local robustness verification problem.

Definition 1. Given a NN f : Rn0 → RnL+1 , an input x̄ and
a perturbation radius ϵ ∈ R, f is robust on x̄ if f(x̄)j⋆ −
f(x0)j > 0 when j ̸= j⋆, for all x0 s.t. ∥x0 − x̄∥∞ ≤ ϵ.

Given a NN f , an input x̄ and a perturbation ϵ, the local
robustness problem concerns determining whether it is the
case that f meets Definition 1 for x̄ and ϵ. This problem can
be formulated and solved as an optimisation problem:

γ∗ := min
{xi}L

i=0

cTxL + c0

s.t. xi+1=ReLU(Wixi + bi), i ∈ IL−1, (1a)
∥x0 − x̄∥∞ ≤ ϵ, (1b)
li+1 ≤ xi+1 ≤ ui+1, i ∈ IL−1, (1c)

where cT = WL(j
⋆, :)−WL(j, :) and c0 = bL(j

⋆)− bL(j).
li+1 and ui+1 are the lower and upper bounds of the activa-
tion vectors, which can be computed using bound propaga-
tion methods, see e.g., (Wong and Kolter 2018; Wang et al.
2018). The optimisation problem (1) is solved for every po-
tential adversarial target j ̸= j⋆. If γ∗ > 0 in all cases, then
the network is robust on x̄ against the adversarial input x0.

Due to the nonlinear ReLU constraint (1a), the prob-
lem (1) is non-convex and thus hard to solve generally. In
the literature, two SDP relaxations have been proposed: a
global SDP relaxation (Raghunathan, Steinhardt, and Liang
2018) and a layer SDP relaxation (Batten et al. 2021).

Global SDP relaxation. The ReLU constraint (1a) is
equivalent to a set of linear and quadratic constraints:

xi+1 ≥ 0, xi+1 ≥ Wixi + bi, i ∈ IL−1,

xi+1 ⊙ (xi+1 −Wixi − bi) = 0, i ∈ IL−1.
(2)

The input constraints in (1b) and (1c) can be equivalently
represented as the quadratic constraints:

xi ⊙ xi − (li + ui)⊙ xi + li ⊙ ui ≤ 0, i ∈ IL, (3)

where l0 = x̄ − ϵ1, u0 = x̄ + ϵ1 and 1 denotes column of
ones. Replacing (1a)-(1c) with (2)-(3) yields an equivalent
quadratically constrained quadratic programming (QCQP):

γ∗ :=

{
min

{xi}L
i=0

cTxL + c0 | (2), (3)
}
. (4)

This QCQP problem is still non-convex due to the quadratic
constraints. The techniques of polynomial lifting (Parrilo
2000; Lasserre 2009) can be used to reformulate them as
linear constraints. The lifting matrix P is defined as

P = xxT, with x = [1, xT
0 , x

T
1 , · · · , xT

L]
T ∈ Rn̄, (5)

where n̄ = 1+
∑L

i=0 ni. The above can be reformulated as:

P ⪰ 0, P [1] = 1, rank(P ) = 1. (6)
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By using (5) and (6) and dropping rank(P ) = 1, the QCQP
(4) is relaxed into a global SDP (Raghunathan, Steinhardt,
and Liang 2018):

γ∗
GlobalSDP := min

P
cTP [xL] + c0

s.t. P [xi+1] ≥ 0, P [xi+1] ≥ WiP [xi] + bi, i ∈ IL−1, (7a)

diag(P [xi+1x
T
i+1]−WiP [xix

T
i+1])

− bi ⊙ P [xi+1] = 0, i ∈ IL−1, (7b)

diag(P [xix
T
i ])− (li + ui)⊙ P [xi]

+ li ⊙ ui ≤ 0, i ∈ IL, (7c)
P [1] = 1, P ⪰ 0, (7d)

where the symbolic indexing P [·] is used to index the el-
ements of P . Since rank(P ) = 1 is dropped, problem (7)
gives a relaxed solution to the QCQP, i.e., γ∗

