
Fast Monte-Carlo Approximation of the Attention Mechanism

Hyunjun Kim and JeongGil Ko
School of Integrated Technology, Yonsei University

hyunjun.kim@yonsei.ac.kr, jeonggil.ko@yonsei.ac.kr

Abstract

We introduce Monte-Carlo Attention (MCA), a randomized
approximation method for reducing the computational cost
of self-attention mechanisms in Transformer architectures.
MCA exploits the fact that the importance of each token in
an input sequence vary with respect to their attention scores;
thus, some degree of error can be tolerable when encoding
tokens with low attention. Using approximate matrix multi-
plication, MCA applies different error bounds to encode input
tokens such that those with low attention scores are computed
with relaxed precision, whereas errors of salient elements are
minimized. MCA can operate in parallel with other attention
optimization schemes and does not require model modifica-
tion. We study the theoretical error bounds and demonstrate
that MCA reduces attention complexity (in FLOPS) for vari-
ous Transformer models by up to 11× in GLUE benchmarks
without compromising model accuracy. Source code and ap-
pendix: https://github.com/eis-lab/monte-carlo-attention

Introduction
Attention mechanisms have become a predominant mod-
eling paradigm for state-of-the-art deep neural networks.
Among many, the Transformer architecture (Vaswani et al.
2017) is a major contribution that drove this success, which
demonstrated unprecedented performance in various do-
mains such as neural machine translation (Chen et al. 2018),
question answering (Raffel et al. 2020), image classifica-
tion (Parmar et al. 2019; Dosovitskiy et al. 2021), and time-
series forecasting (Lim et al. 2021).

A typical Transformer can be thought as a stack of self-
attention layers. Self-attention can be viewed as an induc-
tive bias with graph-like dependencies among input tokens,
where important elements hold stronger influence on the fi-
nal output. On an algorithmic perspective, this is a three
step process: (i) computing bidirectional attention scores be-
tween input tokens, (ii) element-wise encoding of input to-
ken sequences, and (iii) computing the weighted sum of en-
coded sequences with respect to attention scores.

Recently, Transformer parameter sizes are ever-increasing
with current trends of exploiting self-supervised pre-training
using massive data. This has introduced significant compu-
tational cost when employing Transformers; thus, recent re-

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

search has moved on to designing more computationally ef-
ficient attention mechanisms.

To alleviate the computational cost of self-attention mech-
anisms, two mainstream approaches have been taken in pre-
vious work, where each optimize the process in different di-
mensions. First is to improve the quadratic time complex-
ity of vanilla dot-product attentions relative to the input se-
quence length. Since computing attention scores for an input
of n elements takes O(n2) time and memory (typical atten-
tion being bidirectional), applying Transformers to long in-
put sequences can be a challenge. A number of techniques
have been proposed in this dimension of optimization, such
as leveraging fixed or learnable patterns to sparsify the at-
tention matrix (Child et al. 2019; Beltagy, Peters, and Cohan
2020) and approximating attention matrices with mathemat-
ical methods (Wang et al. 2020b; Choromanski et al. 2021).

Second, there have also been efforts to reduce cost by
trimming the model itself to reduce the complexity of Trans-
formers. Popular approaches include quantization (Shen
et al. 2020) and compression via knowledge distillation or
pruning (Sanh et al. 2019; Xu et al. 2020). Leveraging neural
architecture search to remove redundant operations (Chen
et al. 2020; Guo et al. 2019) is also a common strategy. The
efficiency benefits of these schemes are orthogonal to the
first approach; thus, can be applied in parallel.

We note that existing work on reducing attention com-
plexity generally focuses on modifying weights or changing
its structure, where the optimization is essentially “model
driven”. Therefore, the performance and resource trade-off
can be considered static and tightly coupled to the model
or the optimization method themselves. In this work, we
present a novel dimension of attention optimization, with no
model weight or structure modifications, rather putting fo-
cus on the statistical characteristics of the attention matrix.
Specifically, we present the Monte-Carlo Attention (MCA),
as a flexible approach to reduce the computational cost of
self-attention. MCA is motivated by the observation that at-
tention scores are highly divergent due to the softmax opera-
tion, which prompts the question: “why should we use equal
precision for encoding all input tokens?” By suppressing
computation for elements that minimally (if at all) affect the
final output, we can significantly reduce the attention com-
plexity. MCA optimizes attention using randomized matrix
multiplication approximation by configuring different error

The Thirty-Sixth AAAI Conference on Artificial Intelligence (AAAI-22)

7185



bounds for the element-wise encoding of input sequences
with respect to their a priori attention scores. We do so such
that elements with weak attention scores are computed with
relaxed precision, whereas errors for encoding salient ele-
ments are minimized. We discuss an optimal strategy for
curtailing operational complexity with respect to the atten-
tion matrix and evaluate its theoretical error bounds.

MCA can be applied orthogonally with already-proposed
optimization approaches to complement the overall model
efficiency, and holds strong advantages itself in that it (i) al-
lows simple dynamic control of performance-resource trade-
off - allowing easy adjustment to different platforms and re-
source availability, (ii) has predictable and parametrizable
upper error bounds independent to the input length - mak-
ing it applicable for various inputs, and (iii) can be used as a
drop-in replacement for naive attention mechanisms by not
requiring additional model preprocessing or training.

We implement MCA with custom CUDA kernels and
conduct extensive experiments using BERT (Devlin et al.
2019) and GLUE benchmark datasets. We also evaluate
MCA’s performance when applied to other common effi-
cient Transformer variants, such as DistilBERT and Long-
former to demonstrate its compatibility with other optimiza-
tion schemes in parallel. Our experimental results show that
MCA can effectively reduce FLOPS in attention by a large
margin (up to 11×) with negligible accuracy drop.

Background and Preliminaries
We first recall to the basics of self-attention mechanisms
for our problem formulation, and introduce the random
sampling-based matrix approximation algorithm, which
covers the background of our proposed scheme. Note that we
use Python style notations for matrix indexing. For matrix
M , its i-th row and column are denoted as M [i], M [:, i] re-
spectively, and the element in row i and column j asM [i, j].

