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Abstract

We empirically investigate the effect of class manifold en-
tanglement and the intrinsic and extrinsic dimensionality of
the data distribution on the sample complexity of supervised
classification with deep ReLU networks. We separate the ef-
fect of entanglement and intrinsic dimensionality and show
statistically for artificial and real-world image datasets that
the intrinsic dimensionality and the entanglement have an in-
terdependent effect on the sample complexity. Low levels of
entanglement lead to low increases of the sample complex-
ity when the intrinsic dimensionality is increased, while for
high levels of entanglement the impact of the intrinsic dimen-
sionality increases as well. Further, we show that in general
the sample complexity is primarily due to the entanglement
and only secondarily due to the intrinsic dimensionality of
the data distribution.

Introduction
It is a common assumption that distributions of natural data,
such as images, concentrate near or lie on low-dimensional
manifolds embedded in high-dimensional ambient spaces
(Goodfellow, Bengio, and Courville 2016). The dimension
of this manifold is the intrinsic dimensionality of the dis-
tribution and the dimension of the ambient space is the ex-
trinsic dimensionality. It has been shown theoretically that
the sample complexity of empirical risk minimization de-
pends on the curvature of the data manifold and the decision
boundary, and on the number of intrinsic dimensions, but
not on the number of extrinsic dimensions (Narayanan and
Niyogi 2009; Narayanan and Mitter 2010). Recently, Pope
et al. (Pope et al. 2021) provided empirical evidence that
real-world image distributions indeed have low intrinsic di-
mensionality and that the sample complexity for deep clas-
sifiers is positively correlated with the intrinsic and almost
independent of the extrinsic dimensionality.

The goal of this work is to further study the effects on the
sample complexity of deep classifiers, however, this time un-
der consideration of the entanglement of the class manifolds
(i.e. the curvature of the decision boundary). Intuitively, the
entanglement can be defined as the number of connected hy-
perplanes that are necessary to perfectly separate the classes.
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To the best of the authors’ knowledge this is the first empiri-
cal study that factors in the entanglement when studying the
sample complexity and systematically compares the effects
of intrinsic dimensionality and entanglement. We define the
sample complexity ς := Σ + I + E as a result of the entan-
glement Σ, the intrinsic dimensionality I and the extrinsic
dimensionality E and estimate via regression analysis which
of these properties is statistically the most influential one for
supervised classification with deep ReLU (Fukushima 1969;
Fukushima and Miyake 1982; Glorot, Bordes, and Bengio
2011) networks. We show that the entanglement has a sig-
nificantly larger effect on the sample complexity than the
intrinsic dimensionality and, more importantly, observe an
interdependence between these two factors. For low levels of
entanglement increasing the intrinsic dimensionality results
in equally low increases of the sample complexity while for
high levels of entanglement increases in the intrinsic dimen-
sionality lead to larger increases of the sample complexity.
In other words, the effect of the intrinsic dimensionality on
the sample complexity depends on the given distribution’s
level of entanglement. Thus, intrinsic dimensionality and en-
tanglement cannot be considered independently when study-
ing the sample complexity but have to be considered jointly.

Our results do not contradict but complement the find-
ings of Pope et al. (Pope et al. 2021). Pope et al.’s investi-
gation of the intrinsic dimensionality’s impact on the sam-
ple complexity is limited to several complex datasets: Im-
ageNet (Deng et al. 2009), CIFAR-10 (Krizhevsky, Hinton
et al. 2009) and FONTS (Stutz, Hein, and Schiele 2019).
Thus, their analysis only considers distributions with con-
stant and high levels of entanglement. In our study, on the
other hand, we regard the entanglement as another variable
that influences the sample complexity and include it in our
analysis as well.

The work is structured as follows. In Sections and we
describe the notation and related work. Section introduces
two simple measures for the entanglement. In Section we
demonstrate the aforementioned results first for artificial
datasets and then in Section for real-world image bench-
marks.

