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Abstract
Model-Agnostic Meta-Learning (MAML), a popular gradient-
based meta-learning framework, assumes that the contribu-
tion of each task or instance to the meta-learner is equal.
Hence, it fails to address the domain shift between base and
novel classes in few-shot learning. In this work, we propose a
novel robust meta-learning algorithm, NESTEDMAML, which
learns to assign weights to training tasks or instances. We con-
sider weights as hyper-parameters and iteratively optimize
them using a small set of validation tasks set in a nested
bi-level optimization approach (in contrast to the standard
bi-level optimization in MAML). We then apply NESTED-
MAML in the meta-training stage, which involves (1) several
tasks sampled from a distribution different from the meta-test
task distribution, or (2) some data samples with noisy labels.
Extensive experiments on synthetic and real-world datasets
demonstrate that NESTEDMAML efficiently mitigates the ef-
fects of ”unwanted” tasks or instances, leading to significant
improvement over the state-of-the-art robust meta-learning
methods.

Introduction
Meta-learning (Schmidhuber 1987; Naik and Mammone
1992; Santoro et al. 2016; Vinyals et al. 2016; Finn, Abbeel,
and Levine 2017) can achieve quick adaption for UNSEEN
tasks by identifying common structures among various SEEN
tasks, enabling faster learning of a new task with as little data
as possible. However, existing meta-learning techniques (e.g.,
MAML (Finn, Abbeel, and Levine 2017)) often fail to gener-
alize well when the test tasks belong to a different distribution
from the training tasks distribution (Chen et al. 2019). For
example, MAML assumes equal weights to all samples and
tasks during meta-training. This task homogeneity assump-
tion of MAML often limits its ability to work in real-world
applications (Wei and Kehtarnavaz 2020).

We motivate the importance of robust meta-learning when
meta-training tasks have OOD tasks using the following ex-
amples. For example, consider the task of detecting vehicles
at night under different weather conditions. In this case, the
meta-test tasks only consist of images of vehicles at night.
Since the procurement vehicles driving data at night, cover-
ing all critical scenarios is difficult, we need a model that can
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Figure 1: We consider corrupted training set for few-shot
learning in this work: a) OOD task level and b) noisy in-
stance level. T2 in a) is an OOD task that is sampled from a
different distribution. b) contains some noisy samples which
are mislabeled. For example, the actual label of the first sam-
ple in T1 should be “Arctic fox” which is labeled as “dog”;
The labels of two noisy samples in T3 are flipped wrongly.
The first one should be “rock beauty,” and the other one
should be “jellyfish.”

quickly adapt to rare driving conditions. Hence, we consider
meta-training tasks to consist of images of the vehicles in
multiple lighting scenarios. In this case, some of the tasks in
meta-training may degrade the meta-test performance. So, it
is vital to have a meta-learning model that is robust to OODs.

In the examples given above, meta-test tasks belong to
specialized slices where the data availability is meager com-
pared to meta-training tasks. The meta-training task distri-
bution is biased compared to that in the meta-test. To keep
the whole meta-training tasks for generalization and reduce
the adverse impact of the biased distribution in meta-training,
we propose a novel robust few-shot learning algorithm in the
presence of outliers in meta-training time, which is similar
to the corruptions in training time in the traditional robust
learning (Schneider et al. 2020). This is different from the
existing robust few-shot learning papers (Yin et al. 2018;
Lu et al. 2020; Goldblum, Fowl, and Goldstein 2020) which
consider the corruption only happens in meta-test time.

To simulate the corruptions in meta-training, two levels
of outliers (Figure 1) are considered: a) Out-Of-Distribution
(OOD) task, where the meta-training has tasks that are out of
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Figure 2: Overview of our NESTEDMAML framework that solves a nested bi-level optimization problem. (a) In the meta-training
stage, model parameters φi of each task are adapted from meta-parameter θ through the inner level optimization; (b) In the
outer-level of the meta-training stage, we update the meta-parameters using the weights W from the previous iterate; (c) Weights
are further updated in the meta-validation stage using the gradient of the meta-losses with respect to current W .

distribution to the meta-test tasks (i.e., the meta-test dataset
is a specialized slice of meta-train) and b) noisy instance
level, where some of the labels might be noisy (due to human
labeling errors or inherent ambiguity of certain classification
problems) for meta-training samples.

