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Abstract

The Jobs shop Scheduling Problem (JSP) is a canonical com-
binatorial optimization problem that is routinely solved for a
variety of industrial purposes. It models the optimal scheduling
of multiple sequences of tasks, each under a fixed order of op-
erations, in which individual tasks require exclusive access to
a predetermined resource for a specified processing time. The
problem is NP-hard and computationally challenging even for
medium-sized instances. Motivated by the increased stochas-
ticity in production chains, this paper explores a deep learning
approach to deliver efficient and accurate approximations to
the JSP. In particular, this paper proposes the design of a deep
neural network architecture to exploit the problem structure,
its integration with Lagrangian duality to capture the problem
constraints, and a post-processing optimization to guarantee
solution feasibility. The resulting method, called JSP-DNN,
is evaluated on hard JSP instances from the JSPLIB bench-
mark library. Computational results show that JSP-DNN can
produce JSP approximations of high quality at negligible com-
putational costs.

1 Introduction

The Job shop Scheduling Problem (JSP) is defined in terms
of a set of jobs, each of which consists of a sequence of tasks.
Each task is processed on a predetermined resource and no
two tasks can overlap in time on these resources. The goal
of the JSP is to sequence the tasks in order to minimize the
total duration of the schedule. Although the problem is NP-
hard and computationally challenging even for medium-sized
instances, it constitutes a fundamental building block for the
optimization of many industrial processes and is key to the
stability of their operations. Its effects are profound in our
society, with applications ranging from supply chains and
logistics, to employees rostering, marketing campaigns, and
manufacturing to name just a few (Kan 2012).

While the Artificial Intelligence and Operations Research
communities have contributed fundamental advances in opti-
mization in recent decades, the complexity of these problems
often prevents them from being effectively adopted in con-
texts where many instances must be solved over a long-term
horizon (e.g., multi-year planning studies) or when solutions
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must be produced under stringent time constraints. For exam-
ple, when a malfunction occurs or when operating conditions
require a new schedule, replanning needs to be executed
promptly as machine idle time can be extremely costly. (e.g.,
on the order of $10,000 per minute for some applications
(Gombolay et al. 2018)). To address this issue, system op-
erators typically seek approximate solutions to the original
scheduling problems. However, while more efficient compu-
tationally, their sub-optimality may induce substantial eco-
nomical and societal losses, or they may even fail to satisfy
important constraints.

Fortunately, in many practical settings, one is interested in
solving many instances sharing similar patterns. Therefore,
the application of deep learning methods to aid the resolu-
tion of these optimization problems is gaining traction in
the nascent area at the intersection between constrained opti-
mization and machine learning (Bengio, Lodi, and Prouvost
2020; Kotary et al. 2021; Vesselinova et al. 2020). In particu-
lar, supervised learning frameworks can train a model using
pre-solved optimization instances and their solutions. How-
ever, while much of the recent progress at the intersection of
constrained optimization and machine learning has focused
on learning good approximations by jointly training predic-
tion and optimization models (Balcan et al. 2018; Khalil
et al. 2016; Nair et al. 2020; Nowak et al. 2018; Vinyals,
Fortunato, and Jaitly 2015a) and incorporating optimiza-
tion algorithms into differentiable systems (Amos and Kolter
2017a; Poganci¢ et al. 2020; Wilder, Dilkina, and Tambe
2019a; Mandi et al. 2020), learning the combinatorial struc-
ture of complex optimization problems remains a difficult
task. In this context, the JSP is particularly challenging due to
the presence of disjunctive constraints, which present some
unique challenges for machine learning. Ignoring these con-
straints produce unreliable and unusable approximations, as
illustrated in Section 5.

JSP instances typically vary along two main sets of param-
eters: (1) the continuous task durations and (2) the combina-
torial machine assignments associated with each task. This
work focuses on the former aspect, addressing the problem
of learning to map JSP instances from a distribution over task
durations to solution schedules which are close to optimal.
Within this scope, the desired mapping is combinatorial in
its structure: a marginal increase in one task duration can
have cascading effects on the scheduling system, leading to



significant reordering of tasks between respective optimal
schedules (Kan 2012).