Notation
Throughout this work we consider l ∈ N+ samples x ∈
R1×E arranged in the matrix X ∈ Rl×E with labels y ∈
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{0, 1}. We assume that those samples concentrate near man-
ifolds M

(y=0)
samples ⊂ M

(y=0)
data and M

(y=1)
samples ⊂ M

(y=1)
data , where

M
(y=0)
data and M

(y=1)
data support the entire data distribution

p(xdata). A manifold M is a topological space that is locally
homeomorphic to a Euclidean space of dimension I, so for
every x ∈ M there exits an open set U , x ∈ U ⊂ M , that
is homeomorphic to an open set V ⊂ RI with homeomor-
phism ϕx : U → V . As such, the intrinsic dimensional-
ity can also be described as the dimensionality of the basis
that spans the tangent spaces TxM at points x ∈ M . The
dimensionality I of the aforementioned Euclidean space is
the intrinsic dimensionality of the manifold while E is the
dimension of the manifold’s ambient space, i.e. the extrinsic
dimensionality. For natural images, for example, the extrin-
sic dimensionality is the number of pixels and colour chan-
nels, while the intrinsic dimensions denote the distribution’s
factors of variation, i.e. those changes that do not alter the
semantics of a particular sample. These changes depend on
the considered distribution and can for example include rigid
transformations, changes in illumination or other changes in
the appearance of the objects.

Throughout this work we consider a binary classifier f :
RE → R2

+ which is either a support vector machine with
a linear kernel (Boser, Guyon, and Vapnik 1992), a fully-
connected or a convolutional neural network. The neural net-
works have ReLU activations and are trained with the Adam
optimizer (Kingma and Ba 2015).

Related Work
In the setting of statistical learning theory (Vapnik 1992)
the goal is to find a classifier f that minimizes the risk
R(f) := Ex∈p(xdata)[L(y, f(x))], where L is a suitable loss
function. The Bayes-classifier fBayes is defined as the classi-
fier with the minimum possible risk which parametrizes the
conditional distribution p(y|xdata). Since p(y|xdata) is gener-
ally unknown, the goal of learning is to find f that approx-
imates fBayes. The sample complexity of a hypothesis class
containing f is the number of train samples necessary to en-
sure a probably approximately correct (PAC) solution so a
solution such that |R(f) − R(fBayes)| < ϵ with probability
1− δ for ϵ, δ ∈ R.

Narayanan et al. (Narayanan and Niyogi 2009) studied the
sample complexity of empirical risk minimization for binary
classification from a theoretical point of view. They prove
bounds on the sample complexity that depend on the curva-
ture of the data manifold Mdata on which the data distribution
pdata(x) is supported, the curvature of the decision boundary
separating M

(y=0)
data and M

(y=1)
data and the intrinsic dimension-

ality of Mdata. Additionally, they show that the extrinsic di-
mensionality does not have an influence on the sample com-
plexity. Recently, Pope et al. (Pope et al. 2021) confirmed
some of these findings for deep classifiers by showing em-
pirically that the sample complexity is well correlated with
the intrinsic dimensionality of modern image benchmarks
and almost independent of the extrinsic dimensionality. An-
suini et al. (Ansuini et al. 2019) on the other hand studied the
intrinsic dimensionality of the data manifold as it is propa-
gated through the network’s layers. They find a characteris-

tic increase followed by a progressive decrease of the intrin-
sic dimensionality and that the intrinsic dimensionality in
the last layer is negatively correlated with the generalization
error. Brahma et al. (Brahma, Wu, and She 2015) studied
the ability of deep belief networks to disentangle and lin-
earise manifolds. They showed that deep architectures pro-
gressively linearise and disentangle manifolds and that the
presence of extrinsic dimensions that are not predictive of
the label can hinder their ability to do so.

Zhang et al. (Zhang et al. 2016), show empirically that
neural networks, despite having perfect sample expressiv-
ity, generalize well which complicates their analysis by
tools from learning theory like the VC-dimension (Har-
vey, Liaw, and Mehrabian 2017). From a theoretical per-
spective the generalization capabilities have been studied
by several authors (Bartlett 1998; Allen-Zhu, Li, and Liang
2019). Neyshabur et al. (Neyshabur, Bhojanapalli, and Sre-
bro 2018) and Bartlett et al. (Bartlett, Foster, and Telgarsky
2017) provide bounds based on the spectral norms and Lip-
schitz constant of the networks. Golowich et al. (Golowich,
Rakhlin, and Shamir 2018) bound the Rademacher complex-
ity of networks independently of architectural parameters.