A natural way of dealing with corrupted data in meta-
training is by assigning weights to either tasks or individual
instances. For example, assigning zero weight to OOD or
noisy tasks/instances in the meta-train set improves the meta-
learning algorithm’s performance. Inspired by (Ren et al.
2018), in this work, we propose an end-to-end robust meta-
learning framework called NESTEDMAML that can achieve
the reweighting schema along with learning good model
initialization parameters in the few-shot learning scenario.

NESTEDMAML considers the weights as hyper-
parameters and uses a small set of meta-validation tasks
representing the meta-test tasks to find the optimal hyper-
parameters by minimizing the meta-loss on the validation
tasks in a nested bi-level manner. An overview of NEST-
EDMAML is given in Figure 2. In practice, the size of the
meta-validation tasks set required by NESTEDMAML is
tiny compared to the meta-training dataset. Hence, creating
a small and clean meta-validation set is neither expensive
nor unrealistic, even for rare specialized use cases of a real-
life scenario. A similar strategy has been applied in (Ren
et al. 2018; Shu et al. 2019; Killamsetty et al. 2020). How-
ever, they focus on traditional supervised learning, and we
generalize this to task- and instance-level in a meta-learning
setting. Since NESTEDMAML uses an online framework to
perform a joint optimization of the weight hyper-parameters
and model parameters for the weighted MAML model, the
computational time of ours is comparable to MAML.
Contributions of our work are summarized as follows: 1)
We study the general form of the task and instance weighted
meta-learning, where we learn the optimal weights and model

initialization parameters by optimizing a nested bi-level ob-
jective function. To the best of our knowledge, ours is the first
work that studies the nested bi-level optimization problem,
which comes naturally in such a new setting. 2) We introduce
a novel algorithmic framework NESTEDMAML that uses a
small set of validation tasks to enable robust meta-learning.
We solve the nested bi-level optimization problem efficiently
through a series of practical approximations and provide a
theoretical convergence analysis for NESTEDMAML. In par-
ticular, we show that NESTEDMAML converges in O(1/ε2)
iterations under reasonable assumptions and contrast this
with existing bounds of MAML. 3) We provide comprehen-
sive synthetic and real-world data experiments demonstrating
that NESTEDMAML achieves state-of-the-art results in two
scenarios (OOD tasks and noisy instance labels).

Related Work
There are several lines of meta-learning algorithms: near-
est neighbors-based methods (Vinyals et al. 2016), recurrent
network-based methods (Ravi and Larochelle 2016), and
gradient-based methods. As the representative of gradient-
based meta-learning algorithms, MAML (Finn, Abbeel, and
Levine 2017) and its variants (Zhao, Chen, and Thuraising-
ham 2021; Zhao et al. 2020a; Finn, Xu, and Levine 2018;
Nichol, Achiam, and Schulman 2018; Rusu et al. 2018; Ra-
jeswaran et al. 2019; Behl, Baydin, and Torr 2019; Raghu
et al. 2019; Zhao et al. 2020b; Zhou, Knowles, and Finn 2021)
learn a shared initialization of model parameters across a va-
riety of tasks during the meta-training phase that can adapt
to new tasks using a few gradient steps. Cai et al. (2020)
proposes a simple weighted meta-learning approach only for
the basis regression problem that selects weights by minimiz-
ing a data-dependent bound involving an empirical integral
probability metric between the weighted sources and target
risks. However, this approach cannot be easily extended to
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complex scenarios with arbitrary loss functions.
There are few meta-learning papers discussing learning

with OOD tasks. Jeong and Kim (2020) propose an OOD de-
tection framework in meta-learning through generating fake
samples which resemble in-distribution samples and combine
them with real samples. However, they assume the outlier
instances exist in the query set, which is different from ours.
The most relevant field is from the perspective of task hetero-
geneity (Vuorio et al. 2019; Triantafillou et al. 2020; Yao et al.
2020). Vuorio et al. (2019) proposed MMAML to deal with
multimodal task distribution with disjoint and far apart modes
and generates a set of separate meta-learned prior parameters
to deal with each mode of a multimodal distribution. If we
view that all the OOD tasks belong to a single mode, this is
relevant to our setting. To tackle the distribution drift from
meta-training to meta-test, B-TAML (Lee et al. 2020) learn
to relocate the initial parameters to a new start point based
on the arriving unseen tasks in the meta-test. The setting
considered in our work and B-TAML work can be viewed
as similar if we assume some of the datasets considered in
the multi-dataset classification setting of B-TAML as OOD
datasets.

