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Abstract

Recently, deep unfolding networks (DUNs) based on opti-
mization algorithms have received increasing attention, and
their high efficiency has been confirmed by many experimen-
tal and theoretical results. Since this type of networks com-
bines model-based traditional optimization algorithms, they
have high interpretability. In addition, ordinary differential e-
quations (ODEs) are often used to explain deep neural net-
works, and provide some inspiration for designing innova-
tive network models. In this paper, we transform DUNs into
first-order ODE forms, and propose a high-order numerical
architecture for ODE-inspired deep unfolding networks. To
the best of our knowledge, this is the first work to establish the
relationship between DUNs and ODEs. Moreover, we take t-
wo representative DUNs as examples, apply our architecture
to them and design novel DUNs. In theory, we prove the ex-
istence, uniqueness of the solution and convergence of the
proposed network, and also prove that our network obtains a
fast linear convergence rate. Extensive experiments verify the
effectiveness and advantages of our architecture.

Introduction
This paper mainly considers the following problem:
1
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where )\ is the regularization parameter. There are many ap-
plications of this model. When D is a sparse basis matrix,
(1) is a compressive sensing (CS) model, while (1) degener-
ates to the classic Lasso model (Tibshirani 1996) for solving
sparse coding (SC) when D = [. For CS, ® is a measure-
ment matrix, and the purpose of CS is to recover the original
signal x € R™ from an observation signal y € R™, and
m < n. Therefore, (1) is an ill-posed problem, and usually
hard to get a numerical solution. We need to combine prior
information, such as sparsity prior.

For Problem (1) which is difficult to attain the closed-
form solutions, the iterative algorithms have gradually be-
come the mainstream algorithms, such as least angle re-
gression (LARS) (Efron et al. 2004), iterative shrink-
age threshold algorithm (ISTA) (Daubechies, Defrise, and
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De Mol 2004; Blumensath and Davies 2008) and approci-
mate message passing (AMP) (Donoho, Maleki, and Mon-
tanari 2009).

With the development of deep learning, a class of net-
works called deep unfolding networks (DUNs) (Hershey,
Roux, and Weninger 2014) or differentiable programming
networks (Amos 2019) has gradually become a powerful
candidate of traditional iterative algorithms (Gregor and Le-
Cun 2010; Borgerding, Schniter, and Rangan 2017; Sun
et al. 2016; Xie et al. 2019). These networks combines the
prior information of the model-based algorithms and the
learning ability of deep learning, thus greatly improves the
convergence speed of original iterative algorithms, and also
greatly reduces the number of parameters in deep networks.
Moreover, since DUNSs are obtained by expanding tradition-
al iterative algorithms, they can also provide certain inter-
pretability for deep neural networks (DNNs) (LeCun, Ben-
gio, and Hinton 2015).

Algorithms and Theories of Deep Unfolding

Gregor and LeCun (2010) first proposed the idea of DUN.
They presented a deep unfolding network called LISTA by
unfolding ISTA into a network by iterations, and set some
parameters obtained by training the network. Many empircal
and theoretical results (Giryes et al. 2018; Aberdam, Golts,
and Elad 2020) show that LISTA can provide a more accu-
rate solution than ISTA. Compared with ISTA, the number
of iterations required by LISTA is greatly reduced, even one
to two orders of magnitude less.

Since LISTA was proposed, plenty of related work ap-
pears in a spurt. On the one hand, after (Gregor and LeCun
2010), many DUNs have been proposed and successfully ap-
plied to different fields such as compressive sensing (Zhang
and Ghanem 2018; Xiang, Dong, and Yang 2021), comput-
er vision (Zheng et al. 2015; Peng et al. 2018), computa-
tional imaging (Mardani et al. 2018), signal processing (Ito,
Takabe, and Wadayama 2019) and wireless communication
(Cowen, Saridena, and Choromanska 2019; Balatsoukas-
Stimming and Studer 2019).