GlobalSDP ≤ γ∗.
Layer SDP relaxation. The layer SDP relaxation exploits

the deep structure of the layers of a NN, where the activation
vector of a layer depends only on its immediate preceding
layer. This structure is exploited in (Batten et al. 2021) to
develop a layer-based SDP formulation of (7), where the di-
mension of the matrix constraint is reduced, thus improving
the computational efficiency. In this work, instead of using
a single large lifting matrix P for the entire network, each
hidden layer i is assigned a smaller matrix Pi defined as

Pi = xix
T
i , with xi = [1, xT

i , x
T
i+1]

T ∈ Rn̄i , (8)

where n̄i = 1+ni+ni+1. Similar to (6), the constraint Pi =
xix

T
i is equivalent to Pi ⪰ 0, Pi[1] = 1, rank(Pi) = 1. By

using (8), the layer SDP relaxation is formulated as

γ∗
LayerSDP := min

{Pi}L−1
i=0

cTPL−1[xL] + c0

s.t. Pi[xi+1] ≥ 0, i ∈ IL−1, (9a)
Pi[xi+1] ≥ WiPi[xi] + bi, i ∈ IL−1, (9b)

diag(Pi[xi+1x
T
i+1]−WiPi[xix

T
i+1])

− bi ⊙ Pi[xi+1] = 0, i ∈ IL−1, (9c)

diag(Pi[xix
T
i ])− (li + ui)⊙ Pi[xi]

+ li ⊙ ui ≤ 0, i ∈ IL−1, (9d)

diag(PL−1[xLx
T
L])− (lL + uL)⊙ PL−1[xL]

+ lL ⊙ uL ≤ 0, (9e)
Pi[1] = 1, Pi ⪰ 0, i ∈ IL−1, (9f)

Pi[x̄i+1x̄
T
i+1] = Pi+1[x̄i+1x̄

T
i+1], i ∈ IL−2, (9g)

Pi[xi+1] ≤ AiPi[xi] +Bi, i ∈ IL−1, (9h)

where x̄i+1 = [1, xT
i+1]

T, Ai = ki ⊙ Wi, Bi =

ki ⊙ (bi − l̂i+1) + ReLU(l̂i+1), ki = (ReLU(ûi+1) −
ReLU(l̂i+1))/(ûi+1−l̂i+1), with ûi+1, l̂i+1 being upper and
lower bounds of the pre-activation vector x̂i+1 (Wong and
Kolter 2018; Wang et al. 2018). Note that the constraint (9g)
appears to ensure input-output consistency between layers.
Compared to (7), the new constraint (9h) is obtained from
the triangle relaxation. It is shown in (Batten et al. 2021)
that without (9h), the layer SDP relaxation (9) is equivalent

to the global SDP relaxation (7) based on graph decomposi-
tion (Vandenberghe and Andersen 2015; Zheng 2019). Also,
this layer SDP relaxation achieves faster verification than the
global SDP relaxation by dealing with lower dimensional
constraints, and obtains a tighter relaxation by introducing
(9h), i.e., γ∗

GlobalSDP ≤ γ∗
LayerSDP ≤ γ∗.

Source of SDP relaxation gap. Let x̃ = [xT
0 , · · · , xT

L]
T

and P [x̃x̃T] = x̃x̃T. It follows from (6) that P = xxT is
equivalent to P [1] = 1, P [x̃x̃T] = x̃x̃T. Observe that the
global SDP relaxation (7) only includes (Eq. (7d)) the re-
laxed constraints P [1] = 1 and P [x̃x̃T] ⪰ x̃x̃T, reformu-
lated as P ⪰ 0 via Schur complement. A consequence of
this is that P may not be sufficiently bounded, thereby re-
sulting in loose SDP solutions. The same argument applies
for the layer SDP relaxation (9).

To bridge the gap of the global SDP relaxation, the non-
convex constraint P [x̃x̃T] ⪯ x̃x̃T is imposed in (Ma and So-
joudi 2020) via secant approximation. Valid linear cuts are
generated by an iterative algorithm, where the global SDP
relaxation together with an LP need to be solved at each iter-
ation. Unfortunately, it is known that global SDP relaxation
itself is already computationally expensive. Therefore, the
tightening in (Ma and Sojoudi 2020) is unlikely to lead to
scalable NN verification.

