
Same State, Different Task:
Continual Reinforcement Learning without Interference

Samuel Kessler, Jack Parker-Holder, Philip Ball, Stefan Zohren, Stephen J. Roberts
University of Oxford

{skessler, jackph, ball, zohren, sjrob}@robots.ox.ac.uk

Abstract

Continual Learning (CL) considers the problem of training
an agent sequentially on a set of tasks while seeking to retain
performance on all previous tasks. A key challenge in CL is
catastrophic forgetting, which arises when performance on a
previously mastered task is reduced when learning a new task.
While a variety of methods exist to combat forgetting, in some
cases tasks are fundamentally incompatible with each other
and thus cannot be learnt by a single policy. This can occur, in
reinforcement learning (RL) when an agent may be rewarded
for achieving different goals from the same observation. In
this paper we formalize this “interference” as distinct from
the problem of forgetting. We show that existing CL methods
based on single neural network predictors with shared replay
buffers fail in the presence of interference. Instead, we propose
a simple method, OWL, to address this challenge. OWL learns
a factorized policy, using shared feature extraction layers, but
separate heads, each specializing on a new task. The separate
heads in OWL are used to prevent interference. At test time,
we formulate policy selection as a multi-armed bandit problem,
and show it is possible to select the best policy for an unknown
task using feedback from the environment. The use of bandit
algorithms allows the OWL agent to constructively re-use
different continually learnt policies at different times during
an episode. We show in multiple RL environments that existing
replay based CL methods fail, while OWL is able to achieve
close to optimal performance when training sequentially.

1 Introduction
Reinforcement Learning (RL (Sutton, Barto et al. 1998))
considers the problem of an agent taking sequential actions
in an environment to maximize some notion of reward. In
recent times there has been tremendous success in RL, with
impressive results in Games (Silver et al. 2016) and Robotics
(OpenAI et al. 2018), and even real-world settings (Bellemare
et al. 2020). However, these successes have predominantly
focused on learning a single task, with agents often brittle
to changes in the dynamics or rewards (or even the seed
(Henderson et al. 2018)).

One of the most appealing qualities of RL agents is their
ability to continue to learn and thus improve throughout their
lifetime. As such, there has recently been an increase in inter-
est in Continual Reinforcement Learning (CRL), (Ring 1994;

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

A B

C D

Figure 1: A and B a simple four rooms environment task
where the goal (the green square) is located at the bottom
right. C and D a different four rooms task where the goal is
at a different location, the optimal Q-function should give
different values for the same action for the same starting
state. The symbol ↑ denotes a high Q-value and ↓ a low Q-
value. Task agnostic, single predictor continual RL methods
will be sub-optimal compared to methods which use the task
identifier to condition their policies like OWL.

Khetarpal et al. 2020), a paradigm where agents train on
tasks sequentially, while seeking to maintain performance on
previously mastered tasks (Kirkpatrick et al. 2016; Schwarz
et al. 2018; Rolnick et al. 2019). A key issue when training
on sequential tasks is catastrophic forgetting, a consequence
of gradient based learning, as training on a new task over-
writes parameters which were important for previous tasks
(Robert M. French 1999). While existing methods address
this, they typically only consider the setup where each “task”
is an entirely different RL environment, for example different
games from the Arcade Learning Environment (Bellemare
et al. 2012) or different simulated robotics environments
(Ahn et al. 2019).

In this paper, we focus on a more challenging problem. In-
stead of distinct environments as different tasks, we consider
learning to solve different tasks with the same state space.
Since these tasks may not only have different but even op-
posite optimal actions for the same observation, training on
them sequentially causes what we call “interference” which
can in turn induce forgetting, as the agent directly optimizes
for an opposing policy. Interference can also lead to reduced
performance for future tasks, as the agent cannot fully learn

The Thirty-Sixth AAAI Conference on Artificial Intelligence (AAAI-22)

7143



to solve a new task given it’s retained knowledge of previ-
ous opposing objectives. This problem regularly arises in
real-world settings, whereby there are a multitude of tasks
with reward functions which all share the same state space
(e.g. a visual observation of the world). Since previous CRL
methods used different environments as different tasks then
the agents can learn that the different state spaces correspond
to different optimal behaviors and so interference is rarely
exhibited.