To tackle samples with corrupted labels, some re-
searches (Luo et al. 2015; Jalal et al. 2017; Wang and
Yu 2019) introduce noise-robust models. Ren et al. (2018)
and Shu et al. (2019) propose a noisy data filtering strategy
using an instance reweighting strategy where the weights are
learned automatically. However, the effect of noisy labels on
few-shot learning requires more attention. Although (Yin
et al. 2018; Lu et al. 2020; Goldblum, Fowl, and Goldstein
2020) proposes robust meta-learning or few-shot learning,
they assume a presence of outliers containing in meta-test,
which is different from ours.

Preliminaries
Notations
In the setting of meta-learning for few-shot learning, there is a
set of meta-training tasks {Ti}Mi=1 sampled from the probabil-
ity distribution ptr(T ). Each few-shot learning task Ti has an
associated dataset Di containing two disjoint sets {DSi ,D

Q
i },

where the superscripts S and Q denote support set and
query set respectively. The query sets take the form DQi =
{xki , yki }Kk=1 and similarly for DSi . Meta-validation tasks are
denoted in a similar manner: {T Vj = {VSj ,V

Q
j }}Nj=1 Let

the loss function be denoted as L(φ,D) with φ denoting
model parameters and D denoting the dataset, and `(θ, d)
with model parameters θ on the data-point d. For exam-
ple, L(φ,DQi ) denotes the loss of the ith training task query
set DQi for given model parameters φ ∈ Φ ≡ Rd, where
φ := Alg(θ,DS) and θ ∈ Θ ≡ Rd is the meta-parameter.
Alg(·) corresponds to a learning algorithm.

For notation convenience, we write Li(φ) := L(φ,DQi );
LVj

(φ) := L(φ,VQj ); L̂Vj
(φ) := L(φ,VSj ). We denote

scalars by lower case italic letters, vectors by lower case bold-
face letters, and matrices by capital italic letters throughout
the paper. A table of notations with corresponding explana-
tions is given in Appendix A.

Model-Agnostic Meta-Learning
The goal of MAML (Finn, Abbeel, and Levine 2017) is to
obtain the optimal initial parameters that minimize the meta-
training objective:

outer−level︷ ︸︸ ︷
θ∗ML = argmin

θ∈Θ
F(θ)

where, F(θ) = 1

M

∑M

i=1
L(

inner−level︷ ︸︸ ︷
Alg(θ,DSi ),D

Q
i )

(1)

This is a bi-level optimization problem, where we construe
that Alg(θ,DSi ) explicitly or implicitly optimizes the inner-
level task-specific adaptation. The outer-level corresponds to
the meta-training objective of generalizing well (i.e. low test
error) on the query set of each task after adaptation.

Since Alg(θ,DSi ) corresponds to single or multiple gra-
dient descent steps. In case of a single gradient descent,
Alg(θ,DSi ) can be perceived as follwing:

Alg(θ,DSi ) = θ − α∇θL(θ,DSi ) (2)

where α is a learning rate. As shown above, the meta-training
objective assumes equal weights to each task for generaliza-
tion, which may not be ideal in the case of adversaries in the
training tasks set.

Methodology
Problem Formulation
This section discusses a more generalized meta-learning
framework, where we weigh all the data instances in the
query set of a task. One of the significant purposes for con-
sidering weighted meta-learning is to make it more robust to
adversaries during training.

In meta-learning, the support and query datasets
{DSi ,D

Q
i } for each task Ti are usually sampled from an

underlying dataset D. In instance-level weighting, we asso-
ciate each data instance {DQik | k ∈ [K]} in the query set of
task Ti with a particular weight wik, where K is the number
of datapoints (instances) in the query set DQi . The problem
can be formulated as follows:

θ∗ML = argmin
θ∈Θ

Fw(θ)

where Fw(θ) =
1

M

∑M

i=1

∑K

k=1
wik`(Alg(θ,DSi ),DQik)

=
1

M

∑M

i=1
wiLi(Alg(θ,DSi ))

(3)
In the expression above,

Li(Alg(θ,DSi )) =


`(Alg(θ,DSi ),DQi1)

. . .

`(Alg(θ,DSi ),DQik)
. . .