Tightening Layer SDP Relaxation via RLT
Having highlighted the existing relaxation gap in the SoA,
we now present an approach for tightening the SDP relax-
ation for NN verification while retaining an acceptable com-
putational overhead. Our method combines layer SDP relax-
ations (9) with the RLT (Anstreicher 2009).

Motivation. We first denote a few terms for each layer
of a NN: x̃i+1 = [xT

i , xT
i+1]

T, l̃i+1 = [lTi , lTi+1]
T and

ũi+1 = [uT
i , uT

i+1]
T. Since 0 ≤ l̃i ≤ x̃i+1 ≤ ũi, we

have x̃i+1 l̃
T
i+1 ≤ x̃i+1x̃

T
i+1 ≤ x̃i+1ũ

T
i+1. These nonlinear

constraints can be reformulated as linear constraints on the
elements of Pi:

Pi[x̃i+1]l̃
T
i+1 ≤ Pi[x̃i+1x̃

T
i+1] ≤ Pi[x̃i+1]ũ

T
i+1. (10)

The method aims to bound Pi[x̃i+1x̃
T
i+1] within the region

given in (10). The constraints in (10) are linear and could be
directly added to (9). However, they introduce 2(ni+ni+1)

2

new inequalities, thereby increasing the computational ef-
fort required to solve the verification problem. Therefore, it
is desirable to develop efficient strategies for imposing the
constraints in (10). In the following we: (i) use RLT to con-
struct valid linear cuts that are provably stronger than (10),
and (ii) provide a computationally-efficient strategy for inte-
grating the linear cuts with the layer SDP relaxation (9).

Construction of valid linear cuts using RLT. RLT in-
volves the construction of valid linear cuts on the lifting
matrices {Pi}L−1

i=0 by using products of the existing linear
constraints in (9) on the original variables {xi}Li=0. Under
the constraints (9a) and (9d), the variables xi and xi+1 sat-
isfy: xi ≥ 0, xi − li ≥ 0, xi − ui ≤ 0, xi+1 − li+1 ≥ 0,
xi+1 − ui+1 ≤ 0. These can be used to construct the con-
straints: xil

T
i ≤ xix

T
i ≤ xiu

T
i , (xi+1 − li+1)(xi − li)

T ≥ 0,
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Figure 1: Feasible region of the triple (Pi[xix
T
i ], Pi[xi+1x

T
i+1], Pi[xi+1x

T
i ]) by adding linear cuts (12b), (12c) or (14), with

xi+1 = ReLU(xi − 1) and l̂i+1 ≤ xi − 1 ≤ ûi+1. Left to right columns: 1) inactive neuron l̂i+1 = −1, ûi+1 = 0; 2) unstable
neuron l̂i+1 = −1, ûi+1 = 1; 3) strictly active neuron l̂i+1 = 0, ûi+1 = 2.

(xi+1 − li+1)(xi − ui)
T ≤ 0, (xi − li)(xi+1 − ui+1)

T ≤ 0.
By using (8), these nonlinear constraints are linearised as

Pi[xi]l
T
i ≤ Pi[xix

T
i ] ≤ Pi[xi]u

T
i , (11a)

Pi[xi+1x
T
i ] ≥ Pi[xi+1]l

T
i + li+1(Pi[x

T
i ]− lTi ), (11b)

Pi[xi+1x
T
i ] ≤ Pi[xi+1]u

T
i + li+1(Pi[x

T
i ]− uT

i ), (11c)

Pi[xix
T
i+1] ≤ Pi[xi]u

T
i+1 + li(Pi[x

T
i+1]− uT

i+1). (11d)

We now make the following remarks.
Observation 1. The linear cuts (11a) - (11d) imply (10).
Observation 2. The existing constraints (9d) and (9f) are
stronger than the first part of (11a); while (9d) is stronger
than the diagonal components of the second part of (11a).