We begin by showing a simple supervised setting where
it is impossible to solve interfering tasks, continually with a
single predictor despite using strong CL techniques to prevent
forgetting, Figure 2. This setting can occur in RL where we
have different goals but the same observation for different
tasks, see Figure 1. We therefore introduce a new approach
to CRL, which we call COntinual RL Without ConfLict or
OWL. OWL makes use of shared feature extraction layers,
while acting based on separate independent policy heads.
The use of the shared layers means that the size of the model
scales gracefully with the number of tasks. The separate
heads act to model multi-modal objectives and not as a means
to retain task specific knowledge, as they are implicitly used
in CL. Task agnostic, single predictor CRL methods which
use experience replay (Rolnick et al. 2019) will thus suffer
from this interference. But have the advantage of not having
to infer the task the agent is in to then solve it. Experience
replay has been shown to be a strong CL strategy (Balaji et al.
2020).

In the presence of interference, task inference is now neces-
sary and at test time, OWL adaptively selects the policy using
a method inspired by multi-armed bandits. We demonstrate in
a series of simple yet challenging RL problems that OWL can
successfully deal with interference, where existing methods
fail. To alleviate forgetting we consider simple weight space
(Kirkpatrick et al. 2016) and functional regularizations (Hin-
ton, Vinyals, and Dean 2015) as these have been repeatedly
shown to be effective in CRL (Nekoei et al. 2021).

Our core contribution is to identify a challenging new set-
ting for CRL and propose a simple approach to solving it.
As far as we are aware, we are the first to consider a ban-
dit approach for selecting policies for deployment, inferring
unknown tasks. The power of this method is further demon-
strated in a set of generalization experiments, where OWL
is able to solve tasks it has never seen before, up to 6x more
successfully than the experience replay baseline (Rolnick
et al. 2019).

2 Related Work
Continual Learning in Supervised Learning: Continual
Learning (CL) is a sequential learning problem. One ap-
proach to CL, referred to as regularization approaches regu-
larizes a NN predictor’s weights to ensure that new learning
produces weights which are similar to previous tasks (Kirk-
patrick et al. 2016; Nguyen et al. 2018; Zenke, Poole, and
Ganguli 2017). Alternatively, previous task functions can
be regularized to ensure that the functions mapping inputs
to outputs are remembered (Li and Hoiem 2017). By con-
trast, expansion approaches add new neural resources to
enable learning new tasks while preserving components for

specific tasks (Rusu et al. 2016; Lee et al. 2020). Memory
approaches replay data from previous tasks when learning
the current task. This can be performed with a generative
model (Shin et al. 2017). Or small samples from previous
tasks (memories) (Lopez-Paz and Ranzato 2017; Aljundi et al.
2019b; Chaudhry et al. 2019). Meta-learning pre-training has
been explored to augment continual learning (and context-
dependent targets can allow interference but is not explored)
(Caccia et al. 2020).

Continual Learning in Reinforcement Learning: The
CL regularization method EWC has been applied to DQN
(Mnih et al. 2015) to learn over a series of Atari games
(Kirkpatrick et al. 2016). Both Progressive Networks (Rusu
et al. 2016) and Progress and Compress (Schwarz et al. 2018)
are applied to policy and value function feature extractors for
an actor-critic approach. These methods are told when the
task changes.

CLEAR leverages experience replay buffers (Lin 1992)
only to prevent forgetting: by using an actor-critic with V-
trace importance sampling (Espeholt et al. 2018) of past
experiences from the replay buffer catastrophic forgetting
can be overcome (Rolnick et al. 2019). CLEAR uses a sin-
gle predictor NNs and all experience is stored in the replay
buffer and thus CLEAR is not required to know when the
task changes. However, interference is ignored as multi-task
performance of the all environments is similar to the sum
of performances of individual environments. Different selec-
tive experience replay strategies can be used for preserving
performance on past tasks (Isele and Cosgun 2018). Alter-
natively, (Mendez, Wang, and Eaton 2020) learns a policy
gradient model which factorizes into task specific parameters
and shared parameters. OWL is more general as it can wrap
around any RL algorithm and be used for discrete action
spaces and continuous control settings and achieve better
results.