To this end, this paper integrates Lagrangian duality within
a Deep Learning framework to “enforce” constraints when
learning job shop schedules. Its key idea is to exploit La-
grangian duality, which is widely used to obtain tight bounds
in optimization, during the training cycle of a deep learning
model. The paper also proposes a dedicated deep-learning
architecture that exploits the structure of JSP problems and
an efficient post-processing step to restore feasibility of the
predicted schedules.

Contributions The contributions of this paper can be sum-
marized as follows. (1) It proposes JSP-DNN, an approach
that uses a deep neural network to accurately predict the
tasks start times for the JSP. (2) JSP-DNN captures the JSP
constraints using a Lagrangian framework, recasting the JSP
prediction problem as the Lagrangian dual of the constrained
learning task and using a subgradient method to obtain high-
quality solutions. (3) It further exploits the JSP structure
through the design of a bespoke network architecture that
uses two dedicated sets of layers: job layers and machine
layers. They reflect the task-precedence and no-overlapping
structure of the JSP, respectively, encouraging the predictions
to take account of these constraints. (4) While the adoption
of Lagrangian duals and the dedicated JSP network architec-
ture represent notable improvements to the prediction, the
model predictions represent approximate solutions to the JSP
and may not feasible. In order to derive feasible solutions
from these predictions, this paper proposes an efficient recon-
struction technique. (5) Finally, experiments against highly
optimized industrial solvers show that JSP-DNN provides
state-of-the-art JSP approximations, both in terms of accu-
racy and efficiency, on a variety of standard benchmarks. To
the best of the authors’ knowledge, this work is the first to
tackle the predictions of JSPs using a dedicated supervised
learning solution.

2 Related Work

The application of Deep Learning to constrained optimization
problems is receiving increasing attention. Approaches which
learn solutions to combinatorial optimization using neural net-
works include (Vinyals, Fortunato, and Jaitly 2015b; Khalil
et al. 2017; Kool, Van Hoof, and Welling 2018). These ap-
proaches often rely on predicting permutations or combina-
tions as sequences of pointers. Another line of work leverages
explicit optimization algorithms as a differentiable layer into
neural networks (Amos and Kolter 2017b; Donti, Amos, and
Kolter 2017; Wilder, Dilkina, and Tambe 2019b). A further
collection of works interpret constrained optimization as a
two-player game, in which one player optimizes the objec-
tive function and a second player attempts at satisfying the
problem constraints (Kearns et al. 2017; Narasimhan 2018;
Agarwal et al. 2018). For instance, Agarwal et al. (2018) pro-
poses a best-response algorithm applied to fair classification
for a class of linear fairness constraints. To study generaliza-
tion performance of training algorithms that learn to satisfy
the problem constraints, Cotter et al. (2018) propose a two-
players game approach in which one player optimizes the
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Model 1: JSP Problem
P(d) = argmin, u

()]
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model parameters on the training data and the other player
optimizes the constraints on a validation set. Arora, Hazan,
and Kale (2012) propose the use of a multiplicative rule to
maintain some properties by iteratively changing the weights
of different distributions; they also discuss the applicability
of the approach to a constraint satisfaction domain.

Different from these proposals, this paper proposes a frame-
work that exploits key ideas from Lagrangian duality to en-
courage the satisfaction of generic constraints within a neural
network learning cycle and apply them to solve complex JSP
instances. This paper builds on the recent results that were
dedicated to learning and optimization in power systems
(Fioretto, Mak, and Van Hentenryck 2020).

3 Preliminaries: JSP

The JSP is a combinatorial optimization problem in which
J jobs, each composed of T tasks, must be processed on M
machines. Each job comprises a sequence of T tasks, each of
which is assigned to a different machine. Tasks within a job
must be processed in their specified sequential order. More-
over, no two tasks may occupy the same machine at the same
time. The objective is to find a schedule which minimizes the
time to process all tasks, known as the makespan. This paper
considers the classical setting in which the number of tasks in
each job is equal to the number of machines (7' = M), so that
each job has one task assigned to each machine. This leads
to a problem size n = J X M. This is however not a limita-
tion of the proposed work and its implementation generalizes
beyond this setting.