`(Alg(θ,DSi ),DQiK)


and wi = [wi1, . . . , wiK ] is the weight vector corresponding
to the query set of task Ti. The instance-level weighting
is useful in the scenarios where our underlying dataset D
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is prone to noisy labeled instances where an appropriate
instance-level weighting can be used to distinguish the noisy
samples with corrupted labels in the task. An ideal weight
assignment is assigning large weight values to clean samples
and small weight values to noisy samples in a task.

Likewise, we discuss a special case of the instance weight-
ing scheme called task-level weighting, where we assign
equal weights to every instance in the query set of a single
task. Task-level weighting is applied in scenarios where every
instance in a task’s query set is from an OOD task distribu-
tion or an In-Distribution (ID) task. In this case, the optimal
weight assignment assigns small weight values to an OOD
task and large weight values to an ID task.

NESTED BI-LEVEL Optimization
Since we do not know the optimal weight assignment for
real-world datasets, we need to learn the weights before train-
ing the instance-level weighting model using the bi-level
optimization problem defined in Eq.(3).

NESTEDMAML solves for optimal weight assignments
by posing them as hyper-parameters using the optimization
problem defined in Eq.(4). As seen in the optimization equa-
tion, NESTEDMAML uses a clean held-out meta-validation
task set {T Vj = {VSj ,V

Q
j }}Nj=1 that is assumed to be rele-

vant to test task distribution for generalization performance.
In practice, the meta-validation task set’s size is small com-
pared to that of the meta-training tasks set (N �M). Hence,
NESTEDMAML tries to select the weight hyper-parameters
minimizing the model’s meta-validation loss after taking a
few gradient steps from the initial model parameters set using
the instance-level weighting scheme.

The weight optimization objective for the instance-
weighted MAML schema is as follows:

W ∗ = argmin
w

1

N

∑N

j=1
L(Alg(θ∗W ,VSj ),VQj )

where θ∗W = argmin
θ∈Θ

1

M

∑M

i=1
w∗iL(Alg(θ,DSi ),DQi )

(4)

and W = [w1, . . . ,wM ]ᵀ. Since the optimization prob-
lem for θ∗W is a standard bi-level optimization problem (i.e.
MAML), the complete optimization problem (Eq.(4)) turns
out to be a nested bi-level optimization problem. It involves
solving a standard bi-level optimization problem for every
weight configuration, and hence naively solving this nested
bi-level optimization problem is intractable. Hence, we adopt
an online and one-step meta-gradient based approach to solve
the optimization problem more efficiently.

The NESTEDMAML Algorithm
To reduce the optimization problem’s (Eq.(4)) computation
complexity, we solve the optimization problem in an iterative
manner where we optimize the model parameters and weight
hyperparameter by taking a single gradient step. This process
is repeated until we reach convergence. Hence, we approx-
imate the solution to the model parameters optimization in
Eq.(4) first by adapting to each task using a single gradient
step towards the inner task adaptation objective’s descent
direction and then taking a single gradient step towards the
meta objective’s descent direction.

Assuming that at every iterate t of training, a mini-batch of
training tasks {Ti | 1 ≤ i ≤ m} is sampled, where m is the
mini-batch size and m�M , the optimal model parameters
update of the above problem is as follows:

θ
(t)
W = θ(t) − η 1

m

∑m

i=1
w

(t)
i ∇θLi(Alg(θ,DSi ))|θ(t) (5)

where η is meta objective’s step-size and α is the inner objec-
tive’s step-size. After this, the optimal weight optimization
problem will be as follows:

W ∗ = argmin
W

1

N

∑N

j=1
LVj (Alg(θ

(t)
W ,VSj )) (6)

Similarly, we optimize the weight hyperparameters by tak-
ing a single gradient step towards the meta-validation loss
descent. We want to evaluate the impact of training a model
on the weighted MAML objective against the meta-objective
of sampled validation tasks {T Vj | 1 ≤ j ≤ n} where, n is
the mini-batch size and n� N . The weight update equation
for the instance weighting scheme is as follows:

W (t+1) =W (t) − γ

n

∑n

j=1
∇WLVj (Alg(θ

(t)
W ,VSj )) (7)

where γ is the weight update’s step size. The Lemma
below provides the gradient of the meta-validation loss
1
n

∑n
j=1∇WLVj

(Alg(θ(t)W ,VSj )) w.r.t. the weight vector wi,
therefore giving the full update equation.
Lemma 1. The weight update for an individual weight vector
wi of the task Ti from time step t to t+ 1 is as follows:

w
(t+1)
i = w

(t)
i +

ηγ

mn

∑n

j=1
∇φj
LVj

(
∇θLi(Alg(θ,DSi ))ᵀ

− α∇2L̂Vj
|
θ
(t)
W

∇θLi(Alg(θ,DSi ))ᵀ
)