These observations show that the targeted bounding in
(10) can be realised by adding to the layer SDP relaxation
(9) the following linear cuts for each Pi, i ∈ IL−1:

Pi[xix
T
i ] ≤ Pi[xi]u

T
i , (12a)

Pi[xi+1x
T
i ] ≥ Pi[xi+1]l

T
i + li+1(Pi[x

T
i ]− lTi ), (12b)

Pi[xi+1x
T
i ] ≤ min{Pi[xi+1]u

T
i + li+1(Pi[x

T
i ]− uT

i ),

ui+1Pi[x
T
i ] + (Pi[xi+1]− ui+1)l

T
i }, (12c)

where the diagonal components of (12a) are redundant.
It has been shown above that adding the linear cuts in

(12) to the layer SDP relaxation (9) is efficient to bound
Pi[x̃i+1x̃

T
i+1] and subsequently the matrix Pi. Problem (9)

also has other existing linear constraints (9a), (9b) and (9h)
that can be used to construct the new constraints:

(xi+1 −Wixi − bi) (xi+1 −Wixi − bi)
T ≥ 0, (13a)

(xi+1 −Aixi −Bi)x
T
i+1 ≤ 0, (13b)

(xi+1 −Aixi −Bi) (xi+1 −Aixi −Bi)
T ≥ 0. (13c)

Observation 3. Linear cut (13a) is weaker than (9f); while
(13c) is weaker than the conjunction of (9a) - (9c) and (9h).

Observation 4. Adding the linear cut (13b) can tighten the
layer SDP relaxation, but only its off-diagonals cut the fea-
sible region, while the diagonals are implied by (9c).

These observations reveal that the constraint (13b) has
not been included in the layer SDP relaxation (9) and it
can narrow the relaxation gap. By defining Pi[xi+1x

T
i+1] =

xi+1x
T
i+1 and Pi[xix

T
i+1] = xix

T
i+1 and recalling that

Pi[xi+1] = Pi+1[xi+1] under (9g), the constraints (12a) and
(13b) are merged as a linear cut for each Pi, i ∈ IL−1:

Pi[xi+1x
T
i+1] ≤

min{Pi[xi+1]u
T
i+1, AiPi[xix

T
i+1] +BiPi[x

T
i+1]}. (14)

When i = 0, P1[x0x
T
0 ] ≤ P1[x0]u

T
0 is also needed.

Integration of linear cuts with the layer SDP relax-
ation. The above analysis identifies the valid linear cuts
(12b), (12c) and (14) for each matrix Pi, i ∈ IL−1. Adding
them to (9) yields the layer RLT-SDP relaxation:

γ∗
RLT-SDP := min

{Pi}L−1
i=0

cTPL−1[xL] + c0

s.t. (9a)− (9h), (12b), (12c), (14).
(15)

Simple numerical examples in Figure 1 show that adding
each of linear cuts (12b), (12c) and (14) shrinks the relax-
ation region of (Pi[xix

T
i ], Pi[xi+1x

T
i+1], Pi[xi+1x

T
i ]) and

thus tightens the layer SDP relaxation. It follows that the
layer RLT-SDP relaxation (15) offers a tighter bound than
the layer SDP relaxation (9), or formally:

Theorem 1. γ∗
GlobalSDP ≤ γ∗

LayerSDP ≤ γ∗
RLT-SDP ≤ γ∗.
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Algorithm 1: Implementation of layer RLT-SDP relaxation

1: Input: NN parameters, {ps}rs=1, kmax.
2: Initialise: Set the order to add the linear cuts using ma-

trices Oi, i ∈ IL−1. Set k = 1.
3: while γ∗

RLT-SDP < 0 and k ≤ kmax do
4: Set p̄i as the integer part of the product pkni, i ∈ IL−1.
5: Solve (15), where for each Pi, i ∈ IL−1, adding only

p̄i elements (with corresponding indexes in Oi) of each
row in (12b) and (12c).