Our Work Our work is orthogonal to the aforementioned
works as we study the sample complexity not from a model-
perspective but from a data-perspective. Since deep classi-
fiers do not always behave like the predictions made by clas-
sical statistical learning theory (e.g., (Zhang et al. 2016; Na-
garajan and Kolter 2019)) we are interested, whether classi-
cal bounds on the sample complexity of empirical risk mini-
mization based on the distribution’s geometry hold for deep
classifiers. We are especially interested what influence the
entanglement of class manifolds has on classifiers since this
problem has not been independently studied despite its ob-
vious importance for learning

Entanglement of Class Manifolds
Entanglement Measures
The entanglement between two manifolds can be defined
as the number of connected (E − 1)-dimensional hyper-
planes needed to perfectly separate the classes. In a two-
dimensional ambient space, for example, this corresponds
to the number of connected line segments. If two classes are
linearly separable, only a single hyperplane is required. Per-
fect separation is, by definition, given by the Bayes classi-
fier fBayes. Thus, its decision boundary provides the measure
of the entanglement between the two classes. Since fBayes
is unknown, we approximate it with the classifier f . This
approximation is a lower bound of the true entanglement
between classes. Since the available samples X l×E are in
reality only a small subset of the data distribution pdata(x),
they might not be an accurate representation of the topology
of the data distribution. If p(xdata) is not uniform over Mdata
then, in the worst case, there could be two easily separable
modes while the low-density regions are highly entangled.
Then, our samples are dominated by the ones coming from
the high-density regions and our estimation of the entangle-
ment via investigation of the decision boundary fd of f will
underestimate the true entanglement.
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Knowing the actual number of connected line segments
necessary to separate the classes implies the availability of
a perfect classifier. Thus, computing the absolute level of
entanglement for real-world distributions is, from a learn-
ing perspective, just as difficult as finding this perfect clas-
sifier. In this study, however, we do not require the absolute
values of entanglement but only the relative levels. In other
words, an ordinal measure that allows to rank different dis-
tributions and their subsets according to their entanglement
is sufficient for our study. We use the two methods described
below.

Linear Support Vector Classifier (LSVC) If f is a sup-
port vector classifier with a linear kernel, its accuracy can be
used as a measure for the entanglement between two mani-
folds when compared for different distributions. The poorer
the approximation of a decision boundary by a single hyper-
plane gets, the worse the LSVC’s accuracy is if the classes
have equal number of samples. Using the LSVC’s accuracy
this way, we can interpret it as a simple global measure for
the entanglement of two manifolds.

Spectrum of the Decision Function’s Hessian For the
second measure, we consider a neural network classifier f
with decision function fd, where fd(x̄) = 0 for all x̄. As-
suming a square approximation of the decision function, the
second-order Taylor approximation of fd around x̄ yields

Tfd(x) = fd(x̄) + (x− x̄)TJfd(x̄)+

1

2!
(x− x̄)THfd(x̄)(x− x̄)

(1)

where Jfd(x̄) is the Jacobian and Hfd(x̄) is the Hessian of
fd evaluated at x̄. Determining the curvature of fd at x̄ where
fd(x̄) = 0 comes down to investigating the spectrum of the
Hessian Hfd(x̄). In contrast to the LSVC’s accuracy this
measure of entanglement is local. It quantifies how much
the decision boundary around an x̄ differs from a linear one.

To compute those x̄ for which fd(x̄) = 0 we sample two
points of different classes, x(y=0) and x(y=1), and solve

x̄ = wx(y=0) + (1− w)x(y=1) (2)

for w ∈ [0, 1]. This procedure ensures that all points sam-
pled from the decision boundary are from within the convex
hull of the data distribution and therefore separate the two
supports, M (y=0)

samples and M
(y=1)
samples, where they are closest.

