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Abstract

Neural networks have a bias towards low frequency func-
tions. This spectral bias has been the subject of several previ-
ous studies, both empirical and theoretical. Here we present
a computable definition of the spectral bias based on a de-
composition of the reconstruction error into a low and a high
frequency component. The distinction between low and high
frequencies is made in a way that allows for easy interpreta-
tion of the spectral bias. Furthermore, we present two meth-
ods for estimating the spectral bias. Method 1 relies on the
use of the discrete Fourier transform to explicitly estimate
the Fourier spectrum of the prediction residual, and Method
2 uses convolution to extract the low frequency components,
where the convolution integral is estimated by Monte Carlo
methods. The spectral bias depends on the distribution of the
data, which is approximated with kernel density estimation
when unknown. We devise a set of numerical experiments
that confirm that low frequencies are learned first, a behavior
quantified by our definition.

Introduction
Neural networks (NN) have been observed to perform ex-
ceptionally well on a large set of machine learning problems.
However, all aspects of their convergence are not completely
understood. One example of this knowledge gap resides in
the frequency domain. The NNs have been seen to earlier
in training better approximate low frequency functions than
high frequency ones (Basri et al. 2019). In other words, the
NNs seem to learn the low frequency components of the
target function before it finds the high frequencies, which
is sometimes referred to as the spectral bias of neural net-
works (Rahaman et al. 2019). With a computable definition
of the spectral bias the phenomenon can be measured quan-
titatively, and we hope to gain insights on the behavior of
network optimization.

Our Contribution
Our main contribution is a computable definition of the spec-
tral bias in function reconstruction problems. The frequency
domain is split into high and low frequencies by a cut-off
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frequency ω0, and we denote the corresponding NN recon-
struction error contributions as Elow and Ehigh and refer to
them as the frequency errors. The spectral bias is defined as
the quotient SB = (Ehigh−Elow)/(Ehigh + Elow). The cut-
off frequency is defined such that half the variance of the
target function is comprised of low frequencies.

Two methods for computing the spectral bias are pre-
sented. In Method 1 we estimate the Fourier transform of
the difference between the target and the output of the NN
with the discrete Fourier transform. The frequency errors
are then estimated with a simple quadrature rule. Method
2 avoids computation of the Fourier transform. It relies on
convolution and Monte Carlo quadrature for estimation of
the frequency errors.

To compute the spectral bias we need an expression for
the density of the data. In cases where the density is not
known explicitly, we estimate it with kernel density estima-
tion. We compute the spectral bias in a number of experi-
ments, and our results are in line with previous work in that
low frequencies are learned first.

Related Work
Rahaman et al. (2019) use Fourier analysis on ReLU NNs
and perform experiments with both synthetic and real-world
data to show that NNs have a spectral bias. They highlight
the spectral bias by for example studying how different fre-
quencies of noise affect the accuracy on the MNIST clas-
sification problem, and conclude that the networks’ perfor-
mance is more sensitive to low frequency noise than high
frequency noise.

Basri et al. (2019) use harmonic analysis to show that neu-
ral networks learn high frequency functions at a lower rate
than low frequency functions. Cao et al. (2021) show, us-
ing the neural tangent kernel (NTK), that the lower spherical
harmonics are more easily captured when learning data with
uniform distributions. Basri et al. (2020) also study the NTK,
and show that the convergence rate depends on the density of
the data. Zhang, Xiong, and Wu (2021) discuss the relation
between the spectral bias, generalization, and memorization
of NNs. To study the spectrum of the NN for high dimen-
sional targets they introduce a metric based on computing
local low dimensional discrete Fourier transforms, instead
of the expensive d- dimensional Fourier transform.