6: Set k = k + 1.
7: end while
8: Output: γ∗

RLT-SDP

Proof. Following the principle of RLT, the added linear cuts
(12b), (12c) and (14) can always be deduced from the origi-
nal linear constraints in the layer SDP relaxation (9). Hence,
the optimal objective value of the layer RLT-SDP relaxation
(15) still serves as a lower bound to that of the QCQP and
the original verification problem (1). Moreover, adding these
valid linear cuts can shrink the feasible region, as shown in
Observations 1 and 4. This means that every solution to (15)
is feasible to (9). Therefore, the layer RLT-SDP relaxation is
at least as tight as the original layer SDP relaxation.

Efficient implementation. The number of linear inequal-
ities introduced by (12b), (12c) and (14) for each Pi, i ∈
IL−1, are nini+1, 2nini+1 and 2ni+1(ni+1−1) (by remov-
ing diagonals), respectively. For P0, n0(n0 − 1) extra linear
inequalities are needed. The total number of inequalities for
each Pi, i = 1, 2, . . . , L−1, is (2n2

i+1+3nini+1−2ni+1),
and for P0 is (2n2

1+3n0n1− 2n1+n2
0−n0). Compared to

directly imposing the constraints in (10) (which introduces
2(ni + ni+1)

2 inequalities), adding (12b), (12c) and (14)
has a lower computational burden, especially for large NNs.
However, adding all the inequalities in (12b), (12c) and (14)
is still computationally expensive. An efficient strategy for
integrating them with the layer SDP relaxation is thus nec-
essary. The strategy we deploy is based on two observations:
• The linear cuts (12b) and (12c) capture inter-layer

dependencies (i.e., terms xi+1x
T
i ). Since xi+1 =

ReLU(Wixi + bi), the dependencies are also reflected
in the weighting matrix Wi. Hence, the structure of Wi

can be exploited to efficiently adding (12b) and (12c).
• The linear cut (14) captures the intra-layer interactions

(i.e., terms xix
T
i ), which cannot be clearly indicated by

NN parameters (weights or biases).
Given these observations, in the following we use the lin-

ear cuts (12b) and (12c). Moreover, it is straightforward to
show that Theorem 1 holds even by adding a portion of (12b)
and (12c). Hence, the computational cost of the problem can
be reduced by adding only a portion of them.

Algorithm 1 describes an efficient implementation of the
layer RLT-SDP relaxation. The fraction of linear cuts added
at each iteration are set by choosing the sequence {ps}rs=1,
where 0 ≤ p1 < · · · < pr ≤ 1. In practice, the se-
quence {ps}rs=1 and the maximum iteration kmax, which sat-
isfies 1 ≤ kmax ≤ r, can be adapted to the computational

Figure 2: Feasible region of xi+1 = ReLU(Wixi + 0.1),
with Wi = [0.5 −1], xi = [xi,1, xi,2]

T and 0 ≤ xi,1, xi,2 ≤
1, by adding a part or all of linear cuts (12b) and (12c).
Adding only the linear cuts about xi+1xi,2 (i.e., the larger
element of |Wi|) yields a feasible region close to the one
with full constraints on xi+1x

T
i .

power available. Note that, in principle, a different sequence
{ps}rs=1 can be chosen for each individual layer; for simplic-
ity we consider these to be constant. The matrix Oi stores the
ordering (in descending order) of the elements in each row
of |Wi|. The purpose of creating the ordering is to ensure
that the part of linear cuts with larger influences on shrink-
ing the feasible region are added first. This is based on the
consideration as follows: For the neuron m at layer i + 1,
its pre-activation is x̂i+1,m = Wi(m, :)xi + bi(m), where
Wi(m, :) is a row vector. Let w1 and w2 be any two elements
of Wi(m, :) and their corresponding inputs are xi,1 and xi,2,
respectively. If |w1| > |w2|, then compared to those linear
cuts about xi+1xi,2, the linear cuts about xi+1xi,1 has big-
ger influence on the feasible region of xi+1,m. Figure 2 pro-
vides an example for this, where it is seen that the linear cuts
about xi+1xi,2 contributes more than xi+1xi,1 in shrinking
the feasible region of xi+1.