Entanglement of Common Image Benchmarks
In this section we test the two entanglement measures in-
troduced in the previous section on the real-world image
benchmarks MNIST (LeCun et al. 1990), FASHION (Xiao,
Rasul, and Vollgraf 2017), SVHN (Netzer et al. 2011) and
CIFAR-10. It is common knowledge that these image bench-
marks vary significantly in their entanglement. MNIST, for
example, can be solved with high accuracy by a linear clas-
sifier while SVHN and CIFAR-10 cannot. In this section we
measure the entanglement of the aforementioned datasets by
choosing a representative binary classification problem con-
sisting of two semantically similar classes. The intuition be-
hind this is that those classes lie closer in pixel space (and

Figure 1: LSVC accuracy for similar classes.

possibly also in an arbitrary representation space) and so
might also exhibit greater entanglement (in the presence of
nuisance perturbations) than classes that are visually very
different. Thus, choosing a representative pair of similar
classes for each dataset provides an estimate of the entan-
glement for the entire dataset. For MNIST and SVHN the
similar classes are the digits eight and nine, for FASHION
the classes ankle boot and sneaker and for CIFAR-10 the
classes cat and dog. To measure the entanglement we bal-
ance the classes for the LSVC to make comparisons between
datasets possible. We randomly sample a certain fraction of
the original binary datasets and compute the LSVC’s accu-
racy on those smaller ones as well as on the complete dataset
(Fraction = 1). In Figure 1 we display the results for the sim-
ilar class pair. Unsurprisingly, we observe that the perceived
difficulty of these image benchmarks is aligned with this en-
tanglement measure. It is, however, noteworthy that we have
to remove a significant fraction of samples of the complex
benchmarks SVHN and CIFAR-10 before the LSVC’s accu-
racy improves to levels of that for MNIST and FASHION.
This means that a significant amount of samples lie near the
decision boundary for those chosen classes.

The Hessian entanglement measure gives the same re-
sult. We train the neural network classifier f on the class
pairs mentioned above and sample 500 points {x̄i}500i=1 on
its decision boundary fd for which we compute the Hes-
sian Hfd(x̄i). In Figure 2 we display the mean of the or-
dered singular values of those Hessians. We observe that
more complex image datasets, like CIFAR-10 and SVHN,
have a higher spectrum and therefore exhibit larger entangle-
ment. Since these results confirm common knowledge and
the global LSVC and the local Hessian measure give the
same results, we provide only the LSVC’s accuracy in our
further study.

Intrinsic Dimensionality and Entanglement
When sorted increasingly according to their entanglement
the previously used benchmarks exhibit the following order:
MNIST < FASHION < SVHN < CIFAR-10 (see Figures
1 and 2). Pope et al. (Pope et al. 2021) report the same order
when sorting these benchmarks according to their intrinsic
dimensionality. Thus, image datasets with higher intrinsic
dimensionality also exhibit higher entanglement.

This observation is noteworthy because in Sections and
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Figure 2: Hessian spectrum for similar classes.

we demonstrate through extensive experimentation on artifi-
cial and real-world datasets that the entanglement is the lead-
ing contributor to the sample complexity and that the effect
of the intrinsic dimensionality depends on the given level of
entanglement. Thus, we hypothesize that the reported com-
plexity of these datasets might by primarily due to their en-
tanglement and not their intrinsic dimensionality.

Sample Complexity of Artificial Datasets
In this section we investigate the effect that the entangle-
ment, the intrinsic and the extrinsic dimensionality have on
the sample complexity for datasets for which we can control
all these parameters independently of each other.

Datasets

Archimedean Spiral Dataset The first artificial dataset
consists of one-dimensional Archimedean spirals embedded
in a two-dimensional ambient space. In Cartesian coordi-
nates these spirals can be described as

A(ΣArch) = (ΣArch cos ΣArch,ΣArch sin ΣArch) (3)

where ΣArch ∈ R≥1 is the rotation angle (see Figure 3a for
illustration).

Step-function Dataset The second artificial dataset is di-
rectly described by its decision boundary which has the form
of a step-function. It is defined as

S(x) = ⌈x⌉, x ∈ [1,ΣStep] (4)

where ⌈·⌉ denotes the floor function and ΣStep ∈ N+ is the
maximum value of x (see Figure 3b for illustration).