On the other hand, the empirical success has also inspired
theoretical research on deeper understanding of DUNs. For
instance, Xin et al. (2016) discussed the LIHT (Wang, Ling,
and Huang 2016) network, which is obtained by expanding
IHT (Blumensath and Davies 2009) into a network, from
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Figure 1: Summary of this paper. G(z:|©;) is the t-layer of a DUN. The details will be described later. We remark that the
2NO-based algorithms shown here are just a few examples of applying our method, which can be applied to more algorithms.

the perspective of improving the RIP constant for the first
time. Moreau and Bruna (2017) explained the mechanism
of LISTA by re-factorizing the Gram matrix of dictionary.
Chen et al. (2018b) reduced the number of parameters of
the network by proving the coupling relationship of the ma-
trix parameters in the iteration of LISTA, and the linear con-
vergence of LISTA is proved for the first time. Liu et al.
(2019) further reduced the number of learnable parameters
by proposing a tied network, called ALISTA, whose matrix
parameter is obtained by solving a data-independent opti-
mization problem. Inspired by gated recurrent unit (GRU)
(Cho et al. 2014; Chung et al. 2015), Wu et al. (2020)
proposed GLISTA, which can gain the estimation obtained
through LISTA by improving the soft-thresholding function,
thereby enhancing the performance. Hosseini et al. (2020)
presented a history-cognizant unrolling of the optimization
algorithm, called HC-PGD, with dense connections across
iterations for improved performance. Li et al. (2021b) pro-
posed ELISTA based on the extragradient descent method
(Nguyen et al. 2018), and established the relationship with
the well-known Res-Net (He et al. 2016). In addition, there
are also many other theoretical studies on DUNSs, such as
(Giryes et al. 2018; Ablin et al. 2019; Takabe and Wadaya-
ma 2020; Meng et al. 2020).

As discussed above, we know that the research on DUN-
s has attracted increasing attention, and a series of related
work has appeared. However, the idea of existing DUNs is
generally to unfold existing traditional iterative algorithms.
We know that in addition to using traditional optimization
algorithms to explain deep networks, differential equations
including ordinary differential equations (ODEs) and partial
differential equations (PDEs) are also often used to explain
deep models. A series of works (Haber and Ruthotto 2017;
Weinan 2017; Chen et al. 2018a; Ruthotto and Haber 2020)
discussed the connection between ODEs/PDEs and existing
DNNs. For instance, some works (Lu et al. 2018; Li et al.
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2021a) were also proposed to guide the construction of a
new deep network structure through the knowledge of ODE.
However, so far, ODEs have not been effectively applied to
the research of DUNSs, which is a gap in the research of ex-
isting DUNSs, and further study is needed.

Motivation and Main Contributions

The research of numerical differential equations has been
mature. The application of differential equations to explain
deep networks and to propose networks with novel struc-
tures has begun to emerge. Therefore, for the study of DUN-
s, we ask a natural question:

Can we establish a connection between the DUNs and
ODEs, so as to guide us to design innovative, effective, and
interpretable DUNs?

Through our studies in this work, the answer to the above
question is “yes”. By theoretical derivation, we show that all
the DUNs with a single variable can be converted into the
form of first-order ODE. In this way, it is easy to introduce
various methods in ODEs to improve the efficiency and per-
formance of state-of-the-art (SOTA) DUNs such as LISTA,
LAMP, LIHT, ALISTA, GLISTA and ELISTA. We show the
flow chart of the idea of this paper in Figure 1, and the main
contributions of this paper are summarized as follows:

o Firstly, we show that the DUNs can be regarded as the nu-

merical schemes approximating ODE %% = f(t,z). By
rewriting the original update rule of the DUN and con-
verting it into an ODE, we consider this class of networks
from a novel perspective. To the best of our knowledge,
this is the first time to systematically establish the rela-

tionship between DUNs and ODE.

We also construct a framework called High-order Numer-
ical methods for ODE-inspired DUNs (HNO) by intro-
ducing high-order numerical methods in ODEs. Besides,
we take the second-order Numerical method for ODE-
inspired DUNs (2NO) as a special case and apply it to



the two classic DUNs, LISTA-CS and GLISTA for C-
S problems and SC problems, respectively, and obtain
innovative networks, called 2NO-LISTA-CS and 2NO-
GLISTA. Moreover, we also propose a third-order Nu-
merical ODE (3NO) architecture, and apply the 2NO and
3NO architectures to more DUNS.

e In theory, we prove the existence and uniqueness of
the solution of 2NO-LISTA-CS from the perspective of
ODE, and prove that our network can achieve linear con-
vergence from the perspective of the deep unfolding net-
work. Moreover, we find that the convergence rate of our
2NO-LISTA-CS with the 2NO architecture has an almost
square improvement over that of original LISTA-CS.

e Finally, in order to verify the effectiveness of our de-
signed networks and high-order framework, we conduct
extensive experiments, including synthetic data experi-
ments, image inpainting, and natural image CS. The re-
sults show that the HNO architecture can effectively im-
prove the performance of original networks and is supe-
rior to existing SOTA methods.