(8)

where φj = Alg(θ,VSj ).
The proof is in Appendix B. Once the optimal weights

w(t+1) at t + 1 are achieved, we train the model using the
new weights:

θ(t+1) = θ(t) − η

m

∑m

i=1
w

(t+1)
i ∇θLi(Alg(θ(t),DSi )) (9)

We repeat the steps given in the equation (5) from t = 1 until
convergence. See Algorithm 1 for the full pseudo-code of
NESTEDMAML.
First-Order Approximation (NESTEDMAML-FO). Even
after the one step gradient approximation, the weight gradi-
ent calculation involves calculating multiple Hessian vector
products, which is expensive. Since the coefficient of the
Hessian vector-product term in the weight update (Eq. (8))
involves the product of three learning rate terms ηαγ, we can
make an approximation that the term involving the Hessian
vector-product term is close to 0, given that the above learn-
ing rates are small. The approximated weight update takes
the following form:

w
(t+1)
i = w

(t)
i +

ηγ

mn

∑n

j=1
∇φjLVj∇θLi(Alg(θ,DSi ))ᵀ

(10)
This approximation is similar to the first-order approximation
given in (Finn, Abbeel, and Levine 2017) where the second
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Algorithm 1: NESTEDMAML
Require: ptr, pval distribution over training, validation tasks
Require: m,n (batch sizes) and α, η, γ (learning rates)
1: Randomly initialize θ and W
2: while not done do
3: Sample mini-batch of tasks {DSi ,DQi }

m
i=1 ∼ ptr

4: Sample mini-batch of tasks {VSj ,VQj }
n
j=1 ∼ pval

5: for each task Ti, ∀i ∈ [1,m] do
6: Compute adapted parameters Alg(θ,DSi ) with gradient

descent by Eq. (2)
7: Compute the gradient∇θLi(Alg(θ,DSi )) using DQi
8: Formulate the θ as a function of weights θ(t)

W by Eq. (5)
9: Update w

(t)
i by Eq.(8) using {VSj ,VQj }

n
j=1

10: end for
11: Update θ(t+1) by Eq. (9) using {DQi }

m
i=1

12: end while

and higher-order terms are neglected. We want to show a
faster way to solve the nested bi-level weight optimization
problem with a tradeoff in performance. Our experimental
results show that we achieve state-of-the-art performance
using NESTEDMAML. Our results also show that NESTED-
MAML-FO leads to a loss in performance with a commen-
surate gain in speed compared to the unmodified NESTED-
MAML version.
Weights Sharing. The number of weight hyper-parameters
in the instance-level weighting scheme correlates to the num-
ber of data instances in the query sets of the meta-training
tasks. We need to determine a significant amount of hyper-
parameters if the number of training tasks or data instances
is enormous, which in turn affects the hyper-parameter op-
timization algorithm, leading to instabilities during training.
Accordingly, we seek to evaluate a smaller number of hyper-
parameters by sharing the weights among instances. The
task-weighting scheme is an occurrence of weight sharing
where we share the same weight among all the instances in
the query set. Apart from the task-level weighting scheme, we
try to cluster tasks based on some similarity criteria to share
the same weight among all the data instances in a cluster’s
query sets. We likewise present a sensitive analysis in the
experiment section illustrating how the number of clusters
in the training tasks or instances affects the NESTEDMAML
algorithm’s performance.

Convergence of NESTEDMAML Algorithm

Although the MAML algorithm’s convergence rate is stud-
ied (Balcan, Khodak, and Talwalkar 2019; Fallah, Mokhtari,
and Ozdaglar 2020; Finn et al. 2019), those results do not
directly hold in our case since we have a nested bi-level op-
timization objective instead of standard bi-level objective
of the MAML. Recall that in the case of strongly convex
losses, MAML admits a convergence rate ofO(1/ε) (Balcan,
Khodak, and Talwalkar 2019; Finn et al. 2019). In contrast,
for the non-convex case, (Fallah, Mokhtari, and Ozdaglar
2020) show a weaker convergence rate of O(1/ε2) to a first
order stationary point. In this work, we show that NESTED-
MAML achieves a convergence rate of O(1/ε2) in the case
of convex losses, as long as the inner learning rate is not too

Algorithm Strongly Convex Loss Non-Convex Loss
MAML O(1/ε) O(1/ε2)

NESTEDMAML O(1/ε2) Open

Table 1: Convergence Rates of MAML and NESTEDMAML

high. Furthermore, we show that NESTEDMAML converges
to a critical point of meta-validation loss and not the meta-
training loss since we are optimizing the meta-validation loss
in the nested bi-level setting. Table 1 shows the convergence
rates of MAML and NESTEDMAML algorithms for strongly
convex and non-convex loss functions.