A sequence of publications Xu (2018, 2020); Xu, Zhang,
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and Xiao (2019); Luo et al. (2019); Xu and Zhou (2021) dis-
cuss the spectral bias while referring to it as the Frequency
Principle. In Xu, Zhang, and Xiao (2019); Xu (2018) the er-
rors of the network prediction on certain frequency indices
is compared, showing that higher frequencies have slower
convergence compared to lower frequencies. Xu (2020) in-
troduces ways to measure the effect of the frequency princi-
ple, using one method based on projection onto basis func-
tions, and one using convolution. (Xu and Zhou 2021) stud-
ies the frequency principle in deep NNs, where they find that
deeper networks may be more biased to learning low fre-
quencies. Luo et al. (2019) develop convergence bounds for
low and high frequencies at different stages of training. The
idea behind their way to compute errors for low frequency
components of a NN prediction using convolution is similar
to Method 2 presented in our work. The main differences are
that: We give a definition of the spectral bias in terms of the
error decomposition that is described by a single value. Our
definition of the spectral bias depends on the distribution of
the data, thus connecting the definition of the bias with the
loss function. Finally we present a method for choosing the
cutoff frequency that enables a comparison of the frequency
errors across different examples.

Shallow neural networks with trigonometric activation are
an interesting case to study in this context since their poten-
tial to approximate certain frequencies can directly be in-
ferred through the distribution of the network weights. Such
NNs have been studied by Kammonen et al. (2020). Their
main contribution is a novel training algorithm of shallow
neural networks based on an adaptive Metropolis sampling
algorithm. The authors also show that in training shallow
trigonometric networks on high frequency target functions
with standard optimization techniques like SGD, many more
iterations are required to learn the high frequency content, in
comparison to the low frequency content, of the target func-
tion.

Notation and Definitions
Problem Setting
We focus on function reconstruction, a form of supervised
learning. We denote the neural network by β, which we train
on a training set T = {(xi, yi)}Ni=0, consisting of samples
(x, y) ∈ Rd × Rm, where x are inputs with corresponding
outputs y. The data points xi are assumed to be i.i.d. drawn
from a probability density p(x), and the outputs are gener-
ated as evaluations of an unknown target function, y = f(x).
For clarity of exposition, y is assumed without noise. This
report will exclusively study fully connected feed-forward
networks.

Fourier Transform
The Fourier transform plays a central role in this work. It is
defined as f̂(ω) =

∫
Rd f(x)e−iω·xdx, with the correspond-

ing inverse transform f(x) = 1
(2π)d

∫
Rd f̂(ω)eiω·xdω.

Quality of Fit
We use fraction of variance unexplained, FVU, to measure
the quality of fit. It is defined as the variance of the resid-

ual r(x) = f(x) − β(x) of the true target value f(x) and
the networks approximation β(x), divided by the variance
of f(x):

FVU =
Var(r(x))

Var(f(x))
=

Ex[(r(x)− Ex[r(x)])2]

Ex[(f(x)− Ex[f(x)])2]
, (1)

where Ex[f(x)] =
∫
Rd f(x)p(x)dx.

Variance
For a function f and a random variable x ∈ Rd, we intro-
duce the notation

fp(x) =
√
p(x) (f(x)− Ex[f(x)]) , (2)

where p is the density of x. With (2) and Plancherel’s the-
orem the variance of f can be expressed in the following
ways

Var(f(x)) =

∫
Rd

p(x)(f(x)− Ex[f(x)])2dx (3)

=

∫
Rd

fp(x)2dx (4)

=
1

(2π)d

∫
Rd

|f̂p(ω)|2dω. (5)

Given samples f(xi), i = 1, . . . , N , the variance can be
approximated by Monte Carlo integration as

Var(f(x)) ≈ 1

N

N∑
i=1

f(xi)−
1

N

N∑
j=1

f(xj)

2

. (6)

Definition of the Spectral Bias
This section presents the way we define the spectral bias.
In order to evaluate the NNs performance in the Fourier do-
main, the idea, similar to the approach taken in e.g. (Xu and
Zhou 2021; Xu 2020), is to decompose the Fourier domain
into two parts, corresponding to high and low frequencies
respectively.