Changing the Entanglement When we consider two in-
tertwined Archimedean spirals, each generated according to
Equation 3 for a common ΣArch, approximating the deci-
sion boundary requires increasingly more linear segments.
Therefore, we use the rotation angle ΣArch as a proxy for the
entanglement of the two spirals. For the step-function the
maximum value ΣStep of x describes the (2ΣStep − 1) con-
nected line segments that make up the decision boundary,
therefore, ΣStep is the proxy for the entanglement.

Increasing the Intrinsic and Extrinsic Dimensionality
The original Archimedean spiral dataset is a one-manifold
embedded in a two-dimensional ambient space, so it has in-
trinsic dimensionality Iorg = 1 and extrinsic dimensionality
Eorg = 2. The data separated by the step-functions is a two-
manifold embedded in a two-dimensional ambient space as
well, so Iorg = 2 and Eorg = 2. We scale all datasets so that
they lie within the unit cube [0, 1]E .

To increase the intrinsic and extrinsic dimensionality of
the spiral and the step-function dataset, the original data ma-
trix X ∈ Rl×2 generated for some ΣArch or ΣStep is aug-
mented by a random matrix I ∈ U l×Iadd

[0,1] , with entries dis-
tributed according to a uniform distribution U over [0, 1],
and a zero-matrix E ∈ 0l×Eadd . Iadd and Eadd are the addi-
tional intrinsic and extrinsic dimensions that are added to
the base distribution. The augmented data matrix

Xa = [X|I|E] ∈ Rl×(2+Iadd+Eadd) (5)

is matrix-multiplied by a random orthogonal matrix

O ∈ R(2+Iadd+Eadd)×(2+Iadd+Eadd) (6)

to remove the previously introduced zeros in the augmented
columns. Then, we obtain the projected data matrix

Xp = XaO ∈ Rl×(2+Iadd+Eadd) (7)

with intrinsic dimensionality I = Iorg + Iadd, extrinsic di-
mensionality E = Eorg + Eadd and entanglement ΣArch or
ΣStep, respectively.

Results
Since the spiral and step-function datasets provide an easy
way to change the entanglement, intrinsic and extrinsic di-
mensionality independently of each other, we can estimate
the effect that those parameters have on the sample complex-
ity ς . We measure the sample complexity as the number of
samples from the train set needed to achieve a certain accu-
racy on the test set. In other words, we measure the number
of samples needed so that the generalization error is below a
certain threshold.

Archimedean Spirals We train a fully-connected neu-
ral network on spiral datasets with independently changed
ΣArch ∈ [1.0, 1.25, 1.5, 1.75, 2.0], I ∈ [1, 2, ..., 11] and
E ∈ [2, 3, ..., 12] and measure the sample complexity ς .
Then, we estimate the following three regression models,

ς = αΣArch + βI + γE (8)

ς =αΣArch + βI + γE+
δ(ΣArch · I) + ϵ(ΣArch · E) + ζ(I · E) (9)

ς =βI + γE +
∑

σ∈ΣArch

α̂(σ)[Σ
(σ)
Arch] + α(σ)(I · [Σ(σ)

Arch])

(10)
where α̂(·), α(·), β, γ, δ, ϵ, ζ ∈ R are the regression coeffi-
cients. [Σ(·)

Arch] denotes dummy variables for different entan-
glement values. The dummy shows the level of entangle-
ment when it is given or zero otherwise. The base case is
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(a) ΣArch = [1.0, 1.25, 1.5, 1.75, 2.0] (b) ΣStep = [1, 2, 3, 4, 5]

Figure 3: (a) Archimedean spiral datasets. (b) Step-function datasets.

[Σ
(1.0)
Arch ] and it is therefore omitted from the regression equa-

tion.
The first two regression models displayed in Equations

8 and 9 measure the effect of the entanglement, the intrin-
sic and extrinsic dimensionality independently of each other
and with a potential interaction between them. The introduc-
tion of the dummy variables in Equation 10 allows us to esti-
mate the intrinsic dimensionality’s effect on the sample com-
plexity given a certain level of entanglement. These regres-
sion models offer the best trade-off between interpretability
and goodness-of-fit. Choosing higher-order polynomials to
model the interactions between independent variables might
result in a better fit; however, we would sacrifice model in-
terpretability, as well as risk overfitting noise.