The optimization problem associated with a JSP instance
is described in Model 1, where 0'{ denotes the machine that
processes task 7 of job j, and d/ denotes the processing time
on machine o/ needed to complete task 7 of job j. The deci-

sion variables s/ and u represent, respectively, the start times
of each task and the makespan. In the following, d and s
denote, respectively, the input vector (processing times) and
output vector (start times), and P(d) represents the optimal
solution of a JSP instance with inputs d. For simplicity, we
assume that this solution is unique, i.e., there is a rule to break
ties when there are multiple optimal solutions.

The task-precedence constraints (2b) require that all tasks
be processed in the specified order; the no-overlap constraints
(2c) require that no two tasks using the same machine over-
lap in time. The difficulty of the problem comes primarily
from the disjunctive constraints (2¢) defining the no-overlap
condition. The JSP is, in general, NP-hard and can be for-



mulated in various ways, including several Mixed Integer
Program (MIP), and Constraint Programming (CP) models,
each having distinct characteristics (Ku and Beck 2016). In
the following sections, C(s, d) denotes the set of constraints
(2b)—(2d) associated with problem P(d).

4 JSP Learning Goals

Given the set of processing times d = (d/) je(),.e(71 associated
with each problem task (as well as a static assignment of
tasks to machines o), the paper develops a JSP mapping
$ : N" — N” to predict the start times s = (s/) e[ €l T]
for each task. The input of the learning task is a dataset
D ={(d;, s[)}f.;'l, where d; and s; represent the ™ instance of
task processing times and start times that satisfy s; =P(d;).
The output is a JSP approximation function P, parametrized
by vector @ € R, that ideally would be the result of the
following optimization problem

N
miniemize Z L (s,-, ﬁg(d,-)) subject to: C (Sbg(di), df) ,

i=1

whose loss function £ captures the prediction accuracy of
model 733 and C(8, d) holds if the predicted start times § =
f)g(d) produce a feasible solution to the JSP constraints.
One of the key difficulties of this learning task is the pres-
ence of the combinatorial feasibility constraints in the JSP.
The approximation P will typically not satisfy the problem
constraints, as shown in the next section. After exposing this
challenge, this paper combines three techniques to obtain a
feasible solution:
1. it learns predictions which are near-feasible using an aug-
mented loss function;
it exploits the JSP structure through the design of a neural
network architecture, and
it efficiently transforms these predictions into nearby solu-
tions that satisfy the JSP constraints.

2.

3.

Combined, these techniques form a framework for predicting
accurate and feasible JSP scheduling approximations.

5 The Baseline Model and its Challenges

This paper first presents the results of a baseline model whose
approximation Py is learned from a feed-forward ReLU net-
work, named FC. The challenges of FC are illustrated in
Figure 1, which reports the constraint violations (left) and
the performance (right) of this baseline model compared to
the proposed JSP-DNN model on the swv11 JSP benchmark
instance of size 50 x 10 (see Section 10 for details about the
models and datasets). The left figure reports the non-overlap
constraint violations measured as the relative task overlap
with respect to the average processing time. While the base-
line model often reports predictions whose corresponding
makespans are close to the ground truth, the authors have
observed that this model learns to “squeeze” schedules in
order to reduce their makespans by allowing overlapping
tasks. As a result this baseline model converges to solutions
that violate the non-overlap constraint, often by very large
amounts. The performance plot (right) shed additional light
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Figure 1: Constraint violations (left) and performance (right)
of the baseline model (fully connected network trained
with MSE loss) compared to the proposed JSP-DNN model.
Benchmark: swv11. Constraint violation is the average mag-
nitude of task overlap, measured with respect to the average
processing time. The performance (right) reports the rela-
tive difference in makespan attained by the baseline and the
JSP-DNN models, compared to an optimized version of IBM
CP-optimizer over 30 minutes.

on the usability of this model in practice. It reports the time
required by this baseline model to obtain a feasible solution
(blue star) against the solution quality of a highly optimized
solver (IBM CP-optimizer) over time. Obtaining feasible so-
lutions efficiently is discussed in Section 9. The figures also
report the constraint violations and solution quality found by
the proposed JSP-DNN model (orange colors), which show
dramatic improvements on both metrics. The next sections
present the characteristics of JSP-DNN.