To get a mathematical description of the errors in the fre-
quency domain, we take the FVU as the starting point. Using
the integral definition of the expected value, the notation in-
troduced in (2), and Plancherel’s theorem results in (7)

FVU =

∫
Rd rp(x)2dx

Var(f(x))
=

∫
Rd |r̂p(ω)|2dω

(2π)dVar(f(x))
. (7)

To compare how different frequencies contribute to the error
in the spatial domain, the frequency domain is split into low
and high frequencies, Ωlow and Ωhigh, by a cutoff frequency
ω0. The split is done via the max norm | · |∞ as:

Ωlow = {ω ∈ Rd : |ω|∞ ≤ ω0},
Ωhigh = {ω ∈ Rd : |ω|∞ > ω0}.

(8)

In formulas, the error contributions are defined as

FVU =

∫
Ωlow
|r̂p(ω)|2dω

(2π)dVar(f(x))︸ ︷︷ ︸
Low frequency error, Elow

+

∫
Ωhigh

|r̂p(ω)|2dω
(2π)dVar(f(x))

.︸ ︷︷ ︸
High Frequency error, Ehigh

(9)
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The quantities Elow and Ehigh are referred to as the fre-
quency errors. The cutoff frequency ω0 is defined such that
Ωlow and Ωhigh contribute equal amounts to the total vari-
ance, i.e.,∫

Ωlow

|f̂p(ω)|2dω =

∫
Ωhigh

|f̂p(ω)|2dω. (10)

With the cutoff frequency and frequency errors intro-
duced, we now propose a definition for the spectral bias.
Definition 1 The spectral bias is defined as the quotient

SB =
Ehigh − Elow
Elow + Ehigh

=
Ehigh − Elow

FVU
, (11)

with the quantities Elow and Ehigh as defined in (9) computed
using ω0 such that (10) holds.

The spectral bias is zero if the neural network performs as
well for low frequencies as it does for high frequencies. If
that is the case, we say that the NN is spectrally unbiased. If
the neural network prediction has a small error for the low
frequency components in comparison to the high frequency
components, i.e., Elow � Ehigh, then SB ≈ 1, we say that
the neural network has large spectral bias.

The spectral bias has in earlier work mostly been studied
in the context of neural networks. However, the spectral bias
as defined in Definition 1 can be used as a measure in any
function reconstruction problem.

Computing the Spectral Bias
In this section we present two methods for estimating the
spectral bias.

Method 1
Method 1 relies on the discrete Fourier transform (DFT) to
estimate the spectral bias as defined in (11). To compute the
spectral bias with Method 1 we need samples of the tar-
get function on an equidistant grid. This section presents
Method 1 for dimension d = 1, and later comments on the
use in higher dimension.

First, we need to establish how the DFT relates to the
Fourier transform. Assume we are given N equidistant sam-
ples {g[n]}N−1

n=0 of a function g = g(x), with g[n] = g(xn),
where xn = ∆x(n −N/2) for some spatial increment ∆x,
the DFT of {g[n]}N−1

n=0 for k = −N/2, . . . , N/2 − 1 is de-
fined by

DFT(g)[k] =
N−1∑
n=0

g[n]e−i2πkn/N , (12)

with frequency resolution ∆ω = 2π
N∆x .

The Fourier transform of g(x) evaluated at k∆ω, for k =
−N/2, . . . , N/2−1, is approximated by a left Riemann sum
as

ĝ(k∆ω) =

∫
R
g(x)e−ik∆ωxdx (13)

≈
N−1∑
n=0

g[n]e−ik2π(n−N/2)/N∆x. (14)

Comparing (12) and (14), the DFT scaled by ∆x is a phase
shifted first order approximation of the Fourier transform.
That is, the Fourier transform is approximated at equidistant
frequencies by the DFT as

ĝ(k∆ω) ≈ DFT(g)[k]eikπ∆x. (15)