Self-Attention Mechanisms
After the successful debut of Transformer architectures,
various innovations in self-attention mechanisms have
emerged. A typical self-attention mechanism in Transform-
ers start by computing an attention matrix for the input to-
kens: for an input sequence X ∈ Rn×d of length n and
feature dimension d, it first computes the attention matrix
A ∈ Rn×n based on X . The vanilla Transformer (Vaswani
et al. 2017) employs scaled dot-product operation to com-
pute A = softmax(aQKT) where Q = XWq , K = XWk

and a = 1/
√
d being the scaling factor. Wq,Wk ∈ Rd×d

are trainable linear projections. We note that this operation
requires O(n2) complexity, which induces significant over-
head when long inputs are passed. Thus, researchers have
tried to tackle this issue and we point interested readers
to Tay et al. 2020 for a comprehensive overview. Once the
attention matrix is available, the next operation performs
element-wise encoding (i.e., linear projection) of the input
tokens: H = XW , where W ∈ Rd×d. Finally, the output
Y ∈ Rn×d is computed as product of the corresponding at-
tention and encoded values Y = AH . Putting it all together,

the i-th output element Y [i] can be expressed with respect to
the input element X[i] as:

Y [i] =
n∑

j=1

A[i, j]X[j]W (1)

Note that for simplicity, we omit the symbols for multi-
head attentions, and point out that the same property holds.
Asymptotically, this computation requires O(nd2) time and
memory. In this work we are interested in reducing the com-
putational complexity with respect to the feature dimension
d, which is different from approaches that optimize atten-
tion score computation for input length n. In many practical
settings, d (e.g., 768 in BERT) is much larger than n and
this tendency holds as Transformers scale to larger networks
(e.g., d=3072 in Megatron-LM (Shoeybi et al. 2019)). Thus,
we argue that optimizing for O(d2) rather than O(n2) can
have more impact on model performance when dealing with
datasets with modest sequence lengths.

Approximating Matrix Multiplication via
Monte-Carlo Sampling

Matrix multiplication approximation schemes are designed
to allow formidable optimizations on large matrices by per-
mitting some uncertainties in the final output, leading to
accelerated output computation. There are several known
methods for approximating matrix multiplication each with
distinct statistical and computational properties. One family
of algorithms is based on the low-rank approximation using
truncated singular value decomposition (Drineas and Kan-
nan 2001; Denton et al. 2014; Osawa et al. 2017), which
well-preserves the low-rank structures of the output ma-
trix. Unfortunately, given that they require matrix factor-
ization as prerequisite, it is challenging to apply them in
iterative processes. Fast Fourier Transform is an alterna-
tive for approximating matrix multiplication by representing
the input column-row outer product as a polynomial multi-
plication, which can be effective when input matrices are
sparse (Pagh 2013). In addition, kernelization-based meth-
ods demonstrated their potential in optimizing square ma-
trix multiplications (Drineas and Kannan 2001). Finally, ran-
domized algorithms (Drineas, Kannan, and Mahoney 2006;
Eriksson-Bique et al. 2011), use random sampling to es-
timate the original outputs with sub-sampled information.
This approach does not constrain the matrix shape or con-
tents, while offering computing acceleration.

Based on these observations, we exploit a random
sampling-based approach proposed by Drineas, Kannan, and
Mahoney 2006, which, despite its random nature, allows for
the easy control of the output matrix error bound and can
be efficiently implemented on modern GPUs. Given an in-
put matrix A ∈ Rm×k and B ∈ Rk×n, the key idea is to
view matrix multiplication as a sum of the outer products
of columns A and their corresponding rows B. With this,
we apply random sampling to a subset of these column-row
pairs to compute an approximated output as the following:

7186



AB =
k∑

i=1

A[:, i]B[i] ≈ 1

r

r∑
i=1

1

p(s[i])
A[:, s[i]]B[s[i]] (2)

r ≥ 1 is the number of samples and p(i) is the sam-
pling probability of the i-th column-row pair. The sam-
pling sequence s ∈ Zr is generated via a random process
Pr[s[k] = i] = p(i) in i.i.d. trials with replacement. The
approximated output is unbiased such that E(ÃB̃) = AB
holds given sufficient samples. Since this algorithm relies
on random sampling, its is important to assure that the error
E(ÃB̃), is kept low.

This algorithm allows for linear complexity reduction
from O(mkn) to O(mrn) with respect to the number of
samples r, which corresponds to the feature dimension d
when applied to attention mechanisms. Later, we adjust r
to the attention score as a way to achieve a dynamic balance
between the computing overhead and output precision.

While any probability distribution can be used for pi,
Drineas et al. showed that applying non-uniform distribution
and biasing towards higher-rank terms yields tighter upper
error bounds in terms of Frobenius norm compared to a uni-
form distribution. Specifically, Drineas et al. proved that:∥∥∥AB − ÃB̃∥∥∥

F
= O(

‖A‖F ‖B‖F√
s

), (3)

when the p(i) term is proportional to the L2 norm of each
column-row pair multiplied together:

p(i) =
‖A[:, i]‖2 ‖B[i]‖2∑k

j=0 ‖A[:, j]‖2 ‖B[j]‖2
. (4)

For details on randomized linear algebra and its algo-
rithms, we point interested readers to Mahoney 2011.

Monte-Carlo Attention
We now present our proposed Monte-Carlo Attention
(MCA), a novel approximation algorithm for reducing the
complexity of self-attention mechanisms in Transformers.
MCA optimizes the element-wise encoding of input tokens
(c.f., Equation (1)) by replacing the matrix-vector prod-
uct with an approximated operation derived from random
sampling. The principle idea is to apply different sampling
counts for each output Y [i] with respect to their attention
scores to suppress overhead induced by lightly-weighted el-
ements. Specifically, MCA can be expressed as follows:

Y [i] ≈
n∑

j=1

rj∑
k=1

A[i, j]X[i, sj [k]]

rjp(sj [k])
W [sj [k]] (5)

ri and si each denote the sampling count and sampled
indices for input X[i], respectively, where ri = len(si).
While most terms in the equation are known, two need to be
properly defined. The first is p(n), the sampling probability
for each element. Despite being able to acquire the optimal
probability from Equation 4, we claim that this formulation
is impractical given that it requires auxiliary computation for

all new input X . Instead, MCA disconnects dependence to-
wards the input in computing p(i), which allows the comput-
ing to be a one-time process. The second unknown term is ri,
the number of samples taken from taken from the attention
matrix A with respect to each input element X[i]. For this,
MCA identifies the maximum attention score of each ele-
ment towards other elements, roughly representing the min-
imum level of precision required for its computation. A high
maximum attention score suggests that the currently evalu-
ated element should have high precision (i.e., use more sam-
ples for encoding element X[i]) as it can heavily affect the
output. On the contrary, a small maximum attention would
indicate that the element minimally contributes to the out-
put; thus can set a small ri. Based on the theoretical upper
error bounds in approximating Y [i], we can derive A-r pair
relationships which guarantee robust error concentration in-
variant to the attention and input length.