6 Capturing the JSP Constraints

To capture the JSP constraints within a deep learning model,
a Lagrangian relaxation approach is used. Consider the opti-
mization problem

P = argmin f(y) subjectto g;(y) <0 (Vie[m]). (2)
y
Its Lagrangian function is expressed as

m
AO)=FO)+ Y Amax(0, &), 3)
i=1
where the terms 4; > 0 describe the Lagrangian multipliers,
and A = (4y,...,4,,) denotes the vector of all multipliers
associated with the problem constraints. In this formulation,
the expressions max(0, g;(y)) capture a quantification of the
constraint violations, which are often exploited in augmented
Lagrangian methods (Hestenes 1969) and constraint program-
ming (Fontaine, Laurent, and Van Hentenryck 2014).
When using a Lagrangian function, the optimization prob-
lem becomes

“4)

and it satisfies f(LRx) < f(#). That is, the Lagrangian func-
tion is a lower bound for the original function. Finally, to ob-
tain the strongest Lagrangian relaxation of P, the Lagrangian
dual can be used to find the best Lagrangian multipliers,

LD = argmax . f(LR). 5

For various classes of problems, the Lagrangian dual is a
strong approximation of . Moreover, its optimal solutions

LRy = argmin f(y),
3



can often be translated into high-quality feasible solutions by
a post-processing step, which is the subject of Section 9.

Augmented Lagrangian of the JSP Constraints
Given an enumeration of the JSP constraints, the violation
degree of constraint i is represented by max(0, g;(y)). Given
the predicted values §, the violation degrees associated with
the JSP constraints are expressed as follows:

vap (§) = max (0, 8 + d/ - §/,,) (62)

INEPN 4 . L (A A R (A ~J

Vae (s,’, 8 ) = min (V2C (s{, 8 ) VA (s{, 8 )) , (6b)
for the same indices as in Constraints (2b) and (2c) respec-
tively, where

NIENARE o t_ af
v%c (s,, st,) = max(O, S+ dj - st,)
NIENARE N t o)
V§C (s,, s,,) = maX(O, 5+ dj, — s,).

The term vy, refers to the task-precedence constraint (2b), and
the violation degree v, refers to the disjunctive non-overlap
constraint (2c), with v and v¥_ referring to the two disjunc-
tive components. When two tasks indexed (j,¢) and (j,¢')
are scheduled on the same machine, if both disjunctions are
violated, the overall violation degree v, is considered to be
the smaller of the two degrees, since this is the minimum
distance that a task must be moved to restore feasibility.

The Learning Loss Function

The loss function of the learning model used to train the pro-
posed JSP-DNN can now be augmented with the Lagrangian
terms and expressed as follows:

L(s,3,d) = L(s,3) + Z Ave(3,d).
ceC
It minimizes the prediction loss—defined as mean squared
error between the optimal start times s and the predicted
ones $—and it includes the Lagrangian relaxation based on
the violation degrees v of the JSP constraints ¢ € C.

)

7 The Learning Model

Let P be the resulting JSP-DNN with parameters 6 and let
L[] be the loss function parametrized by the Lagrangian
multipliers A = {A.}.ec. The core training aims at finding the
weights 0 that minimize the loss function for a given set of
Lagrangian multipliers, i.e., it computes

LR = min L[] (s,%(d)).