Recall ω0 defined by (10). With (15) we get f̂p(k∆ω) ≈
DFT(fp)[k]eikπ∆x. Defining Ω = [−N2 , . . . , (N2 − 1)∆ω],
Ω′low = Ω ∩Ωlow and Ω′high = Ω ∩Ωhigh, we approximate
(10) with Riemann sums, and find ω0 by solving

min
ω0∈Ω,
ω0≥0

∣∣∣∣∣∣
∑
Ω′

low

|Fp[k]∆x|2∆ω −
∑

Ω′
high

|Fp[k]∆x|2∆ω

∣∣∣∣∣∣ , (16)

where Fp[k] = DFT(fp)[k]eikπ . The low frequency error
defined in (9) is estimated through

Elow ≈
∑

Ω′
low
|Rp[k]∆x|2∆ω∑

Ω |Fp[k]∆x|2∆ω
, (17)

where Rp[k] = DFT(rp)[k]eikπ , and the variance as in (5)
has been approximated by a Riemann sum.

Method 1 of estimating the spectral bias is defined as
computing (11) using ω0 from (16), Elow from (17) and
Ehigh = FVU− Elow. Using a fast Fourier transform (FFT)
enables cheap computation of the DFT and is the reason
we require an equidistant grid. This results in a computa-
tional cost of O(N log(N)). In higher dimensions keep-
ing the same resolution in each direction results in a cost
ofO(Nd log(Nd)), which quickly becomes insurmountable
for large d. Two severe drawbacks with Method 1 are the re-
quirement of data availability on an equidistant grid which
is seldom the case, and the large computational cost for
high dimensional targets. With the aim to alleviate these two
shortcomings Method 2 is now presented.

Method 2
Method 2 extracts the low frequency error in (9) by convo-
lution with the sinc function, which in the Fourier domain
corresponds to multiplication with the indicator function
1Ωlow

= 1Ωlow
(ω). Integrals are approximated with Monte

Carlo integration. This enables estimation of the spectral
bias without explicitly computing the frequency spectrum,
keeping all computations in the spatial domain and on arbi-
trary densities. We now present how to compute the spectral
bias with Method 2.

Fix some ω0. As in (9), the variance of a function f can
in the Fourier domain be decomposed into

Var(f) =
1

(2π)d

∫
Ωlow

|f̂p(ω)|2dω

+
1

(2π)d

∫
Ωhigh

|f̂p(ω)|2dω.
(18)

The first integral can be expressed as
1

(2π)d

∫
Ωlow

|f̂p(ω)|2dω =
1

(2π)d

∫
Rd

1Ωlow
|f̂p(ω)|2dw

(19)

=

∫
Rd

(fp(x) ∗ ϕ(x))2dx, (20)
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where ∗ denotes the convolution operator, and ϕ is the in-
verse Fourier transform of the indicator function. The con-
volution in (20) is approximated by Monte Carlo integration:

(fp(x) ∗ ϕ(x))
2

=

(∫
Rd

fp(y)ϕ(x− y)dy

)2

(21)

≈
(

1

N

∑
i

fp(xi)

p(xi)
ϕ(x− xi)

)2

(22)

=
1

N2

∑
i,j

fp(xi)fp(xj)

p(xi)p(xj)
ϕ(x− xi)ϕ(x− xj). (23)

Inserting (23) into (20), we obtain∫
Rd

(fp(x) ∗ ϕ(x))2dx ≈

1

N2

∑
i,j

fp(xi)fp(xj)

p(xi)p(xj)

∫
Rd

ϕ(x− xi)ϕ(x− xj)dx.
(24)

Using the time shift property, and recalling that ϕ is the
sinc function, we have∫

Rd

ϕ(x− xi)ϕ(x− xj)dx =
ωd0
πd

d∏
k=1

sinc(ω0(xkj − xki )),

where the sinc function is defined as

sinc(x) =

{
sin(x)
x ifx 6= 0,

1 ifx = 0.