We note that computing these parameters with respect to
the error bounds is important given that MCA is essentially
a randomized algorithm. The following subsections discuss
how p(i) and ri can be configured, and show their impact
on the overall error. In a nutshell, we show that substituting
Transformer attention modules to MCA, despite the random-
ness, guarantees tight error bounds for the attention layers.

Formulation of Sampling Probability
The intuition behind exploiting non-uniform distributions
for sampling column-row pairs is supported by the obser-
vation that column-row pairs with relatively small norms
will have minimal impact to the output. Thus, configuring a
sampling probability proportional to the norm can minimize
output variance. The distribution presented in Equation (4)
is known to be optimal in terms of minimizing the output
Frobenius norm error (Drineas and Kannan 2001). Unfor-
tunately, this formulation can be (practically) inefficient, as
p must be computed freshly for all incoming inputs. Fur-
thermore, as Transformers consist of multiple self-attention
layers, computing p can induce an additional O(nd) com-
plexity for each layer. Therefore, determining the sampling
distribution only from the attention weights, and eliminating
the use of inputX , is a much more computationally-efficient
strategy allowing a one-time p computation. MCA borrows
findings from Drineas, Kannan, and Mahoney 2006 that sug-
gests that the optimal probability can be approximated even
when only one of two matrices is known. This, when applied
to our domain, frees the dependency towards the input ma-
trix. Specifically, we compute the sampling probability by
taking WTW for approximation, which yields:

p(i) =
‖W [i]‖22∑d
j=0 ‖W [j]‖22

=
‖W [i]‖22
‖W‖2F

(6)

While this asymptotically exhibits O(d2) complexity, in
practice, computed results can be embedded in the model
or cached to reduce the overhead. With this probability, the
maximum Frobenius norm error becomes proportional to the
norm of the attention weights and input, scaled by the square
of the sample size.

7187



Lemma 1 Let H[i] ∈ Rd be an approximation to X[i]W
using ri ∈ Z+ random samples with the probability distri-
bution discussed in Equation (6). Then,

E[‖H[i]−X[i]W‖F ] ≤
1
√
ri
‖X[i]‖2 ‖W‖F . (7)

Determining Sample Size from Attention
Self-attention mechanisms are designed to be bidirectional:
meaning that each element in a sequence possess its own
perspectives to all other elements. Hence, for any element,
there exists n different attention scores to describe its impor-
tance within a sequence. To determine a proper sample size
ri, given an element and its outbound attention scores, we
take the maximum of all available scores (for each element)
in defining the minimum precision. This assures high preci-
sion (i.e., more samples) for highly weighted elements and
low precision (i.e., less samples) for those with low weights.
When done so, based on Lemma 1, the mean error bound can
be expressed with respect to output Y [i] via Equation (1):

E[
∥∥∥Ỹ [i]− Y [i]

∥∥∥
F
] ≤

n∑
j=1

A[i, j]
√
ri
‖X[i]‖2 ‖W‖F . (8)

When taking √rj = maxA[:, j], the attention term
in Equation (8) can be eliminated from inequality as

A[i,j]
maxA[:,j] ≤ 1 for all i and j (assuming A as non-negative).
Such a strategy of taking the maximum of all attention scores
can be considered conservative. Potentially, one can define
more aggressive schemes by taking the mean or median
of the scores. Unfortunately, analyzing the theoretical error
bounds for such cases can be challenging, as error becomes
dependent on the statistical characteristics of the attention
matrix. We leave such optimizations for future work.

The formulation above indicates that the output error,
caused from the randomness of MCA, is dependent on in-
put sequence length n; thus, the error may seem to increase
with long inputs. This is not desirable when bounding the
error. To mitigate this, we consider an additional n term in
ri. As a result, ri is calculated as:

√
ri =

n ·maxA[:, i]

α
(9)

Here, α ∈ (0, 1) is the attention error coefficient, a user-
controllable parameter to linearly scale error bounds. α = 1
indicates a performance-oriented configuration (i.e., reduced
complexity with less samples), whereas lower α results in
extra precision at the cost of additional computational cost.
Still, we show in our evaluations that even a small α (e.g.,
0.2) can result in significantly reduced computation.

Finally, we prove that this formulation allows robust con-
centration of output errors independent to the input sequence
and the attention matrix statistics.

Theorem 2 Let Ỹ [i] be the estimate of Y [i] by equation (5),
and define β as mean Euclidean norm of X[i] for all i (i.e.,
β = 1

n

∑n
i=1 ‖X[i]‖2). Assume A is positive matrix for

which A[i, j] > 0 for all i, j. Then

E[
∥∥∥Ỹ [i]− Y [i]

∥∥∥
F
] ≤ αβ ‖W‖F . (10)

Furthermore, suppose δ ∈ (0, 1). Then with probability at
least 1− δ, ∥∥∥Ỹ [i]− Y [i]

∥∥∥
F
≤ αβ

δ
‖W‖F . (11)

Therefore, we show that despite MCA’s randomness, with
proper α, the overall error can still be tightly bounded; thus,
achieve efficient encoding with minimal loss in accuracy.

Experiments
We implement MCA via custom CUDA kernels, and mea-
sure its computation complexity and accuracy as perfor-
mance metrics. We replace the multi-head attention in
BERT (Vaswani et al. 2017) with MCA, and test the per-
formance with GLUE benchmark (Wang et al. 2018). We
also show using DistilBERT and Longformer that MCA can
co-exist with existing attention optimization methods.

Transformer Models
BERT is one of the earilest applications of the Transformer
architecture that demonstrated unprecedented performance
in a wide spectrum of NLP tasks. We use the BERTBASE
model, which encompasses 12 layers of multi-head attention
with 12 heads and a feature dimension of 768.
DistilBERT (Sanh et al. 2019) is a variant of BERT which
targets to reduce the computational cost by compression
the Transformer’s model weights using knowledge distilla-
tion (Hinton, Vinyals, and Dean 2015). DistilBERT holds
the same general structure as BERT (with 1

2 of the attention
layers), but the token type embedding and poolers are re-
moved from the layers. We use this model to show that MCA
can coalesce with existing model compression techniques.
Longformer (Beltagy et al. 2020) is a Transformer network
suitable for lengthy documents by addressing the issue of
complexity-blowup (i.e., O(n2)) with increasing input se-
quence lengths. Specifically, Longformers sparsify the atten-
tion matrix by employing a fixed-size window w attention
surrounding each input element. This constrains the com-
plexity to O(n× w), scaling linearly with input length n.