Theorem 1. Suppose the loss function L(·) is Lipschitz
smooth with constant L, µ-strongly convex, and is a twice dif-
ferential function with a ρ-bounded gradient and B-Lipschitz
Hessian. Denote σ as the variance of drawing uniformly
mini-batch sample at random. Assume that the learning rate
ηt satisfies ηt = min (1, k/T ) for some k > 0 such that
k/T < 1 and γt, 1 ≤ t ≤ T , is a monotone descent se-
quence. Let γt = min ( 1

L ,
C

σ
√
T
) for some C > 0 such that

σ
√
T

C ≥ L and
∑∞
t=0 γt ≤ ∞,

∑∞
t=0 γ

2
t ≤ ∞. Then, NEST-

EDMAML satisfies: E

[∥∥∥ 1
N

∑N
j=1

∂L
∂W

∥∥∥2 ] ≤ ε in O( 1
ε2 )

steps. More specifically,

min
0≤t≤T

E

[∥∥∥∥ 1

N

∑N

j=1

∂L
∂W

∥∥∥∥2
]
≤ O( 1√

T
)

where
∂L
∂W

= ∇WL(Alg(θ(t)
W ,VSj ),VQj ).

Proof is given in Appendix C. The difference in conver-
gence rates between MAML and NESTEDMAML is due
to the additional complexity involved in solving a nested
bi-level optimization problem. The convergence analysis of
NESTEDMAML for non-convex functions is challenging and
currently unknown. Even though most deep learning prob-
lems have a non-convex landscape, the algorithms initially
developed for convex cases have shown promising empirical
results in non-convex cases. Under this assumption, we pro-
vide an implementation that can be generalized to any deep
learning architecture in Algorithm 1.

Experiments
In order to corroborate NESTEDMAML, we aim to study
two questions: Q1: Can NESTEDMAML be successfully
applied to problems where task distribution in the training
domain is partially shifted from the task distribution in the
testing domain? Q2: Instead of learning task weights, can
NESTEDMAML deal with problems where data instances
with noisy labels are used during the meta-training stage by
learning weights in an instance-level scheme?

To answer these questions, we conduct the following ex-
periments: (1) Mix OOD tasks with the meta-training tasks to
evaluate the task-level weighting scheme of NESTEDMAML
and (2) corrupt the labels of some training samples to evalu-
ate the instance-level weighting scheme of NESTEDMAML.
We follow the classification experiments in (Finn, Abbeel,
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5-way 3-shot
Dout SVHN FashionMNIST
OOD Ratio 30% 60% 90% 30% 60% 90%
MAML-OOD-RM(Skyline) 57.73±0.76 55.29±0.78 54.38±0.12 56.78±0.75 55.29±0.78 53.43±0.51
MAML 55.41±0.75 53.93±0.76 44.10±0.68 54.65±0.77 54.52±0.76 41.52±0.74
MMAML 51.04±0.87 50.28±0.97 41.56±0.96 50.32±0.93 47.54±1.05 42.09±0.97
B-TAML 53.87±0.18 49.84±0.23 42.00±0.21 51.14±0.23 46.59±0.20 36.69±0.21
L2R 47.13±0.13 40.69±0.62 47.26±0.72 33.14±0.60 44.03±0.70 33.06±0.60
Transductive Fine-tuning 55.36±0.73 54.08±0.47 45.21±0.54 55.34±0.45 51.12±0.65 47.42±0.82
NESTEDMAML-FO (ours) 54.76±1.19 45.86±1.19 43.55±1.20 57.00±1.20 55.18±1.16 48.52±1.21
NESTEDMAML (ours) 57.12±0.81 55.66±0.78 52.16±0.76 56.66±0.78 56.04±0.79 49.71±0.78