We can show the following property of Algorithm 1:
Theorem 2. The relation γ∗

LayerSDP ≤ γ∗
RLT-SDP ≤ γ∗ holds

under any choice of {ps}rs=1. At any given iteration k of
Algorithm 1, we have that γ∗

RLT-SDPk
≤ γ∗

RLT-SDPk+1
≤ γ∗.

Proof. It is straightforward to prove the first part following
Theorem 1. At each iteration k, the proportion of linear cuts
added is p̄i, the integer part of pkni. Since pk+1 > pk, the
proportion added at iteration k + 1 is larger than that at it-
eration k and contains it as a subset. Hence, for any k ≥ 1,
every feasible solution to the optimisation problem solved
at iteration k + 1 is also a solution to the problem solved at
iteration k, i.e., γ∗

RLT-SDPk
≤ γ∗

RLT-SDPk+1
.

At each iteration, the layer RLT-SDP relaxation (15) is
solved with a total number of

∑L−1
i=1 3p̄ini+1 linear cuts.

This is computationally lighter than the problem obtained
by adding all the inequalities in (12b) and (12c). Further-
more, before running the algorithm, we can also remove the
inactive neurons and simplify the constraints of stable neu-
rons to reduce the sizes of the constraints Pi ⪰ 0, i ∈ IL−1.
This can be realised by examining the activation pattern of
the NN under a given verification query and will not relax
the solution. This is a strategy used in (Batten et al. 2021).
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Experimental Evaluation
Two sets of experiments were carried out to evaluate the pre-
cision and scalability of relaxation proposed as well as Al-
gorithm 1. The experiments were run on a Linux machine
with an Intel i9-10920X 3.5 GHz 12-core CPU with 128 GB
RAM. The optimisation problems were modelled by using
YALMIP (Lofberg 2004) and solved using MOSEK (Ander-
sen and Andersen 2000). We compared the results obtained
against presently available SoA methods and tools.

Networks. In Experiment 1, we considered two groups of
two-input, two-output, fully-connected random ReLU NNs
generated by using the method in (Fazlyab, Morari, and Pap-
pas 2022). Group 1 had four models with L = 4, 6, 8, 10
hidden layers, respectively, and 15 neurons for each hidden
layer. Group 2 had four three-layer models, with ni = 10,
15, 50, 100 neurons per hidden layer, respectively.

In Experiment 2, we considered three groups of fully-
connected ReLU NNs trained on the MNIST dataset. These
are widely used in all the SDP benchmarks (By “m×n” we
mean a NN with m−1 hidden layers each having n neurons,
which is consistent with (Batten et al. 2021).):

• Small NNs: MLP-Adv, MLP-LP and MLP-SDP from
(Raghunathan, Steinhardt, and Liang 2018) and tested
under the same perturbation ϵ = 0.1 as in (Raghunathan,
Steinhardt, and Liang 2018; Batten et al. 2021).

• Medium NNs: Models 6× 100 and 9× 100 from (Singh
et al. 2019a) and evaluated under the same ϵ = 0.026 and
ϵ = 0.015 as in (Singh et al. 2019a; Tjandraatmadja et al.
2020; Müller et al. 2021; Batten et al. 2021)

• Large NNs: Models 8× 1024-0.1 and 8× 1024-0.3 from
(Li et al. 2020), which were trained using CROWN-IBP
(Zhang et al. 2019) with adversarial attack ϵ = 0.1, 0.3,
respectively. As in (Li et al. 2020), they were tested under
the perturbations ϵ = 0.1, 0.3, respectively.

Baseline methods. In Experiment 2, we compared
the proposed layer RLT-SDP relaxation (referred to as
RLT-SDP) against the SoA methods for verification below:

• Complete methods: MILP (Tjeng, Xiao, and Tedrake
2019), AI2 (Gehr et al. 2018), and β-CROWN (Wang
et al. 2021).