Benchmark Datasets
GLUE Benchmark. To consider a broad range of input
data, we adopt the General Language Understanding Evalu-
ation (GLUE) benchmark. GLUE is commonly used in eval-
uating the performance of language models. It consists of
nine individual task sets, with two tasks for single-sentence
classification (CoLA and SST-2), three tasks for semantic
similarity (MPRC, QQP, and STS-B), and four natural lan-
guage inference tasks (MNLI, RTE, QNLI, and WNLI).
Document Classification. To evaluate MCA with the Long-
former model, we use the arXiv Academic Paper dataset
(AAPD) (Yang et al. 2016), the IMDB review classifica-
tion dataset and the Hyperpartisan News Detection (HND)
dataset (Kiesel et al. 2019). AAPD consists average of 167
tokens for each entry while IMDB has entries with 300 to-
kens. The HND dataset includes elements with the longest
item size, with an average of 705 tokens for each article.

7188



Task Baseline α=0.2 α=0.4 α=0.6 α=1.0

Metric Result Result FLOPS Result FLOPS Result FLOPS Result FLOPS

CoLA MC 53.74 53.74±0.1 11.44× 53.90±0.2 12.62× 53.78±0.4 14.28× 50.95±0.7 18.38×
SST-2 Acc. 92.43 92.26±0.0 5.58× 92.04±0.0 6.71× 91.22±0.0 8.13× 80.66±0.1 12.34×
MRPC Acc. 84.55 84.36±0.1 3.04× 83.77±0.3 3.80× 82.28±0.4 4.62× 65.95±0.8 7.14×

F1 89.41 88.96±0.0 3.04× 88.86±0.2 3.80× 87.69±0.3 4.62× 73.50±0.7 7.14×
STS-B PC 88.04 87.84±0.3 4.80× 82.69±0.9 5.95× 67.90±1.3 7.35× 33.55±1.4 12.40×

SC 87.63 87.21±0.3 4.80× 81.04±0.8 5.95× 67.54±1.2 7.35× 28.53±1.3 12.40×
QQP Acc. 90.90 90.89±0.0 4.76× 90.74±0.1 5.73× 89.98±0.4 6.89× 78.20±0.6 10.30×

F1 87.81 87.79±0.0 4.76× 87.63±0.1 5.73× 86.55±0.3 6.89× 73.61±0.6 10.30×
MNLI Pos. 83.60 83.50±0.1 3.75× 82.60±0.2 4.76× 78.62±0.8 5.88× 71.43±1.1 9.61×

Neg. 84.79 84.72±0.1 3.75× 83.83±0.2 4.76× 79.50±0.8 5.88× 72.05±1.2 9.61×
QNLI Acc. 91.54 91.47±0.0 3.03× 90.24±0.0 3.83× 84.33±0.1 4.94× 56.43±0.1 10.64×
RTE Acc. 72.56 71.68±0.2 2.50× 70.39±0.4 3.24× 64.72±0.8 4.55× 52.65±1.1 10.06×
WNLI Acc. 56.33 56.33±0.0 4.08× 56.32±0.1 5.15× 54.96±0.6 6.49× 52.69±1.1 11.09×

Table 1: FLOPS reduction and its corresponding model accuracy (with 95% confidence intervals) when MCA-BERT is tested
on the GLUE benchmark with different error bound coefficients α. MC, PC, and SC each denote Matthews, Pearson, and
Spearman correlation coefficients.

Figure 1: Mean accuracy and FLOPS trade-off for MCA-
BERT and MCA-DistilBERT, along with FP16 quantized
versions (SST-2 dataset). The orange plots on the top-left
show the accuracy-FLOPS relationship for original BERT
and DistilBERT (without MCA applied).

Implementation and Experimental Setup
MCA is implemented as a C++ PyTorch extension using
custom CUDA kernels. Our implementation replaces the
self-attention in Transformer models, and can be configured
whether to run in regular mode (i.e., act as a normal
self-attention) or approximation mode (i.e., activate
MCA). We employ AWS p3.2xlarge instances for the
experiment, which serves one NVIDIA V100 GPU and use
the Huggingface library for implementations and download
pre-trained weights for BERT, DistilBERT, and Longformer.
Readers can refer to Appendix 1 for reproducibility details.

FLOPS Reduction and Accuracy Impact
Using the GLUE benchmark, we first evaluate the perfor-
mance of MCA when applied to BERT. Specifically, we
measure the Floating Operations Per Second (FLOPS) of
the MCA-BERT attention operation and compare with when

Figure 2: Impact of attention error bound α on model accu-
racy of MCA-BERT and MCA-DistilBERT (SST-2 dataset).
The vertical bars represents 95% confidence interval.

MCA is not applied. Note that we measure only the FLOPS
for the attention (i.e.,AXW ) and exclude other Transformer
operations (e.g., embedding layer, classification heads) as
they will be consistent. We also report the full model accu-
racy to observe the complexity-accuracy trade-off. We com-
pute 128 samples for each task (different random seeds) and
report the mean with 95% confidence interval. Given that α
is an adjustable parameter that determines the attention error
bound tightness, we evaluate for α = 0.2, 0.4, 0.6, and 1.0.

Table 1 summarizes our results. Here, MCA shows a sig-
nificant FLOPS reduction for all GLUE tasks. Using α =
0.2, MCA exhibits 4.64× FLOPS reduction (mean of all
tests), with negligible accuracy loss. With increasing α, we
see further model complexity reduction. For example, with
α = 0.4, we observe 5.72× average FLOPS reduction with
≤ 1% accuracy loss for all cases. A more generous α ≥ 0.6,
offers even more drastic improvements in complexity re-
duction. However, this comes at the cost of accuracy drop,
some quite noticeable, suggesting that α should be config-
ured with respect to the target task and dataset.

7189



One important observation is that the FLOPS reduction,
while maintaining consistent trends, varies with respect to
the dataset. For example, at α = 0.2, the CoLA task shows
a 11.44× FLOPS reduction compared to 2.50× of RTE.
Given that MCA reduces complexity by exploiting smaller
sample sizes for elements with low attention scores, we con-
jecture that differences can rise from the fact that the atten-
tion matrix from CoLA is sparser than that of RTE. Gener-
ally, binary classification tasks (e.g., CoLA and SST-2) ex-
hibit higher reduction rates while semantic similarity tasks
and NLI tasks show modest reduction rates.