In addition, JSP-DNN exploits Lagrangian duality to obtain
the optimal Lagrangian multipliers, i.e., it solves

LD = m}a\lx LR,
The Lagrangian dual is solved through a subgradient method
that computes a sequence of multipliers A', ..., A%, ... by
solving a sequence of trainings LRS,...,LR5™", ... and ad-

justing the multipliers using the violations,

6"*! = argmin L[\] (8,7bek(3)) (L1
0

)\k+l = (ﬂlcc +pVe (@9/&1(3), d) | C € C) s (L2)
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Algorithm 1: Learning Step
input : D, a, p : Training data, Optimizer, and
Lagrangian step sizes, resp.
1 X'« 0 VceC
2 for epochk=0,1,...do

3 foreach (d, s) < minibatch(D) of size b do

4 5 — Po(d)

5 L(8,8) — 3 Diew) L (80 80) + Teec Abve (di, 8)
6 0 —0—aVy(L(s,8))

7 foreach c € C do

8 L A — Ak + py.(d, 8)

where p > 0 is the Lagrangian step size. In the implementa-
tion, step (L1) is approximated using a Stochastic Gradient
Descent (SGD) method. Importantly, this step does not re-
compute the training from scratch but uses a warm start for
the model parameters 6.

The overall training scheme is presented in Algorithm 1. It
takes as input the training dataset 9, the optimizer step size
a > 0 and the Lagrangian step size p > 0. The Lagrangian
multipliers are initialized in line 1. The training is performed
for a fixed number of epochs, and each epoch optimizes the
weights using a minibatch of size b. After predicting the task
start times (line 4), it computes the objective and constraint
losses (line 5). The latter uses the Lagrangian multipliers A
associated with current epoch k. The model weights 6 are
updated in line 6. Finally, after each epoch, the Lagrangian
multipliers are updated following step (L2) described above
(lines 7 and 8).

8 The JM-structured Network Architecture
This section describes the bespoke neural network architec-
ture that exploits the JSP structure. Let 1 ,(c'") and 7 ff ) denote,
respectively, the set of task indexes associated with the k™
machine and the ™ job. Further, denote with d[7] the set
of processing times associated with the tasks identified by
index set 7. The JSP-structured architecture, called JM as for
Jobs-Machines, is outlined in Figure 2. The network differen-
tiates three types of layers: Job layers, that process processing
times organized by jobs, Machine layers, that process pro-
cessing times organized by machines, and Shared layers, that
process the outputs of the job layers and the machine layers
to return a prediction §.

The input layers are depicted with white rectangles. Each
job layer k takes as input the task processing times d[J 2/)]
associated with an index set 7 ,(f ) (k € [J]), and each machine
layer k takes as input the task processing times d[1 ;(m)] as-

sociated with an index set 7 ;(m) (k € [J]). The shared layers
combine the latent outputs of the job and machine layers. A
decoder-encoder pattern follows for each individual group of
layers, which are fully connected and use ReLLU activation
functions (additional details are reported in Section 10).
The effect of the JM architecture is twofold. First, the
patterns created by the job layers and the machine layers
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Figure 3: Distribution of No-Overlap Violation results cor-
responding to the hyperparameter search of Table 1. Bench-
mark: ta30. Lagrangian dual results (Orange) are compared
against a baseline using MSE loss (Blue). JM network ar-
chitecture is compared against a baseline fully connected
network (FC). Scaled between 0 (min) and 1 (max).

reflect the task-precedence and no-overlap structure of the
JSP, respectively, encouraging the prediction to account for
these constraints. Second, in comparison to an architecture
that takes as input the full vector d and processes it using fully
connected ReL.U layers, the proposed structure reduces the
number of trainable parameters, as no connection is created
within any two hidden layers processing tasks on different
machines (machine layers) or jobs (job layers). This allows
for faster convergence to high-quality predictions.

Figure 3 compares the no-overlap constraint violations
resulting from each choice of loss function and network ar-
chitecture over the whole range of hyperparameters searched.
The figure clearly illustrates the benefits of using the La-
grangian dual method, and that the best results are obtained
when the Lagrangian dual method is used in conjunction
with the JM architecture. The results for task precedence
constraints are analogous.

9 Constructing Feasible Solutions

It remains to show how to recover a feasible solution from the
prediction. The recovery method exploits the fact that, given
a task ordering on each machine, it is possible to construct
a feasible schedule in low polynomial time. Moreover, a
prediction § defines implicitly a task ordering. Indeed, using
(j, 1) to denote task 7 of job j, a start time prediction vector
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Model 2: Recovering a Feasible Solution to the JSP.