• Linear relaxations: the standard linear programming re-
laxation LP (Ehlers 2017) and its variants including
IBP (Gowal et al. 2019), OptC2V (Tjandraatmadja
et al. 2020), and PRIMA (Müller et al. 2021). We
did not consider kPoly (Singh et al. 2019b) and
DeepPoly (Singh et al. 2019a) , as they were shown
in (Müller et al. 2021) to be weaker than PRIMA.

• SDP relaxations: LayerSDP (Batten et al.
2021), SDP-IP (i.e., the global SDP relaxation
(7)) (Raghunathan, Steinhardt, and Liang 2018), and
SDP-FO (Dathathri et al. 2020).

Experiment 1: Efficacy of the proposed strategy. We
investigated both the network depth and width by using
RLT-SDP to obtain an over-approximation of the feasible
output region of the NN for a given input set. The test inputs
were random values within [0, 1] and the heuristic method

Figure 3: Over-approximated output region by RLT-SDP
with different percentages of linear cuts for networks of dif-
ferent hidden layers L. The 0% case is LayerSDP.

Figure 4: Tightness improvement and runtime increase ob-
tained by solving RLT-SDP with different percentages of
linear cuts for networks of different hidden layers L. The
0% case is LayerSDP.

in (Fazlyab, Morari, and Pappas 2022) was adopted to com-
pute the over-approximations. Algorithm 1 was run with
{ps}11s=1 = {0, 0.1, · · · , 1} and kmax = 11. Without linear
cuts (p1 = 0), RLT-SDP is equivalent to LayerSDP.

We first studied the impact of network depth on the verifi-
cation method here proposed by using the models in Group
1. Figure 3 shows that for all the four models considered,
adding a larger percentage of linear cuts yields a tighter over-
approximation. As the number of hidden layers L increases,
LayerSDP becomes looser and the effects of adding linear
cuts becomes more significant. The figures show that across
all models, even using just 20% of the linear cuts consid-
erably reduces the over-approximation. To further analyse
the gain in the approximation versus the corresponding in-
crease in computational complexity, we considered two met-
rics: the improvement in approximation (or tightness) and
the runtime increase. The former is the relative reduction
in the feasible output regions obtained by RLT-SDP and
LayerSDP; the latter is the relative increase in their run-
time. As expected, it is shown in Figure 4 that adding a larger
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RLT-SDP LayerSDP SDP-IP SDP-FO LP OptC2V PRIMA β-CROWN MILP AI2 IBP

Models PGD Certified Time∗ Cert.† Time∗ Cert.† Time∗ Cert.† Cert.† Cert.† Cert.† Cert.† Cert.† Cert.† Cert.†

MLP-Adv 94% 88 | 94 3622 80 | 91 2164 82 12079 84 65 – – – – – –
MLP-LP 80% 80 | 80 159 80 | 80 145 80 50733 78 79 – – – – – –
MLP-SDP 84% 84 | 84 11141 80 | 84 4373 80 43156 64 35 – – – – – –
6× 100 91% 82 | 90 3297 60 | 75 1900 – 6760 ⋄ 21 42.9 51.0 69.9 – – –
9× 100 86% 56 | 70 10800 22 | 35 7119 – 11899 ⋄ 18 38.4 42.8 62.0 – – –
8×1024-0.1 89% 82 | 5883 – 2932 ⋄ ⋄ ⋄ 0 – – – 67 52 80
8×1024-0.3 26% 26 | 761 – 469 ⋄ ⋄ ⋄ 0 – – – 7 16 22

Table 1: Certified robustness (in percentage) and runtime per image (in seconds) for a set of benchmarks with various sizes.
Dagger (†): these results are directly taken from the literature: LayerSDP and SDP-FO from (Batten et al. 2021), SDP-IP
from (Raghunathan, Steinhardt, and Liang 2018), OptC2V from (Tjandraatmadja et al. 2020), PRIMA from (Müller et al.
2021), β-CROWN from (Wang et al. 2021), while MILP, AI2 and IBP from (Li et al. 2020); The first four numbers of LP are
from (Batten et al. 2021), and the last two are obtained by implementation with interval arithmetic bounds. Dash (–): previously
reported numbers are unavailable. Diamond (⋄): the methods fail to verify any instance. Star (∗): the runtime is estimated by
running over five images using the same interval arithmetic bounds. Vertical line (|): the certified robustness on the left and
right are obtained using interval arithmetic bounds and symbolic interval propagation, respectively.