Thus, (19) is approximated as
1

(2π)d

∫
Ωlow

|f̂p(ω)|2dω ≈

1

N2

∑
i,j

fp(xi)fp(xj)

p(xi)p(xj)

ωd0
πd

d∏
k=1

sinc(ω0(xkj − xki )).

(25)

Recalling the cutoff frequency as defined in (10), we seek
ω0 such that

Var(f) =
2

(2π)d

∫
Ωlow

|f̂p(ω)|2dω. (26)

From the approximations in (25) and (6), we solve for ω0

such that

2

N2

∑
i,j

fp(xi)fp(xj)

p(xi)p(xj)

(ω0

π

)d d∏
k=1

sinc(ω0(xkj − xki ))

− 1

N

N∑
i=1

f(xi)−
1

N

N∑
j=1

f(xj)

2

= 0. (27)

With the definition of the frequency errors in (9) the approx-
imations (25) and (6) with ω0 from (27) enables the estima-
tion of Elow as

Elow ≈
∑
i,j

rp(xi)rp(xj)
p(xi)p(xj)

(
ω0

π

)d∏d
k=1 sinc(ω0(xkj − xki ))

N
∑N
i=1

(
f(xi)− 1

N

∑N
j=1 f(xj)

)2 .

(28)

The corresponding high frequency error is estimated as

Ehigh = FVU− Elow. (29)

We define Method 2 of estimating the spectral bias as com-
puting (11) using ω0 from (27), and Elow and Ehigh from
(28) and (29). Compared with Method 1, Method 2 is more
efficient in high dimension. The use of Monte Carlo integra-
tion results in a complexity that only scales linearly with di-
mension, when estimating (28). It does however have a high
base complexity, the double sum in (28) yields a computa-
tional cost of O(N2).

Estimation of Data Density
Recall that both methods need access to the density function
p of the data to compute the spectral bias. In the coming syn-
thetic experiments, the exact form of the density is known.
This is not the case in general and for cases where the den-
sity is unknown it needs to be estimated. In one dimension
we use kernel density estimation (KDE). We use a Gaus-
sian kernel, which introduces the kernel bandwidth h as a
hyperparameter. The optimal bandwidth is in general non-
trivial to find, but for one dimensional normal distributions
with unknown parameters we follow Scott (1992) and esti-
mate the optimal bandwidth as h = 1.06σN−1/5, where σ
is the standard deviation of the data and N the number of
data points.

Numerical Experiments
This section presents numerical experiments on function re-
construction using neural network. Its purpose is threefold:
• to show examples of the spectral bias,
• show that the spectral bias as defined in Definition 1 can

quantify the behavior observed in the experiments,
• validate that the two methods produce similar results.

Implementation Details
The numerical experiments are done in Python 3.8.6, and all
neural networks used in this section are implemented in Ten-
sorflow 2.5.0, and are densely connected feed forward net-
works with ReLU activation. All hidden layers in the model
have the same number of nodes. The weights are initialized
with He-initialization (He et al. 2015). The models are all
trained to minimize the mean square error loss. Before the
models are trained, both the input x and output y of the train-
ing data are transformed such that they are component wise
demeaned and have unit variance.

Method 1 uses the FFT from the NumPy 1.19.5 library.
We use the secant method with initial guess (1,2) to solve
(27) for ω0 in Method 2. When the data has been sam-
pled from the standard normal distribution we have p(x) =

1√
2π
e−

x2

2 , and using KDE to estimate the density is done via
the KernelDensity function from the ScikitLearn library. The
experiments are performed on a Windows 10 Home desktop
with an Intel i7-10700K CPU @ 3.8 GHz, 48 GB of mem-
ory, and an Nvidia GeForce RTX 2070 GPU. The code that
reproduces the experiments can be found in the accompany-
ing code appendix.
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Figure 1: Experiment 1: Reconstructions of f1(x) made by a NN for an increasing number of epochs. The target function is
displayed in gray, and the network approximation β(x) in dashed black. The faster oscillations are learned later than the low
frequency components.