I(s) = argmin, u
subject to: (2a), (2b)
siz sl +d) Vj j el e[TTst () <s (1) (8a)
s/ >0 VjelJ],re[T] (8b)

Algorithm 2: The JSP Greedy Recovery.

Input: { §{ Yretr), jern: predicted start times

1 Q « enqueue((j, 1)), Vjel[J]

2 while Q is empty do

3 (j, t) « dequeue(Q)

4 Schedule task (j, #) with start time §{
5 if t < T then

6 §., —max(8/, 8 +d))

7 Q « enqueue(j, 1)

8 end

9 foreach (¢, j)stt#¢ & o-f,/ = o-{ & ft’ = §{

do

10 ‘ §f — max(ftj,/, §f + dtj)

11 end
12 end

§ can be used to define a task ordering < between tasks
executing on the same machine, i.e.,

(o0 =5 (1) iff o <p A o] =0,
where ,ﬁ{ = # is the predicted midpoint of a task ¢ of job j.

The Linear Program (LP) described in Model 2 computes
the optimal schedule subject to the ordering <z associated
with prediction 8. This LP has the same objective as the
original scheduling problem, along with the upper bound on
start times and task-precedence constraints. The disjunctive
constraints of the JSP however are replaced by additional
precedence constraints (8a) and (8b) for the ordering on each
machine. The problem is totally unimodular when the dura-
tions are integral.

Note that the above LP may be infeasible: the machine
precedence constraints may not be consistent with the job
precedence constraints. If this happens, it is possible to use
a greedy recovery algorithm that selects the next task to
schedule based on its predicted starting time and updates
predictions with precedence and machine constraints. The
greedy procedure is illustrated in Algorithm 2 and is orga-
nized around a priority queue which is initialized with the
first task in each job. Each iteration selects the task with the
smallest starting time §/ and updates the starting of its job
successor (line 6) and the starting times of the unscheduled
task using the same machine (line 10). It is important to note
that this greedy procedure was never needed: all test cases
(e.g., all instances under all hyper-parameter combinations)
induced machine orderings that were consistent with the job
precedence constraints.



Parameter Min Value Max Value
Learning Rate @ 0.000125  0.02
Dual Learning Rate p  0.001 0.05
# Machine Layers 2 2
# Job Layers 2 2
# Shared Layers 2 2
Machine Layer Size 2J 2J
Job Layer Size 2M 2M
Shared Layer Size 2JM 2JM

Table 1: Model Parameters and Hyper-Parameters.

Remark on Learning Task Orderings JSP-DNN learns
to predict schedules as assignments of start times to each
task. Another option would have been to learn machine or-
derings directly in the form of permutations since, once ma-
chine orderings are available, it is easy to recover start times.
However, learning permutations was found to be much more
challenging due to its less efficient representation of solu-
tions. For example, for a 50 x 10 JSP, predicting task ordering
(or, equivalently, rankings) requires an output dimension of
50 % 50 x 10 (a one-hot encoding to rank each of the 50 tasks
and 10 machines). In contrast, the start time prediction re-
quires only one value for each start-time, in this case, 50 x 10.
Enforcing feasibility also becomes more challenging in the
case of rankings. It is nontrivial to design successful viola-
tion penalties for task precedence constraints when using the
one-hot encoding representation of the solutions.

Start times are easier to predict and indirectly produce
good proxies for machine orderings.

10 Experimental Results

The experiments evaluate JSP-DNN against the baseline FC
network, the state-of-the-art CP commercial solver IBM CP-
Optimizer, and several well-known scheduling heuristics.