proportion of linear cuts yields a tighter over-approximation,
along with an increase in runtime. Adding the same per-
centage of linear cuts leads to a more significant tightness
improvement on larger networks (with larger L) than on
smaller ones. For each network, as the percentage of lin-
ear cuts increases, the tightness improvement becomes less
significant, but the runtime increase becomes more signifi-
cant. Particularly, experimentally we found that the first 20%
of linear cuts contributes most significantly to the improve-
ment in overall tightness of the method. We evaluated the
impact of network width by using the models in Group 2
and observed very similar behaviour of the method.

These results clearly confirm Theorem 2 and demonstrate
the efficiency of Algorithm 1. They also indicate that a trade-
off needs to be balanced between the tightness improvement
and runtime increase. Specifically, the addition of 20% of
linear cuts could be sufficient to improve considerably the
precision of the SDP approach without incurring the higher
computational costs associated with larger problems.

Experiment 2: Comparison with the SoA methods. We
benchmarked the technique on the NNs built on the MNIST
dataset described above. All experiments were run on the
first 100 images of the dataset. The results obtained are
reported in Table 1, where the runtime is the solver time.
The PGD upper bounds of MLP-Adv, MLP-LP, MLP-SDP,
6×100 and 9×100 are taken from (Batten et al. 2021), while
those of 8 × 1024-0.1 and 8 × 1024-0.3 are from (Li et al.
2020). We ran Algorithm 1 with the sequence {0.1, 0.2}
and kmax = 2. As in LayerSDP, we further optimised
RLT-SDP by removing inactive neurons in the first step.

Our results show that RLT-SDP based on the interval
arithmetic bounds is more precise than LayerSDP under
the same bounds and all other baseline methods for all
the networks. One exception is the 9 × 100 network, for
which β-CROWN achieves the highest precision. By us-
ing the tighter symbolic bound propagation (Botoeva et al.
2020), RLT-SDP significantly outperformed all the incom-
plete/complete baseline methods.

As expected we found RLT-SDP to be significantly
more computationally demanding than LayerSDP across
all the networks. However, it was still faster than SDP-IP
for the small and median networks. Neither SDP-IP nor
SDP-FO could verify the two large networks. Also, it is
shown in (Batten et al. 2021) that compared to LayerSDP,
SDP-FO has a runtime that is much larger for MLP-Adv and
MLP-LP, but smaller for MLP-SDP. SDP-FO fails to verify
6 × 100 and 9 × 100. These results confirm that RLT-SDP
remains competitive in terms of computational efficiency.
We note that the runtime of LayerSDP in Table 1 is larger
than that reported in (Batten et al. 2021). This is because
we directly solved the layer SDP relaxation (9), without im-
plementing SparseColO (Fujisawa and et al. 2009) or the
automatic model transformation as in (Batten et al. 2021).
Their work shows that using subroutine from SparseColO
can balance the size of semidefinite constraints and equality
constraints, and using automatic model transformation can
reduce YALMIP overhead time, both of which significantly
improve the efficiency of LayerSDP. Note, however, that
these techniques are also directly applicable to RLT-SDP.
Hence, the results presented here provides a like-for-like
comparison between LayerSDP and RLT-SDP.

Conclusions
While SDP-based algorithms have shown their promise as a
next generation method to verify NN, their resulting over-
approximations are still too coarse to verify deep and large
NNs. In this paper we put forward a novel SDP relaxation
for achieving tight and efficient neural network robustness
verification. We did so by combining the layerwise SDP
relaxation with RLT. We showed that the method always
yields tighter bounds than the present SoA. We also illus-
trated how a careful choice of linear cuts can mitigate the
additional computational cost, thereby resulting in an over-
all tight and computationally balanced technique. The exper-
iments reported demonstrated that the method achieves SoA
on all benchmarks commonly used in the area.
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