Related Work

In this section, we introduce some related work, including
two representative DUNs and the well-known ODE numeri-
cal methods.

LISTA-CS and GLISTA

ISTA is a popular first-order proximal method, which is very
suitable for solving many large-scale linear inverse problem-
s. From (Zhang and Ghanem 2018), we know that for the CS
problem (1), the update rule of ISTA is

Zyy1 = D g, (D (xt + %@T(y — <I>xt)>),

where D is a fixed orthogonal basis matrix, 7,(-) is the soft-
thresholding function, and L is the largest singular value of
®. Then if we regard the matrix %@T as a learnable matrix
parameter W;, and make 6; also learnable, we can obtain
the ISTA-based DUN for solving the CS problems. In order
to distinguish it from LISTA, we name this network for CS
problems as LISTA-CS. Moreover, when the basis matrix is
replaced by the convolution operation JF, that is, Problem
(1) is transformed into the following form:
1

min S|y — (|3 + | F(@)]1, @
ISTA-Net (Zhang and Ghanem 2018) was proposed to solve
Problem (2).

Recently, Wu et al. (2020) proposed that due to the dis-
advantage of the soft-thresholding function, the code com-
ponents in LISTA estimations may be lower than expected
values, i.e., the algorithms require gains. Therefore, inspired
by gated recurrent unit (GRU) (Cho et al. 2014; Chung et al.
2015), they presented a gain gate operator, which is equiv-
alent to multiplying the soft-thresholding function by a co-
efficient greater than 1 to improve it. Finally, by combining
this gain gate with LISTA, they proposed GLISTA, whose
update rule is

Tiy1 = Mg, (9(z¢) + Wiy — @g(x4))), (3)
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where g(z:) = g:(2¢,y|A]) © 1. 6o (-, |A]) is a gate func-
tion to output an n-dimensional vector, and A{ is the set of
its learnable parameters. ® denotes that each element is mul-
tiplied by coordinates. Note that this network is used to solve
the Lasso problem (Problem (1) with D = I).

Well-known Numerical Schemes of ODE

In this subsection, we introduce two commonly used ODE
numerical estimation schemes: the Runge-Kutta scheme and
linear multi-step (LM) scheme.

¢ Runge-Kutta Scheme: For the ODE % = f(z,y), we
can use the following scheme to find a numerical solu-
tion:

-

Yer1 = Yt + hzviki,

i=1

where h is the step size, v; is the weighting factor, k;
is the slope of the i-th segment, and there are r seg-
ments in total. By taking the slope of the first segment
k1 = f(x¢,y:), we can use the following formula to re-
cursively obtain other slopes:

“4)

i1
kjj:f<a:t—|—djh,yt+h2pjlkj>, §=2,3,---,7, (5
=1

where d; and p;; are undetermined constants. (4) and (5)
are called the r-order Runge-Kutta scheme, which is one
of the most classic ODE numerical methods.

e Linear Multi-step Scheme: Another well-known ODE
numerical scheme is the linear multi-step (LM) method,
and the iterative scheme of the r-step LM method is

Yer1 = S0t +E1Ye—1 + - F & 1Yr—rt1
+h(v—1firr+v0fit V-1 firg1)s

where f; = f(z;,v:), & and ~y; are coefficients, and

Z:;()l & = 1. When v_; = 0, the above scheme is ex-
plicit, otherwise it is implicit.

(6)

These two methods are the two most classic ODE numeri-
cal schemes. Since the calculation process of Runge-Kutta is
more complicated than that of LM, we apply the LM scheme
that is easier to apply to DUNs in our study.

Our High-order Numerical Architecture for
ODE-Inspired Deep Unfolding Networks

In this section, we first reinterpret the DUNs from the per-
spective of ODEs. Inspired by the well-known LM method,
which is a high-order numerical scheme of ODE, we pro-
pose a novel architecture that is applicable to all the DUNs
with a singe variable, called the High-order Numerical meth-
ods for ODE-inspired DUNs (HNO). Finally, we apply the
proposed HNO architecture to the classic DUNs, LISTA-CS
and GLISTA, and design new efficient DUNs.