Another point to note is that previously proposed schemes
that compress or prune the model require the tuning of many
different hyperparameters. On the contrary we argue that the
effort needed for per-task α adjustment in MCA is minimal,
as this is the only hyperparameter to adjust when applying
on different datasets or computing environments.
Performance-Accuracy Trade-off. Figure 1 visualizes the
required FLOPS and model accuracy relationships of BERT,
DistilBERT, MCA-BERT, and MCA-DistilBERT using the
SST-2 dataset (top-left orange plots are cases with MCA
not applied). We also present results for the corresponding
16-bit floating point (FP16) quantized models of each case,
respectively. As the results show, MCA results in 40-60%
FLOPS reduction with (nearly) the same accuracy and as
much as 170% reduction with small accuracy loss. Neverthe-
less, if the FLOPS drops below a tipping point, MCA shows
noticeable loss in accuracy, showing a logarithmetic tradeoff
relationship. Figure 1 also shows that performance trends of
MCA holds for models with quantized weights as well.
Attention Error vs. Model Error. Figure 2 presents the im-
pact of the attention error bound α on the model accuracy for
BERT and DistilBERT with MCA applied when using the
SST-2 dataset. As the plots show, with increasing α (higher
errors at the attention), the overall model accuracy shows
a gradually decreasing pattern. Nevertheless, configuring α
to 0.4, or even 0.6 will only minimally impact the overall
model accuracy. Comprehensively with the results reported
in Table 1 we can see that despite the small loss in accuracy,
the computational complexity reduction gain is significant.

Integration with Compressed Transformers
We next evaluate the impact of applying MCA on already
compressed Transformer models. For this, we perform the
same experiment as Table 1 on DistilBERT, which only pos-
sess 40% of BERT’s original parameter size. We present
results in Table 2. Overall, results from MCA-DistilBERT
mostly agree with those seen for MCA-BERT in terms
of FLOPS reduction and accuracy. For more a detailed
view, we look back on Figure 1 which plots a finer-grained
FLOPS-accuracy relationship for both MCA-applied models
(using SST-2), which shows that MCA effectively reduces
the complexity even for already compressed models.

From Figures 1 and 2, we see that the accuracy drop
with increasing α is more gradual for MCA-DistilBERT
compared to MCA-BERT. Since, MCA is a randomized ap-
proach, while tightly bounded, a small amount of error accu-
mulates with more attention layers to process. With MCA-
DistilBERT having only 1

2 attention layers of MCA-BERT,

we conjecture that MCA-DistilBERT benefits by having less
errors accumulated.

Integration with Sparse Attention Patterns
To empirically validate the coalesced performance of MCA
and Transformers with sparse attention mechanisms, we in-
tegrate MCA to the Longformer model and test its perfor-
mance on the document classification task datasets. We con-
figure the Longformer with a window size of 256, and apply
global attention for the CLS token.

As results in Table 3 show, for all datasets, MCA achieved
FLOPS reduction by a factor of at least 3× with negligi-
ble error (for tight error bounds). The tendency of FLOPS-
accuracy trade-off for the Longformer experiments also
agree with those from prior observations. Comprehensively,
these results suggest that MCA can be generally applied with
different Transformer architecture variants.

Related Work
A number of previous work target to alleviate the computa-
tional cost of self-attention mechanisms, mostly in two or-
thogonal ways: (i) by optimizing for long input sequences,
and (ii) by proposing new Transformer designed that are less
resource demanding. We introduce examples below.

Efficient Attention for Long Sequences
The scaled dot-product attention in a vanilla Transformer in-
duces significant overhead when dealing with lengthy data.
Thus, a number of previous work have focused on optimiz-
ing the evaluation algorithms for attention scores as a way
to efficiencize Transformers (Tay et al. 2021).
Fixed Sparse Patterns. Some early efforts exploited sparse
attention with fixed patterns, which reduce the attention
complexity proportional to a target sparsity. As an exam-
ple, blocked attention (Qiu et al. 2020; Parmar et al. 2019)
groups input elements in blocks for block-wise attention
evaluation. More recently, strided-pattern attention has been
proposed (Child et al. 2019; Beltagy, Peters, and Cohan
2020). These work limit attention evaluation to fixed-sized
windows and evaluates only the neighboring elements.
Learnable Sparse Patterns. Methods that learn the ac-
cess pattern have also been proposed. Reformer (Kitaev,
Kaiser, and Levskaya 2020) replaces dot-product attention
with locally-sensitive hashing, which clusters input tokens
based on hash similarity and filters prominent tokens. On-
line K-means clustering (Roy et al. 2021) can be used as a
similar concept by learning the input sparsity patterns.
Low-Rank Approximations. Some work directly approx-
imate attention scores by assuming a low-rank structured
attention matrix (Wang et al. 2020b). More recently, Per-
former (Choromanski et al. 2021) exploited kernelization for
approximation, which does not rely on input sparsity pat-
terns or low-rankness.

Low-cost Transformers
There have also been efforts to downscale the time complex-
ity of Transformers themselves as we detail below.

7190



Task Baseline α=0.2 α=0.4 α=0.6 α=1.0

Metric Result Result FLOPS Result FLOPS Result FLOPS Result FLOPS

CoLA MC 56.85 56.49±0.1 11.36× 55.69±0.3 12.33× 54.29±0.3 13.75× 50.08±0.6 17.30×
SST-2 Acc. 91.51 91.50±0.0 5.60× 91.41±0.0 6.64× 90.92±0.0 7.84× 88.20±0.1 10.58×
MRPC Acc. 85.78 85.26±0.1 2.98× 83.83±0.2 3.73× 78.59±0.4 4.54× 64.76±0.5 7.35×

F1 90.26 89.91±0.1 2.98× 88.99±0.2 3.73× 85.66±0.2 4.54× 76.04±0.5 7.35×
STS-B PC 88.39 88.29±0.2 4.65× 79.73±0.3 5.91× 63.11±0.4 7.21× 30.12±0.7 12.33×

SC 87.56 86.94±0.2 4.65× 78.24±0.3 5.91× 62.40±0.4 7.21× 29.02±0.6 12.33×
QQP Acc. 88.24 88.11±0.0 4.75× 87.79±0.2 5.85× 86.77±0.5 7.14× 72.24±0.9 10.41×

F1 85.48 84.99±0.0 4.75× 83.26±0.2 5.85× 82.95±0.8 7.14× 70.02±1.3 10.41×
MNLI Pos. 82.50 82.37±0.1 3.62× 81.09±0.4 4.31× 77.70±0.6 5.09× 68.11±0.8 7.40×

Neg. 83.83 83.66±0.1 3.62× 82.41±0.4 4.31× 79.26±0.6 5.09× 71.25±0.8 7.40×
QNLI Acc. 88.48 88.31±0.0 2.86× 87.06±0.0 3.51× 83.19±0.1 4.28× 62.89±0.2 7.43×
RTE Acc. 65.70 65.22±0.3 2.33× 64.43±0.6 2.91× 60.35±0.8 3.64× 52.79±0.9 6.47×
WNLI Acc. 56.33 54.40±0.6 3.97× 52.55±1.4 5.10× 52.77±1.5 6.56× 52.24±1.9 10.55×

Table 2: Experiment results on MCA-DistilBERT. Experimental configurations are kept same as Table 1.