The results of these regressions are displayed in Table 1.
We observe that in all three cases the entanglement is by a
significant margin the most impactful factor on the sample
complexity while the extrinsic dimensionality is not statis-
tically relevant. In addition, we can state that the effect of
the intrinsic dimension on the sample complexity depends
on the distribution’s entanglement. While for easily separa-
ble datasets (ΣArch = [1, 1.25, 1.5]) increases in the intrinsic
dimensionality do not influence the sample complexity sig-
nificantly, we can observe that for highly entangled datasets
(ΣArch = [1.75, 2.0]) the sample complexity positively in-
creases with an increase of the intrinsic dimensionality. In
other words, the combination of intrinsic dimensionality and
entanglement is empirically the most important one for the
difficulty of the learning problem and when judging the sam-
ple complexity for a certain classification problem both of
these parameters cannot be investigated independently but
need to be considered in conjunction.

Step-function Datasets For the step-function datasets we
estimate the same regression models as for the Archimedean
spirals, so Equations 8 and 9 but with ΣStep instead of ΣArch.
The regression in Equation 10 is estimated for the levels
ΣStep = [1, 2, 3, 4, 5] where [ΣStep = 1] is the base case.
Again, we train a fully-connected neural network and mea-
sure the sample complexity.

In Table 2 we display the findings and can observe that
the results are aligned with the ones for the Archimedean
spirals. Again, the entanglement is the significantly more
important factor for the sample complexity. The previously
made observation that the intrinsic dimension’s influence
depends on the given entanglement is similar for the step-
function datasets. In Table 2 we can see that the intrinsic
dimensionality positively influences the sample complex-
ity for all levels of entanglement. However, this increase is
larger for higher levels of entanglement, so the earlier made

Eq. 8 Eq. 9 Eq. 10
ΣArch 167.87∗∗∗ −32.13∗

(6.97) (17.19)
I 10.06∗∗∗ −39.83∗∗∗ 0.07

(0.78) (3.05) (0.92)
E 0.53 −1.65 0.53

(0.78) (2.97) (0.41)
ΣArch * I 32.45∗∗∗

(1.76)
ΣArch * E 0.75

(1.76)
I * E 0.17

(0.20)
[Σ

(1.25)
Arch ] 0.30

(8.85)
[Σ

(1.5)
Arch ] −1.07

(8.85)
[Σ

(1.75)
Arch ] −19.75∗∗

(8.85)
[Σ

(2.0)
Arch ] −23.54∗∗∗

(8.85)
I * [Σ

(1.25)
Arch ] 0.16

(1.31)
I * [Σ

(1.5)
Arch ] 1.28

(1.31)
I * [Σ

(1.75)
Arch ] 15.70∗∗∗

(1.31)
I * [Σ

(2.0)
Arch ] 32.79∗∗∗

(1.31)
Constant −254.58∗∗∗ 52.71∗ 6.04

(12.92) (27.76) (6.89)
Observations 605 605 605
R2 0.55 0.72 0.88
Adjusted R2 0.55 0.71 0.87
F Statistic 249.28∗∗∗ 250.96∗∗∗ 421.07∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 1: Regression: Archimedean spirals.

observation of an interdependent effect of intrinsic dimen-
sionality and entanglement on the sample complexity re-
mains true. In contrast to the results of the Archimedean spi-
ral datasets, we observe for Equation 10 in Table 2 a statisti-
cally significant negative effect of the extrinsic dimensional-
ity on the sample complexity. This results is not theoretically
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Eq. 8 Eq. 9 Eq. 10
ΣStep 27.28∗∗∗ 27.08∗∗∗