From Deep Unfolding to ODEs
The expression of the ¢-th layer of a DUN is as follows:

Tt41 = g(mt\@t)7 @)
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Figure 2: Our 2NO architecture for deep unfolding network-
s. Note that the structure diagram of our third-order archi-
tecture is shown in the Appendix.

where G(-|©) is the operation of one layer of any DUN, and
O is the set of all learnable parameters of G(-|©). Thus,

®)

which can be viewed as a difference. If we set the step size
of the difference tending to 0 and transform (7) into a con-
tinuous form, then we obtain

Ti41 — Tt = g($t|9t) — T,

dx(t)
o = 9((1)8) —z(t).
Next, we define f (¢, z|0) = G(xz(t)|©) —xz(t), then we have
dat) _
"0 fe.le), ©

which is an ordinary differential equation. Moreover, if we
set f(x¢|©) = G(x4|0:) — x4, then from (8), which is ob-
tained after a simple change of the original DUN, we attain
Zir1 = ¢ + f(2¢|O), which can be interpreted as an ap-
proximation to one step of the forward Euler scheme with
step size 1. Thus, by simply deriving the iterative rule of the
DUN, we can draw the following conclusion:

All the DUNs with a single variable can be regarded as
a step of the forward Euler numerical estimation of ODE,

To the best of our knowledge, this is the first time to sys-
tematically establish the connection between the DUNs and
ODEs. This conclusion, which means that the rich knowl-
edge in the field of ODE can be introduced into the study of
DUN:s, is very valuable, and the new networks obtained in
this way are also interpretable, to a certain extent.

Proposal of HNO Architecture

After converting the DUNs into numerical estimation of
ODEs, there is an obvious advantage that we can intro-
duce high-order numerical methods in numerical differen-
tial equations, such as the well-known Runge-Kutta and LM
methods. By taking the LM method as an example, we pro-
pose an innovative architecture based on high-order numer-
ical methods of ODE.

Recall that the definition of the r-step LM scheme in (6),
which is actually a high-order generalization method of the
classic Euler scheme. For the DUN (7), since z;41 is not
yet known when it is iteratively calculated, we cannot use
the implicit LM scheme, but can only use the explicit LM
scheme, that is, we need to fix v_; = 0 in (6). Then, for
DUNSs, according to (6), we can improve (8) and obtain
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the following ODE-inspired r-order numerical architecture
based on the r-order LM scheme.

i1 = (E)oxe + (E)1xe—1 + -+ (&) r—12t—rp1
+ he((ve)of(2[O) + - -
+ (V) r—1f(@i—r411Ot—r11)),

where (&;);, (7¢); and h; correspond to &;, v; and h in (6),
but the difference is that (&;);, (7¢); and h; are learnable pa-
rameters, and f(x¢|0;) = G(x|0;) — x;. Finally, for DUN-
s, we propose an innovative architecture, called High-order
Numerical architecture for ODE-inspired DUNs (HNO).

Note that this architecture can be easily applied to any
DUNSs with a single variable. Moreover, since our proposed
method is a high-order generalization method of the original
Euler method-based network, it will effectively improve the
convergence rate and performance, which will be verified by
both theoretical analysis and numerical results.

In order to provide a relatively concise and practical net-
work, we also propose a second-order Numerical method for
ODE-inspired DUNs (2NO), which is a second-order special
case of our HNO architecture, and the iteration rule of our
2NO architecture is

ep1 = (1 — Br)xt + Bexe—1 + arf(24|Oy), (11)

whose structure diagram is shown in Figure 2. For the first
layer which is a special case, we specifically fix cg = 1 and
Bo = 0, that is, 1 = zg + f($0|@0)

Similarly, we can also obtain the following third-order nu-
merical ODE (3NO) architecture,

Tp1=(1-B} =B} 2Bt w187 —1+au f (24]Oy), (12)

whose structure diagram can be found in the Appendix. In
fact, the higher-order HNO architecture can also derive iter-
ative rules and structure diagrams accordingly, and the pro-
cess is similar, so we will not elaborate them in detail here.