Data Generation and Model Details A single instance of
the JSP with J jobs and M machines is defined by a set of as-
signments of tasks to machines, along with processing times
required by each task. The generation of JSP instances simu-
lates a situation in which a scheduling system experiences an
unexpected “slowdown” on some arbitrary machine, induc-
ing an increase in the processing times of each task assigned
to the impaired machine. To create each experimental dataset,
a root instance is chosen from the JSPLIB repository (JS-
PLib 2014), and a set of 5000 individual problem instances
are generated accordingly, with all processing times on the
slowdown machines extended from their original value to
a maximum increase of 50 percent. Each JSP instance is
solved using the IBM CP-Optimizer constraint-programming
software (Laborie 2009). Because the JSP solutions used in
training are nonunique, and may not be optimal, solution
learning is benefited by a data generation procedure which
encourages similarity between solutions to similar instances.
A secondary optimization is applied to minimize the L1 dis-
tance between subsequently generated solutions as process-
ing times are increased, as detailed in (Kotary, Fioretto, and
Van Hentenryck 2021)
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Model Configuration To ensure a fair analysis, the learn-
ing models have the same number of trainable parameters.
The JM-structured neural networks are given two decoder
layers per job and machine, whose sizes are twice as large
as their corresponding numbers of tasks. These decoders are
connected to a single Shared Layer (of size 2 X J X M). A
final output layer, representing task start times, has size equal
to the number of tasks in the JSP instance. The baseline fully
connected networks are given 3 hidden layers, whose sizes
are chosen to match the size of the corresponding JSP-DNN
network in terms of the total number of parameters. The
experiments apply the recovery operators discussed in the
previous section to both the FC and JSP-DNN models to ob-
tain feasible solutions from their predictions. Time required
for training and for running the models are reported in the
Appendix.

The learning models are configured by a hyper-parameter
search for the values summarized in Table 1. The search sam-
ples evenly spaced learning rates between their minimum and
maximum values, along with similarly chosen dual learning
rates p when the Lagrangian loss function is used. Addition-
ally, each configuration is evaluated with 5 distinct random
seeds, which primarily influences the neural network parame-
ter initialization. The model with the best predicted schedules
in average is selected for the experimental evaluation.

Model Accuracy and Constraint Violations

Table 2 represents the performance of the selected models.
Each reported performance metric is averaged over the entire
test set. For each prediction metric, symbols | and T indicate
whether lower or higher values are better, respectively. The
evaluation uses a 80:20 split with the training data.

¢ Prediction Error | The columns for prediction errors re-
port the error between a predicted schedule and its target
solution (before recovering a feasible solution). It is mea-
sured as the L1 distance between respective start times. The
predictions by JSP-DNN are much closer to the targets than
those of the FC model. JSP-DNN reduces the errors by up
to an order of magnitude compared to FC, demonstrating the
ability of the JM architecture and the Lagrangian dual method
to exploit the problem structure to derive good predictions.

e Constraint Violation | The constraint violations are col-
lected before recovering a feasible solution and the columns
report the average magnitude of overlap between two tasks
as a fraction of the average processing time. The results show
again that the violation magnitudes reported by JSP-DNN are
typically one order of magnitude lower than those reported
by FC. They highlight the effectiveness of the Lagrangian
dual approach to take into account the problem constraints.

e Optimality Gap | The quality of the predictions is mea-
sured as the average relative difference between the makespan
of the feasible solutions recovered from the predictions of
the deep-learning models, and the makespan obtained by the
IBM CP-Optimizer with a timeout limit of 1800 seconds. The
optimality gap is the primary measure of solution quality, as
the goal is to predict solutions to JSP instances that are as
close to optimal as possible. The table also reports the opti-
mality gaps achieved by several (fast) heuristics, relative to