Experiment 1: Superposition of Sine Functions
Following (Basri et al. 2019) and (Rahaman et al. 2019) we
study a target function that is a sum of sine functions with
varying frequencies, f1(x) = sin(x) +

∑3
k=1 sin(10kx +

bk). The training set is given by T = {(xi, yi)}Ni=1, where
xi are 512 i.i.d. samples from U(−π, π) and y = f(x). The
phase shifts bk are sampled uniformly as bk ∼ U(0, 2π).
The NN has 5 layers with 64 nodes in each, trained with the
Adam optimizer (Kingma and Ba 2015), a batch size of 32,
and learning rate of 0.0005. The resulting NN prediction is
plotted after different number of epochs in Figure 1.

Experiment 2: High Frequency Target
While the target function used in Experiment 1 is good for
the purpose of visualizing the spectral bias, a target function
with a wide support in the Fourier domain is better suited
for quantitative analysis. The target function in the follow-
ing experiment is given by f2(x) = e−x

2/2Si(ax). Here
Si(ax) =

∫ ax
0

sin(t)
t dt denotes the sine integral. The sup-

port of the Fourier transform of f2 is determined by a. In
this experiment we let a = 100. We draw 212 i.i.d. points
from N (0, 1) to use as training data, and another 212 points
used as validation data and for estimating the spectral bias
with Method 2. Estimating the spectral bias with Method 1
requires an equidistant grid fine enough to resolve the fast
oscillations of the target, and wide enough to have a small
sampling frequency. We use 214 points on [−25π, 25π]. The
network has 5 layers with 64 nodes, is trained with the Adam
optimizer, a learning rate of 10−3, and a batch size of 32.
Figure 2 shows the FVU and the spectral bias estimated with
both methods. Both Method 1 and Method 2 produce almost
indistinguishable estimates of the spectral bias, which is ob-
served to be SB ≈ 0.7 throughout training.

Experiment 3: Image Regression
Another machine learning task where the spectral bias can
be visualized is image regression. The problem setup fol-
lows Tancik et al. (2020). A color image can be represented
with a 3-dimensional value corresponding to the image’s
RGB values at each pixel coordinate. The goal is for the neu-
ral network to predict the color in previously unseen coordi-

0 500 1000
Epochs

10−3

10−2

10−1
FV U

0 500 1000
Epochs

0.0

0.2

0.4

0.6

0.8

SB

Method 1

Method 2

Figure 2: Experiment 2: Resulting FVU and spectral bias
for a ReLU network trained to regress the target f2(x) using
Method 1 and Method 2 respectively. Both methods produce
similar results.

nates. Thus, this problem is a function reconstruction prob-
lem where we want to learn a function f : R2 7→ R3. Sharp
contrasts in the image correspond in the Fourier domain to
high frequencies. Thus, to attain a good approximation of
the image that retains the fine details, the NN must learn
the high frequency components of the image. We expect this
to be a hard task, given the observed results in Experiment
1 and 2. The image used in this experiment comes from
the DIV2K data set (Agustsson and Timofte 2017) used in
the NTIRE 2017 challenge on the SISR problem (Timofte
et al. 2017). To generate the data given an image, a cen-
tered crop of 512 × 512 pixels is extracted. The training
data is chosen as every other pixel in the cropped image,
and xi = [x1

i , x
2
i ]
> ∈ [0, 1] × [0, 1] are the coordinates of

pixel number i, and yi ∈ [0, 1]3 is a vector containing the
corresponding RGB values of the pixel.