A number of previous works have studied transfer in multi-
task RL settings where the goals within an environment
change (Barreto et al. 2016; Schaul et al. 2015). Our work
is related to (Yu et al. 2020) which considers interference
between gradients in a multi-task setting.

Interference: this problem is discussed in (Rolnick et al.
2019) and has been studied in multi-task (for example
(Bishop and Svensén 2012; Lin et al. 2019)) and meta-
learning (for example, (Rajendran, Irpan, and Jang 2020)).
However, we believe we are the first to consider it in CRL,
and that the current state-of-the-art methods lack an approach
to tackle it. In particular, we note that existing replay based
methods such as (Rolnick et al. 2019) fail to address this
issue, as the experience replay buffer will contain tuples of
the same state-action pairs but different rewards for different
tasks. Thus, the agent will not converge, as we show later in
our experiments.

3 Background
3.1 Reinforcement Learning
A Markov Decision Process (MDP, (Bellman 1957)) is a
tuple (S,A, P,R, γ). Here S and A are the sets of states
and actions respectively, such that for st, st+1 ∈ S and at ∈

7144



A. P (st+1|st, at) is the probability that the system/agent
transitions from st to st+1 given action at andR(at, st, st+1)
is a reward obtained by an agent transitioning from st to st+1

via at. The discount factor is represented by γ ∈ (0, 1).
Actions at are chosen using a policy π that maps states to
actions: S → A. In this paper we consider MDPs with finite
horizons H . The return from a state is defined as the sum
of discounted future rewards Rt =

∑H
i=t γ

(i-t)r(si, ai). In
RL the objective is to maximize J = Eai∼π[R1|s0] given an
initial state s0, sampled from the environment.

One approach to maximizing expected return is to learn an
action-value function for each state-action pair:Qπ(st, at) =
Est∼P,rt∼R,at∼π[

∑
tRt]. We parameterize the action-value

function with a neural network, denoted Q(st, at; θi), with
parameters θi. We optimize θi to minimize the expected
temporal difference error using gradient descent:

Li(θi) = Est,at∼ρ[(yi −Q(st, at; θi))
2] (1)

We use Q-learning (Watkins and Dayan 1992), giving yi =
rt + γmaxaQ(st+1, a; θi−1), and the parameters θi−1 are
target network parameters. The associated update does not
require on-policy samples, so learning is off-policy using a
replay buffer (Lin 1992), hence ρ is an empirical distribution
that represents samples from the buffer. For continuous action
settings, we learn a policy πφ : S → A using a neural
network parameterized by φ. For discrete action settings, our
policy follows the maximum Q-value: π := argmaxaQ(s, a).

3.2 Continual Learning
Continual learning (CL) is a paradigm whereby an agent
must learn a set of tasks sequentially, while maintaining
performance across all tasks. This presents several challenges,
in particular avoiding forgetting and efficiently allocating
resources for learning new tasks. In CL, the model is shown
M tasks Tτ sequentially, where τ = 1, . . .M . A task is
defined as Tτ =

{
p(X), p(Y |X), τ

}
where X and Y are

input and output random variables.
In practice a task is comprised of i = 1 . . . Nτ inputs

xi ∈ Rd and outputs yi ∈ R (N ⊂ R). The model will lose
access to the training dataset for task Tτ , it will be continu-
ally evaluated on all previous tasks Tj for j ≤ τ . τ can be
used as a task identifier informing the agent when to start
training on a new task. For a comprehensive review of CL
scenarios see (van de Ven and Tolias 2018). For RL the defi-
nition of a task is simply an MDP and task identifier: Tτ ={
Sτ ,Aτ , pτ (s1), pτ (st+1|st, at), Rτ (at, st, st+1), τ

}
, and

so the agent will no longer be able to interact with previ-
ous environments, but must ensure that it can remember how
to solve all past tasks/environments.

4 Catastrophic Forgetting vs. Interference
Forgetting occurs when performance on old tasks is reduced
while learning new tasks. On the other hand, interference
occurs when two or more tasks are incompatible for the same
model. We re-use these definitions from CLEAR (Rolnick
et al. 2019). We observe this when the multi-task objectives
are multi-modal and tasks share the same observation space
but have different goals/objectives.