5-way 5-shot
Dout SVHN FashionMNIST
OOD Ratio 30% 60% 90% 30% 60% 90%
MAML-OOD-RM(Skyline) 61.89±0.69 61.31±0.75 57.79±0.69 59.83±0.76 61.31±0.75 59.61±0.75
MAML 58.90±0.71 58.66±0.75 49.94±0.69 59.06±0.68 59.25±0.73 49.84±0.69
MMAML 52.45±1.00 52.17±1.05 46.51±1.09 51.46±0.91 54.13±0.93 50.27±1.00
B-TAML 58.34±0.20 56.07±0.21 49.84±0.20 55.19±0.20 52.10±0.19 40.02±0.19
L2R 47.11±0.51 48.01±0.70 51.53±0.71 46.03±0.30 49.15±0.68 55.03±0.46
Transductive Fine-tuning 59.16±0.76 57.84±0.58 53.64±0.42 56.54±0.87 56.23±0.70 54.28±0.32
NESTEDMAML-FO (ours) 57.96±0.94 53.66±0.95 47.58±0.96 60.59±0.99 60.55±0.95 49.23±0.98
NESTEDMAML (ours) 60.76±0.70 60.53±0.71 57.88±0.70 60.41±0.72 60.54±0.72 57.95±0.71

Table 2: Few-shot classification accuracies for the OOD experiment on various evaluation setups. mini-Imagenet is used as an
in-distribution dataset (Din) for all experiments.

and Levine 2017) to do few-shot learning to evaluate both
the task-level and the instance-level weighting schemes. In
addition, a synthetic regression experiment is conducted for
the task-level weighting scheme as well. Due to the space
limitation, we list synthetic regression experiments and de-
tailed experimental settings in Appendix D. We performed
all the experiments using PyTorch, and the code is available
at https://github.com/Hugo101/NestedMAML.

Datasets. We use mini-ImageNet (Ravi and Larochelle
2016), SVHN (Netzer et al. 2011), FashionMNIST (Xiao,
Rasul, and Vollgraf 2017) datasets in our experiments. For
the task-level weighting scheme, mini-ImageNet is consid-
ered as the ID tasks source (Din). Both the SVHN and
the FashionMNIST datasets are used as OOD tasks source
(Dout) for mini-ImageNet. For instance-level weighting,
mini-ImageNet is considered with corrupted labels. Addi-
tional details about datasets are given in Appendix D.2.

Task-level Weighting for OOD Tasks
Settings. We implement image classification experiments in
5-way, 3-shot (5-shot) settings. And we use a model with
similar backbone architecture given in (Vinyals et al. 2016;
Finn, Abbeel, and Levine 2017) for all baselines. We consider
a total of 20,000 training tasks containing both ID and OOD
tasks where the split of ID and OOD tasks is determined by
OOD ratio(0.3, 0.6, and 0.9 in this setting). At each iteration,
ID tasks and OOD tasks will be sampled according to the
OOD ratio. We sample the ID tasks (meta-training, meta-
validation, and meta-test) from the mini-ImageNet dataset
and sample OOD tasks from the SVHN or the FashionM-
NIST dataset. We process all images to be of size 84×84×3.
As mentioned before, in the task-level weighting, all the data
instances in a task share the same weight, reducing the weight
hyper-parameters count. To further reduce them, we use the
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Figure 3: Task weight distribution under 90% ratio (SVHN).

K-means clustering method to cluster the tasks and assign a
single weight value to all the same cluster tasks.

Baselines. In addition to MAML, we have MAML-OOD-
RM which basically removes the OOD tasks during meta-
training and hence is a skyline to our model. MMAML (Vuo-
rio et al. 2019) leverages the strengths of meta-learners by
identifying the mode of the task distribution and modulating
the meta-learned prior in the parameter space. B-TAML (Lee
et al. 2020) uses relocated initial parameters for new arriv-
ing tasks to handle OOD tasks. We adapted L2R (Ren et al.
2018) to assign weights for different tasks and optimize these
weights through stochastic gradient descent. We consider
Transductive Fine-tuning (Dhillon et al. 2019) as a base-
line where we finetune the parameters of the model that is
obtained by adding a new classifier on top of a pre-trained
deep network, which is pre-trained on support and query sets
of the meta-training set, using the meta-test set’s support and
unlabeled query set.