The neural network has 8 layers, 128 nodes in each layer.
The network is trained with the Adam optimizer, a learning
rate of 10−3, and a batch size of one tenth of the training
set. The resulting network predictions are shown for an in-
creasing number of epochs in Figure 3. In this experiment
Method 1 is used to compute the spectral bias since the data
is given on an equidistant grid. Figure 4 shows the FVU and
spectral bias as a function of epochs. We observe an increas-
ing spectral bias, above 0.8 for the better part of the training.
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Ground Truth Epoch 200 Epoch 500 Epoch 2000 Epoch 5000

Figure 3: Experiment 3: Resulting model predictions of a densely connected ReLU network when applied to the task of image
regression. The leftmost image shows the target image used for generating the training data, and the subsequent images are the
prediction for an increasing amount of training epochs, the NN learns the full RGB representation, but is plotted in grayscale.
The spectral bias is visualized by the fact that sharp contrasts in the image are only found later in training.
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Figure 4: Experiment 3: Computed FVU and spectral bias
in image regression, both measures are computed on the
grayscale representation of the prediction. A moving aver-
age has been applied to the error quantities in post to pro-
duce easier visualized plots.

Experiment 4: Network Depth
Deeper neural networks have been observed to in general
perform better than shallow ones in terms of overall qual-
ity of fit. With the developed definition of the spectral bias
we can investigate how this improved performance is ex-
hibited in the Fourier domain. Four ReLU networks with
L = 1, 2, 4, 8 layers are trained on same data set as in Ex-
periment 2. In attempting to give a fair comparison, the total
number of nodes, i.e., the number of layers times the number
of nodes per layer is fixed to 1024. All NNs are trained with
SGD, a learning rate of 10−3, and batch size of 32. The re-
sulting FVU and spectral bias computed with Method 2 are
presented in Figure 5.

Experiment 5: Density Estimation
To show that we do not require the exact density p(x), we
compare the computed spectral bias when using the true den-
sity p(x), and when the density is approximated by KDE.
This experiment uses the same neural network and data set
as in Experiment 2, and the NN is trained with SGD with a
learning rate of 10−3. The KDE uses the Gaussian Kernel

0 500 1000
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L = 1
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L = 8

0 500 1000
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0.2

0.4

0.6
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Figure 5: Experiment 4: Resulting FVU and spectral bias
for NNs with varying number of layers L = 1, 2, 4, 8 when
learning f2(x).
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Figure 6: Experiment 5: FVU and spectral bias computed us-
ing Method 2 for a NN learning the target f2(x). The spec-
tral bias is computed using both the true density function
(Gaussian), and approximating it via kernel density estima-
tion (KDE).
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with a bandwidth of h = 1.06σN−1/5 ≈ 0.20. Figure 6
shows the resulting spectral bias computed with Method 2.

Discussion
We have in this work given a computable definition of the
spectral bias in function reconstruction problems, and two
methods for estimating the proposed definition. For clarity
of exposition, the data was assumed without noise. Neither
the definition of spectral bias nor the computational methods
presented depend on the no-noise assumption. Five experi-
ments are performed to validate the computational methods,
and to investigate the spectral bias.

The spectral bias indicates how well the model predicts
low frequency components of the target function in compar-
ison to high frequency components, with a value in [−1, 1].
A spectral bias of 0 indicates that the neural network pre-
dicts low and high frequencies with equal accuracy. A posi-
tive spectral bias implies that the error for the low frequen-
cies is smaller than for the high frequencies. For example,
SB = 0.8 means that Elow amounts to 10% of the to-
tal FVU, with Ehigh comprising the remaining 90%. Note
that the definition of spectral bias does not directly con-
sider the spectrum of the reconstructed function, it only de-
pends on the relative size of the error of the high and low
frequency components. All performed experiments show a
positive spectral bias throughout training, i.e., Ehigh is the
dominant term, which is in line with the results shown by
previous work where it has been concluded that lower fre-
quencies are learned first (Basri et al. 2019; Cao et al. 2021;
Rahaman et al. 2019; Xu 2020, 2018; Xu, Zhang, and Xiao
2019; Xu and Zhou 2021; Luo et al. 2019).