(0.60) (1.77)
I 6.15∗∗∗ 3.27∗∗∗ 2.84∗∗∗

(0.27) (0.83) (0.53)
E −1.75∗∗∗ 0.58 −1.75∗∗∗

(0.27) (0.78) (0.24)
ΣStep * I 0.95∗∗∗

(0.18)
ΣStep * E −0.78∗∗∗

(0.18)
I * E 0.004

(0.08)
[Σ

(2)
Step] 19.37∗∗∗

(5.09)
[Σ

(3)
Step] 55.75∗∗∗

(5.09)
[Σ

(4)
Step] 65.80∗∗∗

(5.09)
[Σ

(5)
Step] 84.73∗∗∗

(5.09)
I * [Σ

(2)
Step] 4.31∗∗∗

(0.75)
I * [Σ

(3)
Step] 3.26∗∗∗

(0.75)
I * [Σ

(4)
Step] 4.16∗∗∗

(0.75)
I * [Σ

(5)
Step] 4.82∗∗∗

(0.75)
Constant −7.39∗∗ −6.60 29.33∗∗∗

(3.15) (6.80) (3.97)
Observations 605 605 605
R2 0.82 0.83 0.86
Adjusted R2 0.82 0.83 0.85
F Statistic 891.43∗∗∗ 485.05∗∗∗ 352.83∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 2: Regression: Step-functions.

predicted and since the other findings are aligned with the
previous experimental results, we hypothesise that it might
be due to the topology of the step-function dataset which is
the union of disjoint linear subspaces. An investigation into
what causes this effect is left for future work.

Summary
For both artificial datasets we observe that the regressions
that take interactions between the entanglement and the in-
trinsic dimensionality into account fit the observed sample
complexities significantly better than the regressions that as-
sume their independence. These results show a statistically
significant interaction between these two factors and demon-
strate that the effect of the intrinsic dimensionality on the

sample complexity is dependent on the given level of entan-
glement. For datasets that exhibit low levels of entanglement
(so those that are (almost) linearly separable), increases in
their intrinsic dimensionality have either no or small effects
on the sample complexity relative to complex datasets where
classes are highly entangled.

Sample complexity of Real-world Datasets

We now expand the analysis from the previous section to
real-world image benchmarks.

Datasets

We use the binary classification problems introduced in Sec-
tion again. Since FASHION is (almost) linearly separable
even for large sample sizes, we defer its analysis to the ex-
tended on-line version where we show that increases in its
intrinsic dimensionality do not appear to cause an increase
in the sample complexity. In this Section we only present the
results for SVHN and CIFAR-10.

Changing the Entanglement As discussed in Section the
number of samples drawn from the data distribution p(xdata)
can influence the estimation of the entanglement when the
density is not uniform over the data manifold Mdata. There-
fore, estimation of the entanglement via a well-trained clas-
sifier f only gives a lower bound on it. As a result, without
access to p(xdata) from which we could sample, we cannot
increase but only decrease the entanglement of a given dis-
tribution. To decrease the entanglement between two mani-
folds, the class-boundary points, those samples close to the
decision boundary, need to be removed. One way to iden-
tify these points is by computing the magnitude of a neu-
ral network’s gradient gi = ||∂Lf

∂xi
||F for all train samples

xi ∈ X l×E , where Lf is the network’s loss function and
|| · ||F denotes the Frobenius-norm. Then, gi can be used
as an estimate of the proximity of point xi to the bound-
ary. We remove those points with values gi above the ΣReal-
percentile of all gradient norms and replace them with ran-
dom samples from the class interior, perturbed by Gaus-
sian noise. For ΣReal = 0.4 for example, those 60% of
points which have the highest gradient norms gi are re-
moved. ΣReal = 1 is the original set. We test this heuristic
and can confirm that this approach indeed reduces the en-
tanglement up to some negligible stochastic effects (Figure
4). We note that a significant number of samples need to be
removed to observe a meaningful reduction in the entangle-
ment. This is in line with the findings described in Section
in which we show that the samples of complex image bench-
marks appear to concentrate near the decision boundary.

Increasing the Intrinsic Dimensionality To increase the
intrinsic dimensionality of the image datasets we use a sim-
ilar procedure as in Section . We add uniform noise over
[0, 1]Iadd to all available samples. This procedure has been
shown to increase the intrinsic dimensionality of real-world
image datasets (Pope et al. 2021).
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Figure 4: Entanglement of SVHN and CIFAR-10 classes.