Task Baseline α=0.2 α=0.4 α=0.6 α=1.0

Metric Result Result FLOPS Result FLOPS Result FLOPS Result FLOPS

AAPD Acc. 74.81 74.70±0.1 3.44× 72.21±0.2 4.45× 69.68±0.2 6.22× 66.87±0.3 9.83×
F1 71.39 71.02±0.1 3.44× 68.33±0.2 4.45× 65.35±0.3 6.22× 64.14±0.3 9.83×

HND Acc. 80.33 80.18±0.0 5.32× 78.73±0.1 6.81× 74.23±0.3 7.93× 70.36±0.5 11.81×
F1 76.57 76.32±0.0 5.32× 74.53±0.1 6.81× 72.94±0.3 7.93× 68.53±0.4 11.30×

IMDB Acc. 89.11 89.05±0.0 3.67× 84.10±0.1 5.06× 81.17±0.3 7.50× 75.11±0.4 11.30×

Table 3: Experiment results on MCA-Longformer. A local attention with window size of 256 is used for the Longformer model.

Model Compression. Pruning redundant information in
Transformer weights (Gordon, Duh, and Andrews 2020;
Wang, Wohlwend, and Lei 2020) and less-important
heads (Michel, Levy, and Neubig 2019) have shown good
performance albeit its complicated post-training procedure.
Another approach is to compress the model via knowledge
distillation (Beltagy, Peters, and Cohan 2020), allowing flex-
ible model sizes at the cost of (potentially heavy) re-training.
Weight Quantization. Along with FP16 quantization,
more aggressive quantization schemes, such as 8-bit inte-
gers (Zafrir et al. 2019) or even down to 4- or 2-bits (Shen
et al. 2020), have been applied to Transformers. While
this line of research does not often involve heavy post-
processing (e.g., additional model training), such low pre-
cision schemes, in practice, often require hardware acceler-
ators to maximize the desired efficiency.
Neural Architecture Search (NAS). Employing NAS
downsizes Transformer sizes by identifying more efficient
model architectures. This can be very effective when target-
ing a specific hardware architecture (Wang et al. 2020a) or
when meeting target latency goals (Guo et al. 2019).

Positioning MCA with Previous Work
Despite some limitations, we acknowledge that active re-
search in both perspectives are meaningful. As discussed,
MCA takes a different approach, by exploiting the statistical
characteristics of attention matrices. Such an approach can

be considered to be orthogonal to the previously proposed
improvements, and we showed through our evaluations that
MCA can indeed operate in parallel with other computation
acceleration techniques for Transformers.

Conclusion
This work presented the Monte-Carlo Attention (MCA)
mechanism, a randomized approximation method for reduc-
ing the complexity of self-attention mechanisms in Trans-
formers. MCA is designed under the philosophy that not
all attention elements need to be treated with equal weight.
Those with heavy attention should be computed with high
precision, whereas the weaker, which give minimal im-
pact to the final output, can use lower precision. For this
MCA employs random sampling-based matrix-vector prod-
uct operations to perform element-wise encoding of input
tokens, where each element is allocated different amounts of
samples with respect to their attention score. We evaluated
the model complexity reduction performance (in terms of
FLOPS) and the model accuracy using BERT (and its vari-
ations) with GLUE benchmark datasets. Our results suggest
that MCA is an effective alternative to the attention opera-
tors used in today’s Transformer networks by reducing the
FLOPS by up to 11× with negligible (near-zero) accuracy
drop. Furthermore, we showed that MCA can be applied in
parallel with widely-used approaches to efficiencize Trans-
formers, while still maintaining its performance benefits.

7191



Acknowledgements
This work was supported by the Ministry of Sci-
ence and ICT’s NRF Basic Science Research Pro-
gram (2021R1A2C4002380), ITRC Program supervised
by IITP (IITP-2021-2020-0-01461), Ministry of Culture,
Sports and Tourism and Korea Creative Content Agency
(R2021040018), and by the Ministry of Trade, Industry
and Energy and KIAT through the International Cooperative
R&D program under Grant (P0016150).

References
Beltagy, I.; Peters, M. E.; and Cohan, A. 2020. Longformer:
The Long-Document Transformer. CoRR, abs/2004.05150.
Chen, D.; Li, Y.; Qiu, M.; Wang, Z.; Li, B.; Ding, B.; Deng,
H.; Huang, J.; Lin, W.; and Zhou, J. 2020. AdaBERT:
Task-Adaptive BERT Compression with Differentiable Neu-
ral Architecture Search. In Bessiere, C., ed., Proceedings of
the Twenty-Ninth International Joint Conference on Artifi-
cial Intelligence, IJCAI 2020, 2463–2469. ijcai.org.
Chen, M. X.; Firat, O.; Bapna, A.; Johnson, M.; Macherey,
W.; Foster, G. F.; Jones, L.; Schuster, M.; Shazeer, N.; Par-
mar, N.; Vaswani, A.; Uszkoreit, J.; Kaiser, L.; Chen, Z.;
Wu, Y.; and Hughes, M. 2018. The Best of Both Worlds:
Combining Recent Advances in Neural Machine Transla-
tion. In Gurevych, I.; and Miyao, Y., eds., Proceedings of
the 56th Annual Meeting of the Association for Computa-
tional Linguistics, ACL 2018, Melbourne, Australia, July 15-
20, 2018, Volume 1: Long Papers, 76–86. Association for
Computational Linguistics.
Child, R.; Gray, S.; Radford, A.; and Sutskever, I. 2019.
Generating Long Sequences with Sparse Transformers.
CoRR, abs/1904.10509.
Choromanski, K. M.; Likhosherstov, V.; Dohan, D.; Song,
X.; Gane, A.; Sarlós, T.; Hawkins, P.; Davis, J. Q.; Mohi-
uddin, A.; Kaiser, L.; Belanger, D. B.; Colwell, L. J.; and
Weller, A. 2021. Rethinking Attention with Performers. In
9th International Conference on Learning Representations,
ICLR 2021, Virtual Event, Austria, May 3-7, 2021. OpenRe-
view.net.
Denton, E. L.; Zaremba, W.; Bruna, J.; LeCun, Y.; and Fer-
gus, R. 2014. Exploiting Linear Structure Within Convolu-
tional Networks for Efficient Evaluation. In Ghahramani, Z.;
Welling, M.; Cortes, C.; Lawrence, N. D.; and Weinberger,
K. Q., eds., Annual Conference on Neural Information Pro-
cessing Systems 2014, December 8-13 2014, Montreal, Que-
bec, Canada, 1269–1277.
Devlin, J.; Chang, M.; Lee, K.; and Toutanova, K. 2019.
BERT: Pre-training of Deep Bidirectional Transformers for
Language Understanding. In Burstein, J.; Doran, C.; and
Solorio, T., eds., Proceedings of the 2019 Conference of the
North American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies, NAACL-
HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Vol-
ume 1 (Long and Short Papers), 4171–4186. Association for
Computational Linguistics.
Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn,
D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.;