Results in Table 2 show that NESTEDMAML significantly
outperforms all baselines and achieves performance com-
petitive to the skyline method (MAML-OOD-RM) in the
experiment of SVHN as OOD. For FashionMNIST OOD,
NESTEDMAML still outperforms all baseline techniques
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5-way 3-shot 5-way 5-shot
Noise Ratio 20% 30% 50% 20% 30% 50%

MAML-Noise-RM 60.2±0.02 59.35±0.01 58.21±0.71 61.2±0.21 60.3±0.32 59.1±0.68

MAML 54.8±0.64 53.9±1.10 51.8±0.12 59.2±0.28 57.6±0.36 53.5±0.48

NESTEDMAML (ours) 55.24±0.72 54.7±1.20 53.68±0.21 59.6±0.54 58.16±0.87 55.61±1.32

Table 3: Test accuracies on mini-Imagenet with 20%, 30%, and 50% flipped noisy labels during the meta-training phase.
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Figure 4: Weights trend as the iterations progress for 30%
SVHN OOD experiment

for 60% and 90% ratio. For 30% ratio, the first-order ap-
proximation, NESTEDMAML-FO, has the best accuracy,
and NESTEDMAML’s accuracy is also comparable. Besides,
the variance of NESTEDMAML is smaller than NESTED-
MAML-FO, which means NESTEDMAML is more stable
than NESTEDMAML-FO and NESTEDMAML still has the
best performance overall. From the perspective of training
time, we observed that NESTEDMAML takes 1.7× and
NESTEDMAML-FO takes 1.4× the time taken by MAML
for training. Figure 3 shows weight distribution for OOD
and ID tasks under 90% ratio when SVHN is viewed as the
OOD dataset for 5-way 3-shot (5-shot) settings after the meta-
training phase. Both settings show that OOD tasks have much
smaller weights than ID tasks: the weights belonging to OOD
tasks approximately range from 0 to 1; however, the assigned
weights for ID tasks are from 2 to 5, sometimes up to 7.

To showcase the weights adaptation process during the
training phase, we plot the weights trend as the iterations
progress under the 30% OOD ratio (SVHN) in Figure 4. The
Blue (Red) curve denotes the mean weights for ID (OOD)
tasks. The shade reflects the variance of weights. Results
show that the mean weight assigned to ID tasks would in-
crease as the iterations progress, whereas the weights as-
signed to OOD tasks remain close to zero, which validates
the effectiveness of the NESTEDMAML.

Instance-level Weighting For Noisy Labels
Similar to OOD experiments, we implement 5-way 3-shot
(5-shot) experiments to evaluate the instance-level weighting
scheme. We conduct experiments on noisy labels generated
by randomly corrupting the original labels in mini-ImageNet.
Specifically, different percentages (20%,30%, 50%) of train-
ing samples are selected randomly to flip their labels to sim-
ulate the noisy corrupted samples. Intuitively, a deep model
robust to noise tries to ignore the data with noisy labels.
Note that data containing noisy labels only exist in the meta-
training stage. Hyper-parameters are shown in Appendix D.2.

Baselines. We compare our NESTEDMAML with the fol-
lowing baselines: (1) MAML-Noise-RM serves as a skyline.
It is simply modified from MAML, and we manually fix zero
weights to instances with noisy labels. (2) MAML.
Results in Table 3 show that NESTEDMAML performs bet-
ter than MAML with high accuracies. Furthermore, to circum-
vent overfitting and reduce computational complexity due
to the weight matrix’s high dimension, we group instance
weights with 200 clusters by K-means, where instances in
each cluster share the same weight initialized at 0.005.

Sensitivity Analysis
We show an ablation study to determine how the number of
hyper-parameters and meta-validation sets’ size can affect the
NESTEDMAML algorithm’s performance in Appendix D.2.

5-Way 1-Shot Experiment
We show 5-way 1-shot experiments for two OOD datasets
for 30%, 60% in Table 7 in Appendix(using the same hy-
perparameters). The results show that NESTEDMAML still
outperforms MAML by around 2%.

Conclusion
We propose a novel robust meta-learning algorithm for
reweighting tasks/instances of corrupted data in the meta-
training phase. Our method is model-agnostic, can be directly
applied to any deep learning architecture in an end-to-end
manner. To the best of our knowledge, NESTEDMAML is
the first algorithm to solve a nested bi-level optimization
problem in an online manner with a convergence result. Fi-
nally, empirical evaluation results in OOD task and noisy
label scenarios show that NESTEDMAML outperforms state-
of-the-art meta-learning methods by efficiently mitigating the
effects of unwanted instances or tasks.
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