Besides, we note that Lu et al. (2018) also used the 2-
step LM method to improve the network structure of ResNet
(He et al. 2016), but they only simply introduced a 2-step
LM method into ResNet and ResNeXt, while we propose
a more general architecture, which can be generalized to
higher-order cases, such as the 3NO architecture in (12), and
the 2NO architecture is just a second-order special case of
the proposed architecture. In addition, our architecture is for
DUNSs, while the 2-step LM method in (Lu et al. 2018) is
proposed for ResNet-style networks.

(10)

2NO-LISTA-CS and 2NO-GLISTA

Below, we take two classic DUNs, LISTA-CS and GLISTA
as examples, apply our 2NO architecture to the two network-
s, and give specific update rules. As mentioned above, these
two networks can be applied to the CS model and the Las-
so model, respectively. We first consider LISTA-CS, whose
iteration formula for Problem (1) is

Tes1 = Do, (D(zy + Wiy — ),

where 60;, W, are learnable parameters. Then we apply our
2NO architecture to LISTA-CS, and obtain a novel network

13)



with the following update rule:

Tip1 = (1 — B)ay + Brae—1
+ at(DTngt (D(zy + W(y — Pay))) — 2¢)
=(1— ¢ —ar)as + Brae—
+a; DTy, (D(x + W (y — D)),
where oy, 8; and W are data-driven. Besides, from the cal-
culation of z; in (11), we can get the expression of z1, i.e.,
x1 = D Tng, (D(xo + Wo(y — ®x9))), which is the same as

LISTA-CS in (13).
For this network, we have the following remarks:

(14)

e We note that the proposed deep network is tied, if we set
the learnable matrix W different for each layer, i.e., W4,
like LISTA. Then we will get an untied network. From
(Liu et al. 2019), we can draw a fact that the tied network
is usually better than the untied network.

Moreover, by applying our 2NO architecture, we intro-
duce a learnable step size parameter o outside the non-
linear operator. However, for LISTA, which is equivalent
to the forward Euler method, this parameter degenerate
to a; = 1. Therefore, for the tied variant of our network,
the parameter o can also make the parameters between
different layers diversified to a certain extent, thereby im-
proving the learning ability of the network. Besides, the
tied network can effectively reduce the number of learn-
able parameters. Thus, we infer that the tied variant of
our network has better performance, which will be veri-
fied in our experiments.

In addition, compared to LISTA, our proposed network
uses more information including the information in x;_1,
which is similar to the idea of momentum in accelerated
algorithms. Therefore, this network can solve the objec-
tive problem more accurately and fast.

To sum up, we finally propose an innovative network that
applies our 2NO architecture to LISTA-CS, called 2NO-
LISTA-CS. Here, we emphasize that we define 2NO-LISTA-
CS as a tied network, that is, the learnable matrix parame-
ters of each layer are the same, and for the untied variant,
we name it 2NO-LISTA-CS(u). Moreover, the network pro-
posed below is also named according to this rule.

Besides, for ISTA-Net that uses convolution operation in-
stead of base matrix multiplication, we also propose the
2NO-ISTA-Net, and its iteration is as follows:

Tpp1 = (1 — By — o)y + Brawe—1
+ arFymg, (Fe(ze + pe@ T (y — Day))),

where oy, B, pi, Fy and F; are data-driven. F; is the left
inverse of F;, which satisfies F; o F; = Z, where o denotes
the combination of operators, and Z is the identity operator.
Similar to 2NO-LISTA-CS, the iteration of the first layer of
2NO-ISTA-Net is the same as ISTA-Net.

Similarly, from (3), we can obtain the update rule of 2NO-
GLISTA, by introducing our 2NO architecture into GLISTA.

Tpp1 = (1 — By — o)y + Brap—1
+ e, (9(x:) + W(y — @g(zt))).
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The first layer of 2NO-GLISTA is the same as GLISTA,
and we obtain the untied network 2NO-GLISTA(u) when
the weight matrix W becomes different W, layer by layer.
Finally, we present some innovative DUNs for different
problem models (CS and Lasso): 2NO-LISTA-CS and 2NO-
GLISTA, as well as their untied variants, based on our 2NO
architecture. In fact, for (14), when D = I, we can also get
a variant of LISTA to solve the Lasso problem, that is, 2NO-
LISTA obtained by the specialization of 2NO-LISTA-CS.
The two proposed networks are only two special cases
of our HNO architecture. Moreover, we can also apply our
higher-order HNO architectures to more DUNSs, such as LI-
HT, LAMP (Borgerding, Schniter, and Rangan 2017), AL-
ISTA and SLISTA (Ablin et al. 2019), and get a wealth of
innovative DUNs . More examples of higher-order HNO ar-
chitecture for other DUNs are provided in the Appendix.