Heigold, G.; Gelly, S.; Uszkoreit, J.; and Houlsby, N. 2021.
An Image is Worth 16x16 Words: Transformers for Image
Recognition at Scale. In 9th International Conference on
Learning Representations, ICLR 2021, Virtual Event, Aus-
tria, May 3-7, 2021. OpenReview.net.
Drineas, P.; and Kannan, R. 2001. Fast Monte-Carlo Al-
gorithms for Approximate Matrix Multiplication. In 42nd
Annual Symposium on Foundations of Computer Science,
FOCS 2001, 14-17 October 2001, Las Vegas, Nevada, USA,
452–459. IEEE Computer Society.
Drineas, P.; Kannan, R.; and Mahoney, M. W. 2006. Fast
Monte Carlo Algorithms for Matrices I: Approximating Ma-
trix Multiplication. SIAM J. Comput., 36(1): 132–157.
Eriksson-Bique, S. D.; Solbrig, M.; Stefanelli, M.;
Warkentin, S.; Abbey, R.; and Ipsen, I. C. F. 2011. Impor-
tance Sampling for a Monte Carlo Matrix Multiplication Al-
gorithm, with Application to Information Retrieval. SIAM J.
Sci. Comput., 33(4): 1689–1706.
Gordon, M. A.; Duh, K.; and Andrews, N. 2020. Com-
pressing BERT: Studying the Effects of Weight Pruning on
Transfer Learning. In Gella, S.; Welbl, J.; Rei, M.; Petroni,
F.; Lewis, P. S. H.; Strubell, E.; Seo, M. J.; and Hajishirzi,
H., eds., Proceedings of the 5th Workshop on Representation
Learning for NLP, RepL4NLP@ACL 2020, Online, July 9,
2020, 143–155. Association for Computational Linguistics.
Guo, Y.; Zheng, Y.; Tan, M.; Chen, Q.; Chen, J.; Zhao,
P.; and Huang, J. 2019. NAT: Neural Architecture Trans-
former for Accurate and Compact Architectures. In Wal-
lach, H. M.; Larochelle, H.; Beygelzimer, A.; d’Alché-Buc,
F.; Fox, E. B.; and Garnett, R., eds., Annual Conference
on Neural Information Processing Systems 2019, NeurIPS
2019, December 8-14, 2019, Vancouver, BC, Canada, 735–
747.
Hinton, G. E.; Vinyals, O.; and Dean, J. 2015. Distilling the
Knowledge in a Neural Network. CoRR, abs/1503.02531.
Kiesel, J.; Mestre, M.; Shukla, R.; Vincent, E.; Adineh, P.;
Corney, D. P. A.; Stein, B.; and Potthast, M. 2019. SemEval-
2019 Task 4: Hyperpartisan News Detection. In May, J.;
Shutova, E.; Herbelot, A.; Zhu, X.; Apidianaki, M.; and Mo-
hammad, S. M., eds., Proceedings of the 13th International
Workshop on Semantic Evaluation, SemEval@NAACL-HLT
2019, Minneapolis, MN, USA, June 6-7, 2019, 829–839. As-
sociation for Computational Linguistics.
Kitaev, N.; Kaiser, L.; and Levskaya, A. 2020. Reformer:
The Efficient Transformer. In 8th International Conference
on Learning Representations, ICLR 2020, Addis Ababa,
Ethiopia, April 26-30, 2020. OpenReview.net.
Lim, B.; Arık, S. Ö.; Loeff, N.; and Pfister, T. 2021. Tempo-
ral fusion transformers for interpretable multi-horizon time
series forecasting. International Journal of Forecasting.
Mahoney, M. W. 2011. Randomized algorithms for matrices
and data. arXiv preprint arXiv:1104.5557.
Michel, P.; Levy, O.; and Neubig, G. 2019. Are Six-
teen Heads Really Better than One? In Wallach, H. M.;
Larochelle, H.; Beygelzimer, A.; d’Alché-Buc, F.; Fox,
E. B.; and Garnett, R., eds., Annual Conference on Neural