Results
We train a convolutional neural network with batch-
normalization (Ioffe and Szegedy 2015) on the binary clas-
sification tasks for ΣReal ∈ [0.1, 0.5, 1.0] and Iadd ∈
[0, 5, 10, 15, 30, 60, 90, 120, 150] where Iadd = 0 is the
dataset with the original intrinsic dimensionality. Pope et al.
(Pope et al. 2021) report an original intrinsic dimensionality
for SVHN between 9 and 19 and for CIFAR-10 between 13
and 25, depending on the method. Thus, the ratios between
intrinsic and extrinsic dimensionality for the artificial and
the real-world datasets are comparable in our work.

We estimate the same regressions as for the artificial
datasets (Equations 8, 9 and 10) with the exceptions that we
have omitted changing the extrinsic dimensionality as we
have have not found it to be statistically significant and that
we normalize the sample complexity by dividing it by the
number of available samples; ςnorm = ς

l to make compar-
isons between different class pairs and datasets possible.

The results are displayed in Tables 3 and 4. As for the
artificial datasets the entanglement is in general the most
significant factor for the (normalized) sample complexity.
Importantly, we note again a dependence of the intrinsic di-
mensionality’s impact on the level of entanglement. When
enough samples from the class boundaries of both classi-
fication tasks are removed, increasing the intrinsic dimen-
sionality does not have a statistically significant effect on
the sample complexity any more.

Conclusions
The sample complexity of empirical risk minimization has
been studied theoretically and recent empirical work has
confirmed that effect of the intrinsic dimensionality on the
sample complexity of deep classifiers. In addition, theoreti-
cal bounds on the sample complexity of deep classifiers have
been proposed (see Section ). In this work we take an orthog-
onal approach to the model-dependent bounds on the sample
complexity and provide an extension for the data-dependent
study. This is achieved by investigating the effect of the en-
tanglement of class manifolds on the sample complexity. We
show for deep ReLU networks that the entanglement is the
most important factor for the difficulty of a learning problem
and that it has an interdependent effect with the intrinsic di-
mensionality. Fully-connected and convolutional classifiers
exhibit much stronger increases of their sample complexity

Eq. 8 Eq. 9 Eq. 10
ΣReal 0.084∗∗∗ 0.066∗∗∗

(0.008) (0.010)
Iadd 0.0001∗∗ −0.00004 0.00002

(0.0001) (0.0001) (0.0001)
Iadd · ΣReal 0.0003∗∗

(0.0001)
[Σ

(0.5)
Real ] 0.014∗

(0.008)
[Σ

(1.0)
Real ] 0.058∗∗∗

(0.008)
Iadd · [Σ(0.5)

Real ] 0.0001
(0.0001)

Iadd · [Σ(1.0)
Real ] 0.0003∗∗∗

(0.0001)
Constant 0.001 0.011 0.022∗∗∗

(0.006) (0.007) (0.005)
Observations 27 27 27
R2 0.832 0.867 0.920
Adjusted R2 0.818 0.850 0.900
F Statistic 59.582∗∗∗ 50.163∗∗∗ 47.984∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 3: Regression: SVHN-(8, 9).

Eq. 8 Eq. 9 Eq. 10
ΣReal 0.112∗∗∗ 0.094∗∗∗

(0.011) (0.016)
Iadd 0.0001 −0.0001 −0.000

(0.0001) (0.0001) (0.0001)
Iadd · ΣReal 0.0003

(0.0002)
[Σ

(0.5)
Real ] 0.006

(0.007)
[Σ

(1.0)
Real ] 0.082∗∗∗

(0.007)
Iadd · [Σ(0.5)

Real ] 0.00004
(0.0001)

Iadd · [Σ(1.0)
Real ] 0.0003∗∗∗

(0.0001)
Constant −0.020∗∗ −0.011 0.010∗

(0.008) (0.010) (0.005)
Observations 27 27 27
R2 0.808 0.827 0.962
Adjusted R2 0.792 0.805 0.952
F Statistic 50.587∗∗∗ 36.666∗∗∗ 105.066∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 4: Regression: CIFAR-10-(cat, dog).

for higher levels of entanglement, while for low levels the
intrinsic dimensionality’s effect is smaller.
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