Theoretical Analysis

In this section, we provide the theoretical analysis of the pro-
posed 2NO-LISTA-CS, including the proof of the existence
and uniqueness of the solution and the convergence anal-
ysis of the network. Firstly, from the perspective of ODE,
we prove that the solution of Problem (1) solved by 2NO-
LISTA-CS exists and is unique. In order to provide the
convergence guarantee and explore the convergence speed
of the network, we analyze the convergence rate of 2NO-
LISTA-CS from the perspective of DUN , and show the con-
vergence property.

Firstly, we provide the existence and uniqueness of the
solution of 2NO-LISTA-CS through Theorem 1 below.
Theorem 1 (Existence and Uniqueness) For Problem (1),
the solution obtained by 2NO-LISTA-CS, whose update rule
is shown in (14), exists and is unique.

The detailed proof of Theorem 1 can be found in the Ap-
pendix. After proving the existence and uniqueness of the
solution of 2NO-LISTA-CS, we also analyze the conver-
gence and the convergence rate of 2NO-LISTA-CS.
Assumption 1 (Basic assumption) The optimal solution of
Problem (1) x, satisfies

2. € X(B,s) 2{a.||[z.)i] < B,Vi, ||z.]lo < s},
which means x, is bounded and s-sparse.

This assumption is a basic assumption, and almost all re-
lated work such as (Liu et al. 2019; Wu et al. 2020; Li et al.
2021b) made this assumption.

Definition 1 (Liu et al. (2019)) Given ® € R™*" whose
columns are normalized, we define its generalized mutual
coherence:

w(®) = inf { max Wiy@:?j}.
WeRnXm e
W . @, ;=1,Vi 1<i,j<n

Furthermore, based on the definition of u(®), we define the
set W(®) as follows:

W(®) :{

A weight matrix W is “good” if W € W(®).

W| I’IIBX Wi,:(I):,j:N((I))aWi,:(I):,i - ].,V’L

1<i,j<n



This definition was first proposed in (Liu et al. 2019).
From Lemma 1 in (Chen et al. 2018b), we have W(®) # .

Definition 2 Given a model with the learnable parameter
set ©, in which 0, = I'p(®)sup,_ ||z — x.[[1, we employ
wi+1(ki11|©) to characterize its relationship with the “false
positive” rate, which is

wit1(ke1110©)

r

sup
VT, |supp(Z¢41) Usupp(z) |<[|supp(z.) | +ke41
where 7111 = (1— By — ) zs + Brzs—1 +aeD Tng, (D((I —
W®)(zy — x4))), and ky11 is the desired maximal number
of “false positive” of x4 1.

This definition is similar to Definition 2 in (Wu et al.
2020), but our Definition 2 is applicable to 2NO-LISTA-CS.

Based on the above assumption and definitions, we give
the convergence property of 2NO-LISTA-CS.

Theorem 2 (Linear Convergence) If Assumption 1 hold-
s, W € W(®) can be satisfied by choosing W proper-
Iy, 0y = wip1(ki11|O)pu(P) sup,, ||z — 4|1 is achieved,
1—u 1 1—u 1 1

=2 to@rioae S5 <2 taey pegr S S
kc, where k is a constant that scftisﬁes Wj—l)c <k AS 1
and ¢ = (25 +u — Du(®), 8 < (lc;_’?f , where 3 =
maxy | 3|, then the sequence generated by 2NO-LISTA-CS
satisfies the following result:

241 — 24 ||2 < 'sCB,
where ¢ = (2s +u — Dp(®) < 1, and C = (2s + u —
Dp(®) + m is a constant.

The detailed proof of Theorem 2 is provided in the Ap-
pendix. In Theorem 2, u is a small parameter, whose defi-
nition is given in the proof. This theorem shows that 2NO-
LISTA-CS achieves linear convergence. Besides, we note
that the convergence rate of the network obtains an almost
square improvement over that of LISTA, after applying our
2NO architecture, which is consistent with the fact that the
LM method used in the HNO architecture is a high-order
numerical method for ODE.