Both proposed estimation methods focus on computing
the low frequency error. Method 1 by directly approximat-
ing the Fourier transform via an FFT, and Riemann sums to
estimate Elow. Method 2 uses convolution with the Fourier
transform of the indicator function, and Monte Carlo inte-
gration to estimate Elow. Both methods have their respective
strengths and weaknesses. Directly computing the FFT as
in Method 1 makes the computational complexity increase
exponentially with the dimension as O(Nd log(Nd)) for a
d-dimensional cube with equal resolution ∆ω in each di-
rection. This makes Method 1 efficient for low dimensional
problems, but unfeasible for large d. Method 1 assumes ac-
cess to the target function on an equidistant grid, which is
not always available. Future work may study the use of non-
uniform DFTs. The integral estimation in Method 1 uses
truncation and Riemann quadrature which has an error pro-
portional to ∆ω.

Method 2 overcomes the need for an equidistant grid,
and the spectral bias can be computed on the training or
validation data regardless of density. It does not need to
tune the sampling frequency to attain a desired accuracy,
or to prevent aliasing errors. The complexity of Method 2
is O(dN2), which in dimension 1 is substantially larger
than for Method 1. However, because Method 2 uses Monte
Carlo integration, the complexity only scales linearly with d,
avoiding the curse of dimensionality observed for Method 1.
The Monte Carlo integration also introduces an approxima-

tion error proportional to N−1/2.

Both methods use the density p(x) explicitly. In cases
where p(x) is unknown it needs to be estimated, which in
general is a hard task. In this work we use KDE, which may
be insufficient for complicated densities. In such cases it is
a weakness that our analysis depends on estimation of p.

Qualitative illustrations of the spectral bias are given in
Experiment 1 and 3, both showing that the neural network
initially captures a smoothed-out version of the target func-
tion and requires many epochs before it learns the high fre-
quency components of the target. With our definition the
spectral bias can also be observed quantitatively. This is
done both for synthetic experiments on the sine integral tar-
get in Experiments 2,4, and 5, and on real world data in
the form of image regression in Experiment 3. Experiment 2
shows that the proposed methods of computing the spectral
bias produce almost identical results even when computed
on different sets of data, confirming that the two methods es-
timate the same quantity. In Figure 2 we see a spectral bias
of SB = 0.7, which means that Ehigh contributes to 85%
of the total FVU. Figure 4 shows that after 2000 epochs the
spectral bias for Experiment 3 surpasses 0.8, which can be
interpreted as Elow being approximately one order of mag-
nitude smaller than Ehigh. That is, the large spectral bias in-
dicates that the NN is more proficient in learning low fre-
quency components than high frequency components. A re-
sult that correlates well with Figure 3, where the details in
the image need many training iterations to be resolved. Ex-
periment 4 indicates that while the spectral bias is larger for
deeper neural networks, which is in line with conclusions
drawn by e.g. Xu and Zhou (2021), the ability to capture
high frequency content in an absolute sense is increased with
deeper networks signified by a smaller FVU for the deeper
networks. Experiment 5 shows only a marginal difference
when estimating the spectral bias with the true density, and
when using KDE to estimate the density. We conclude that
when the density is well behaved density, it is possible to es-
timate the spectral bias without direct access to the density.

The cutoff frequency is determined by letting the low fre-
quency components comprise half of the variance of the tar-
get. Reducing only one out of Elow and Ehigh will not yield
a good quality of fit. The numerical experiments show that
Ehigh is the dominating component in every case that has
been investigated. In other words, the NNs become biased
to learning low frequency content. This is observed in the
plots of the spectral bias, which is always greater than 0.
The spectral bias need not tend to 0 in order for the NN to
learn high frequencies. Indeed, in our Experiments it typ-
ically stabilizes for large epochs. A frequency is high if it
is larger than ω0, defined in (10) and otherwise low. A fre-
quency being high or low thus depends on both the target
function and on the distribution of the data.

Regularization of network weights is a technique used to
prevent overfitting, but will also produce more smooth pre-
dictions. One possible use of this work could be to shed light
on parameter regularization. A large spectral bias may indi-
cate that the regularization is too strict.
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