7192



Information Processing Systems 2019, NeurIPS 2019, De-
cember 8-14, 2019, Vancouver, BC, Canada, 14014–14024.
Osawa, K.; Sekiya, A.; Naganuma, H.; and Yokota, R. 2017.
Accelerating Matrix Multiplication in Deep Learning by
Using Low-Rank Approximation. In 2017 International
Conference on High Performance Computing & Simulation,
HPCS 2017, Genoa, Italy, July 17-21, 2017, 186–192. IEEE.
Pagh, R. 2013. Compressed matrix multiplication. ACM
Trans. Comput. Theory, 5(3): 9:1–9:17.
Park, H.; Lee, Y.; and Ko, J. 2021. Enabling Real-time Sign
Language Translation on Mobile Platforms with On-board
Depth Cameras. Proc. ACM Interact. Mob. Wearable Ubiq-
uitous Technol., 5(2): 77:1–77:30.
Park, N.; Lee, T.; and Kim, S. 2021. Vector Quan-
tized Bayesian Neural Network Inference for Data Streams.
In Thirty-Fifth AAAI Conference on Artificial Intelligence,
AAAI , Virtual Event, February 2-9, 2021, 9322–9330.
AAAI Press.
Parmar, N.; Ramachandran, P.; Vaswani, A.; Bello, I.; Lev-
skaya, A.; and Shlens, J. 2019. Stand-Alone Self-Attention
in Vision Models. In Wallach, H. M.; Larochelle, H.;
Beygelzimer, A.; d’Alché-Buc, F.; Fox, E. B.; and Garnett,
R., eds., Annual Conference on Neural Information Process-
ing Systems 2019, NeurIPS 2019, December 8-14, 2019,
Vancouver, BC, Canada, 68–80.
Qiu, J.; Ma, H.; Levy, O.; Yih, W.; Wang, S.; and Tang, J.
2020. Blockwise Self-Attention for Long Document Under-
standing. In Cohn, T.; He, Y.; and Liu, Y., eds., Findings
of the Association for Computational Linguistics: EMNLP
2020, Online Event, 16-20 November 2020, volume EMNLP
2020 of Findings of ACL, 2555–2565. Association for Com-
putational Linguistics.
Raffel, C.; Shazeer, N.; Roberts, A.; Lee, K.; Narang, S.;
Matena, M.; Zhou, Y.; Li, W.; and Liu, P. J. 2020. Exploring
the Limits of Transfer Learning with a Unified Text-to-Text
Transformer. J. Mach. Learn. Res., 21: 140:1–140:67.
Roy, A.; Saffar, M.; Vaswani, A.; and Grangier, D. 2021. Ef-
ficient Content-Based Sparse Attention with Routing Trans-
formers. Trans. Assoc. Comput. Linguistics, 9: 53–68.
Sanh, V.; Debut, L.; Chaumond, J.; and Wolf, T. 2019. Dis-
tilBERT, a distilled version of BERT: smaller, faster, cheaper
and lighter. CoRR, abs/1910.01108.
Shen, S.; Dong, Z.; Ye, J.; Ma, L.; Yao, Z.; Gholami, A.;
Mahoney, M. W.; and Keutzer, K. 2020. Q-BERT: Hessian
Based Ultra Low Precision Quantization of BERT. In The
Thirty-Fourth AAAI Conference on Artificial Intelligence,
AAAI New York, NY, USA, February 7-12, 2020, 8815–8821.
AAAI Press.
Shoeybi, M.; Patwary, M.; Puri, R.; LeGresley, P.; Casper,
J.; and Catanzaro, B. 2019. Megatron-lm: Training multi-
billion parameter language models using model parallelism.
arXiv preprint arXiv:1909.08053.
Tay, Y.; Bahri, D.; Metzler, D.; Juan, D.; Zhao, Z.; and
Zheng, C. 2021. Synthesizer: Rethinking Self-Attention for
Transformer Models. In Meila, M.; and Zhang, T., eds.,
Proceedings of the 38th International Conference on Ma-
chine Learning, ICML 2021, 18-24 July 2021, Virtual Event,

volume 139 of Proceedings of Machine Learning Research,
10183–10192. PMLR.
Tay, Y.; Dehghani, M.; Bahri, D.; and Metzler, D. 2020. Ef-
ficient Transformers: A Survey. CoRR, abs/2009.06732.
Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones,
L.; Gomez, A. N.; Kaiser, L.; and Polosukhin, I. 2017. At-
tention is All you Need. In Guyon, I.; von Luxburg, U.;
Bengio, S.; Wallach, H. M.; Fergus, R.; Vishwanathan, S.
V. N.; and Garnett, R., eds., Annual Conference on Neural
Information Processing Systems 2017, December 4-9, 2017,
Long Beach, CA, USA, 5998–6008.
Wang, A.; Singh, A.; Michael, J.; Hill, F.; Levy, O.; and
Bowman, S. R. 2018. GLUE: A Multi-Task Benchmark and
Analysis Platform for Natural Language Understanding. In
Linzen, T.; Chrupala, G.; and Alishahi, A., eds., Proceed-
ings of the Workshop: Analyzing and Interpreting Neural
Networks for NLP, BlackboxNLP@EMNLP 2018, Brussels,
Belgium, November 1, 2018, 353–355. Association for Com-
putational Linguistics.
Wang, H.; Wu, Z.; Liu, Z.; Cai, H.; Zhu, L.; Gan, C.; and
Han, S. 2020a. HAT: Hardware-Aware Transformers for Ef-
ficient Natural Language Processing. In Jurafsky, D.; Chai,
J.; Schluter, N.; and Tetreault, J. R., eds., Proceedings of the
58th Annual Meeting of the Association for Computational
Linguistics, ACL 2020, Online, July 5-10, 2020, 7675–7688.
Association for Computational Linguistics.
Wang, S.; Li, B. Z.; Khabsa, M.; Fang, H.; and Ma, H.
2020b. Linformer: Self-Attention with Linear Complexity.
CoRR, abs/2006.04768.
Wang, Z.; Wohlwend, J.; and Lei, T. 2020. Structured Prun-
ing of Large Language Models. In Webber, B.; Cohn, T.;
He, Y.; and Liu, Y., eds., Proceedings of the 2020 Confer-
ence on Empirical Methods in Natural Language Process-
ing, EMNLP 2020, Online, November 16-20, 2020, 6151–
6162. Association for Computational Linguistics.
Xu, C.; Zhou, W.; Ge, T.; Wei, F.; and Zhou, M.
2020. BERT-of-Theseus: Compressing BERT by Progres-
sive Module Replacing. In Webber, B.; Cohn, T.; He, Y.; and
Liu, Y., eds., Proceedings of the 2020 Conference on Em-
pirical Methods in Natural Language Processing, EMNLP
2020, Online, November 16-20, 2020, 7859–7869. Associa-
tion for Computational Linguistics.
Yang, Z.; Yang, D.; Dyer, C.; He, X.; Smola, A. J.; and
Hovy, E. H. 2016. Hierarchical Attention Networks for Doc-
ument Classification. In Knight, K.; Nenkova, A.; and Ram-
bow, O., eds., NAACL HLT 2016, The 2016 Conference of
the North American Chapter of the Association for Com-
putational Linguistics: Human Language Technologies, San
Diego California, USA, June 12-17, 2016, 1480–1489. The
Association for Computational Linguistics.
Zafrir, O.; Boudoukh, G.; Izsak, P.; and Wasserblat, M.
2019. Q8BERT: Quantized 8Bit BERT. In Fifth Workshop
on Energy Efficient Machine Learning and Cognitive Com-
puting - NeurIPS Edition, EMC2@NeurIPS 2019, Vancou-
ver, Canada, December 13, 2019, 36–39. IEEE.

7193