Due to page limit, we only give the theoretical analysis of
2NO-LISTA-CS. The theoretical analysis of 2NO-GLISTA
can be obtained by combining the theories in (Wu et al.
2020) and this paper, and the analysis of the corresponding
untied variants of the networks is similar to that of the tied
variant, thus we omit them here.

3

Experimental Results

In this section, we first verify the effectiveness of our H-
NO architecture by comparing the performance of different
DUNSs on synthetic data. Then we evaluate our 2NO-LISTA,
2NO-GLISTA and 2NO-LISTA-CS for natural image in-
painting and image CS tasks, respectively. All experimen-
tal settings and all training follow the previous work (Chen
et al. 2018b; Zhang and Ghanem 2018; Wu et al. 2020; Ab-
erdam, Golts, and Elad 2020). For the learnable parameters,
ay, Bi, Oy and W are initialized as 1.0, -0.5, % and %@T
respectively. We run all the experiments ten times and show
the results after averaging.
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Sparse Representation on Synthetic Data

In order to verify the effectiveness of HNO architecture,
we perform sparse representation experiments for the Las-
so model (Problem (1) with D = I) on the synthetic data.

We evaluate LISTA, GLISTA, 2NO-LISTA and 2NO-
GLISTA (and their untied variants) that apply our HNO ar-
chitecture, with three different settings of noise levels ex-
pressed by SNR (Signal-to-Noise Ratio) as the indicator and
condition numbers x of ill conditioned matrix ¢ on sparse
coding problems. We set m = 250, n = 500 and 7" = 16.
The procedure of generating synthetic data is provided in the
Appendix. Besides, to evaluate the ability of different orders
of HNO architecture to improve the DUNs, we also compare
the performance of 2NO-LISTA and 3NO-LISTA whose up-
date rule can be found in the Appendix.

All the results are shown in Figure 3, where NMSE (in
dB) is defined as follows:

E & - . ||2>

Ele.® )

where & represents the output of the networks. From the
comparison of LISTA, 2NO-LISTA(u), GLISTA and 2NO-
GLISTA(u) in Figure 3, we can see that our 2NO architec-
ture can greatly improve the convergence speed and accura-
cy in all the cases', which implies that our HNO architec-
ture can effectively enhance the performance of DUNs. In
addition, from the comparison of the tied and untied vari-
ants of the two proposed networks in the Appendix, we can
verify the inference: the tied network usually outperforms
the untied variant. Therefore, in all subsequent experiments,
we use the tied variant of our networks. Moreover, from the
comparison of 2NO-LISTA and 3NO-LISTA in Figure 3, we
know that higher-order HNO architecture can further im-
prove the performance of the networks to a certain extent,
but not particularly obvious. Therefore, we mainly use the
2NO-based network for subsequent experiments

NMSE (&, z.) = 10log;, (

Natural Image Inpainting

In order to verify the effectiveness of our proposed networks
in practical problems, in this subsection, we apply our net-
works, 2NO-LISTA and 2NO-GLISTA to image inpainting
problems (Aberdam, Golts, and Elad 2020) with 50% pixel-
s missing, and compare them with many algorithms, ISTA,
LISTA and GLISTA.> We use BSD500 as the training set,
Set 11 as the test set, and randomly extract 100,000 and
5,000 8x8 patches from the images in the BSD500 train-
ing set and validation set, respectively, for training. Besides,
for the dictionary matrix ®, we use the same dictionary as in
(Aberdam, Golts, and Elad 2020).

Table 1 shows PSNR results of different algorithms with
50% pixels missing. More qualitative results can be found in

"The iterative forms of this kind of network (i.e., DUNSs) are
very similar, thus the time of one iteration of different DUNS is
basically the same. Therefore, our experiments can verify that our
2NO architecture can improve the convergence speed.

In order to compare the networks fairly, we change the iterative
rules of all the networks into the same settings as in (Aberdam,
Golts, and Elad 2020), which is also provided in the Appendix.
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Figure 3: Comparison of the DUNs with different layers under different SNR and «. In the two subfigures on the left, we
compare the performance before and after applying our 2NO architecture on LISTA and GLISTA to verify its effectiveness. In
the two subfigures on the right, we mainly compare the performance of our 2-order and 3-order architectures.