Instance Size Pred Err(x10) | Con Viol(x10%) | Opt. Gap Heuristics (%) | Opt. Gap DNNs (%) | H Time SoTA Eq(s) T
IxXM ‘ FC JSP-DNN FC JSP-DNN SPT LWR MWR LOR MOR FC JSP-DNN H FC JSP-DNN
yn02 20x20 | 2.770 0.138 1.134  0.122 628 837 40 934 40 1280 £ 5.4 -0.045 + 0.9 || 10.20 1800+
ta25 20x20 | 1.607 0.361 0.631 0.244 593 877 59 787 46 13.61 £ 3.13 -0.143 + 0.8 || 11.02 1800+
ta30  30x15 | 4.338 1.196 1.483 0.357 558 910 63 856 46 15.01 £ 2.63 -0.48 + 5.18 || 9.06 1800+
tad0 30x20 | 7.880 3.341 1.863  0.104 492 794 57 836 25 23.11+7.33 3.19+1.88 8.40 12.04
ta50 50x10 | 4580 1.322 1.223  0.225 789 789 53 1116 43 1830 £+5.22  5.85+2.72 8.02  90.30
swv03 20x15 | 9473 2.683 2777 0.850 203 212 75 190 50 28.61 + 14.27 7.62 +2.51 4.04  36.36
swv05  20x10 | 6.586 2.950 2.325  0.626 183 192 80 177 66 20.78 + 10.54 6.34 +1.82 || 7.24 18.18
swv07 20x10 | 4.587 0.681 1.222  0.223 299 295 68 352 43 10.69 £ 6.83  0.01+4.75 26.0 254.5
swv09 20x15 | 5.678 3.462 2.132  0.211 322 270 69 285 75 2212 +£8.52 542 +1.21 6.48  28.32
swvll 5010 | 7.958 3.244 2711 0.282 237 231 94 263 73 23.18 +2.27 480 +4.47 | 7.02  92.00
swvl3  50x10 | 23.21 3.557 1.615 0.323 225 203 114 218 79 22.79 £ 1621 8.11+4.20 || 7.08 24.08

Table 2: Accuracy metrics compared between FC and JSP-DNN (left sub-table) and accuracy of simple heuristics vs CP-Optimizer

at 1800s (right sub-table). Best results shown in bold.
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Figure 4: Comparison of mean timing and accuracy of four JSP-DNN models (red) against CP-optimizer mean optima and

standard deviation (blue).

the same CP-Optimizer baseline. They are Shortest Process-
ing Time (SPT), Least Work Remaining (LWR), Most Work
Remaining (MWR), Least Operations Remaining (LOR), and
Most Operations Remaining (MOR). Since the CP solver can-
not typically find optimal solutions within the given timeout,
the results under-approximate the true optimality gaps.

The results show that the proposed JSP-DNN substantially
outperforms all other heuristic baselines and the best FC
network of equal capacity. On these difficult instances, the
most accurate heuristics exhibit results whose relative errors
are at least an order of magnitude larger than those of JSP-
DNN. Similarly, JSP-DNN significantly outperforms FC.

Comparison with SoTA Solver 7

The last results compare JSP-DNN and the state-of-the art
CP solver in terms of their ability to find high-quality solu-
tions quickly. The runtime of JSP-DNN is dominated by the
solution recovery process (Model 2 and Algorithm 2): their
runtimes depend on the instance size but never exceed 30ms
for the test cases.

The results are depicted in the last two columns of Table 2.
They report the average runtimes required by the CP solver
to produce solutions that match or outperform the feasible
(recovered) solutions produced by JSP-DNN and FC. The
results show that it takes the CP solver less than 12 seconds
to outperform FC. In contrast, the CP solver takes at least an
order of magnitude longer to outperform JSP-DNN and is
not able to do so within 30 minutes on the first 3 test cases.

Figure 4 complements these results on three test cases:
they depict the evolution of the makespan produced by the
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CP solver over time and contrast these with the solution
recovered by JSP-DNN. The thick line depicts the mean
makespan, the shaded region captures its standard deviation,
and the red star reports the quality of the JSP-DNN solution.
These results highlight the ability of JSP-DNN to generate a
high-quality solution quickly.

11 Conclusions

This paper proposed JSP-DNN, a deep-learning approach to
produce high-quality approximations of Job shop Schedul-
ing Problems (JSPs) in milliseconds. The proposed approach
combines deep learning and Lagrangian duality to model the
combinatorial constraints of the JSP. It further exploits the
JSP structure through the design of dedicated neural network
architectures to reflect the nature of the task-precedence and
no-overlap structure of the JSP, encouraging the predictions
to take account of these constraints. The paper also presented
efficient recovery techniques to post-process JSP-DNN pre-
dictions and produce feasible solutions. The experimental
analysis showed that JSP-DNN produces feasible solutions
whose quality is at least an order of magnitude better than
commonly used heuristics. Moreover, a state-of-the-art com-
mercial CP solver was shown to take a significant amount of
time to obtain solutions of the same quality and may not be
able to do so within 30 minutes on some test cases.
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