Barbara Boat House Lena Peppers C.man Couple Fingerprint Hill Man Montage
ISTA 2326 2494 2632 2732 2313 2232 2493 19.95 26.86 2591  22.09
LISTA 27.19 3198 3555 3546 30.74 2834 3235 31.13 3345 32,67 29.21
GLISTA 2736 3211 3593 3573 30.70 2844 3255 31.28 3349 3283  28.88
2NO-LISTA 2813 32.62 36.38 3628 31.78 2891 33.19 32.16 33.82 3327 29.80
2NO-GLISTA  28.11 32.64 36.65 3626 3192 28.69 33.29 32.19 33.80 3329 29.80

Table 1: PSNR (dB) results of natural image inpainting. The best is marked in bold and the second best is underlined.

Algorithms CS Ratio
1% | 4% | 10% | 25% | 30% | 40% | 50%
TVAL3 16.43(18.75(22.99(27.92(29.23[31.46|33.55
D-AMP 5.21 [18.40(22.64|28.46|30.39|33.56|35.92
IRCNN 7.70 [17.56]24.02|30.07|31.18|34.06|36.23
SDA 17.29]20.12|22.65(25.34|26.63|27.79|28.95
ReconNet 17.27]20.63|24.28|25.60(28.74130.58 |31.50
LISTA-CS 18.83(22.08125.20(29.96|31.21|33.70|36.01
2NO-LISTA-CS [19.25{22.35(|25.60(30.46|31.90|34.60|37.24

Table 2: Comparisons of average PSNR (dB) performance
on Setll with different CS ratios. The best performance is
marked in bold and the second best is underlined.

the Appendix. From all the results, we can indicate that after
applying our 2NO architecture, the networks obtain better
performance than their basic networks, respectively, and our
networks outperform all the other methods.

Natural Image Compression Sensing

In this subsection, we perform a traditional CS based on
a sparse basis matrix on natural images to evaluate 2NO-
LISTA-CS and many other methods, TVAL3 (Li et al. 2013),
D-AMP (Metzler, Maleki, and Baraniuk 2016), IRCNN
(Zhang et al. 2017), SDA (Mousavi, Patel, and Baraniuk
2015), ReconNet (Kulkarni et al. 2016) and LISTA-CS. We
produce the results of LISTA-CS by ourselves, and refer to
the results in (Zhang and Ghanem 2018) for other compared
algorithms. We also adopt the same BSDS500 for the training
set, but a different Set 11 as the test set, and randomly extract
30,000 and 5,000 patches with size 32x32 from the images
in the BSD500 training set and validation set, respectively,
for training. Besides, as in (Abo-Zahhad et al. 2015), we uti-
lize the DCT transformation matrix as the sparse base matrix
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D in the CS problem model (1).

The results with different compression ratios are reported
in Table 2. Moreover, we make a more comprehensive com-
parison between LISTA-CS and 2NO-LISTA-CS. For these
two networks, we give the PSNR results and the qualitative
results of each image on Setl1 under different compression
ratios in the Appendix. From all the results, we know that
our 2NO architecture can effectively improve the perfor-
mance of LISTA-CS. Moreover, we obtain that our 2NO-
LISTA-CS network outperforms the other methods.

Conclusion and Further Work

In this paper, in order to introduce the rich knowledge
on ODEs into the study of DUNs, we reinterpreted each
DUN into an ODE, systematically established the relation-
ship between ODE and DUNSs. Besides, we constructed a
High-order Numerical architecture for ODE-inspired DUN-
s, called HNO architecture, that can be applied to any DUNs
with a single variable by using the classical linear multi-step
method, and we applied it to existing DUNs to obtain inno-
vative HNO-based deep unfolding networks. The linear con-
vergence with an improved rate of 2NO-LISTA-CS, which
is one of our proposed networks, was proved. Extensive ex-
perimental results verified the high efficiency of our HNO
architecture and improved deep DUNS. In this work, we on-
ly introduced the linear multi-step method and studied the
DUNSs with a single variable. How to construct a more gen-
eral architecture to establish the relationship between ODEs
and DUNEs is our future work. Besides, we only apply the nu-
merical methods for the first-order ODE into DUNs. Recent-
ly, Sander et al. (2021) presented Momentum ResNet and
successfully built the connection between the second-order
ODE and the network. Therefore, how to introduce higher-
order ODE related theories into the research of DUNS is also
an important part of our future work.
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