Figure 2: Left, two samples from the MultiMNIST dataset
(Sabour, Frosst, and Hinton 2017). The first task T1 requires
classifying the top left digit and the second task T2 requires
classifying the bottom right. Right, results from continually
learning on both MultiMNIST tasks. We compare two dif-
ferent CL methods EWC (Kirkpatrick et al. 2016) and GEM
(Lopez-Paz and Ranzato 2017). Single head task agnostic
setups suffer from catastrophic forgetting of the first task due
to interference. The multi-head setup is a simple remedy to
the problem of interference.

We demonstrate interference using the MultiMNIST
dataset (Sabour, Frosst, and Hinton 2017), Figure 2. Each
image is composed of two different MNIST digits and for
T1 we are required to classify the top image and in T2 we
are required to classify the bottom image. For both of these
tasks the only difference is the objective. When we perform
CL with a single predictor network or single-headed network
with different CL strategies to alleviate forgetting we see that
the interference between tasks causes almost 100% forget-
ting of the first task, despite using established CL strategies.
On the other hand using multi-headed networks allows us to
model both objectives in MultiMNIST. We observe that we
will get interference in the following.

Observation 4.1. Consider two tasks Ti and Tj . Let both
tasks’ input distributions pk(X) share the same support
but have different conditional distributions pk(Y |X) =
N (fk(X), β−1), where fk is a mean function with f i 6= f j

and β−1 is data noise. Then the multi-task distribution is
bi-modal and using a Gaussian likelihood will result in inter-
ference.

This may seem contrived in the supervised setting, how-
ever, it is common throughout reinforcement learning. Con-
sider a partially observable MDP (POMDP) where we receive
an initial observation but do not know the goal location or
reward function then an agent might require different policies
for each task. We see an example of this in Figure 1 where in
one task the goal is in the room below the agent and in the
other the goal is in the room to the left. The most efficient
policies will guide the agent in different directions depending
on the task the agent is in. This observation has important
consequences: methods which are task agnostic and do not
condition on the task or do not use task specific parameters
are susceptible to interference. Some CL methods use a sin-
gle predictor and aim to approximate the multi-task setting
by using storing samples in a buffer (Aljundi et al. 2019a;
Rolnick et al. 2019). Furthermore single-headed networks
are often used as more difficult CL scenarios when studying
methods to mitigate forgetting (van de Ven and Tolias 2018;
Farquhar and Gal 2018).

7145



Specified
Task

Feature
Extractor

Specified
Head

Train Test

1 2 n

Unknown
Task

Feature
Extractor

Bandit
Algorithm

1 n

?

Figure 3: An overview of our approach. On the left we show
the training setup. When training sequentially on different
tasks we use the same feature extractor (blue), regularized
with EWC, but maintain a set of distinct heads (green, yel-
low, ..., pink) corresponding to different tasks. On the right
we show the test time adaptation. Note that the task is not
known, and must be inferred through interaction with the
environment.

Our solution is to model the multi-modality by learning a
mixture of linear regressions (see: §14.5.1 (Bishop 2006)).
The same applies to CRL: the Q-function needs to have sepa-
rate weights for each task or needs to condition on the task
to solve CRL environments with interference. In practice we
will use multi-headed network predictors. Whereas these are
commonly employed to preserve previous task knowledge
and prevent forgetting in CL, we are employing them as a
means to prevent interference. So our motivation for the use
of multi-head networks is wholly different. Most supervised
CL settings are benchmarked on vision tasks which use differ-
ent distinct classes as tasks. Thus pτ (X) and pτ (Y |X) both
change with task τ ; a single NN predictor can model this.
However in RL only the reward function, Rτ (st, at, st+1),
need change with task τ .

5 Continual RL without Conflict
At a high level, OWL uses an off-policy RL algorithm to
train a Q-function across tasks sequentially. To prevent in-
terference our key insight is that: 1.) we can use a single
network with a shared feature extractor but multiple heads,
parameterized by linear layers to fit individual tasks; 2.) we
flush the experience replay buffer when starting to learn in
a new task. At test time, we frame policy/head selection as
a multi-armed bandit problem, to adaptively select the best
policy. In this section we provide additional details on each
component, describing first the structure of the Q-function,
before moving to our test time adaptation.

5.1 Factorized Q-Functions
Multi-head networks are commonly used in CL (Li and
Hoiem 2017; Nguyen et al. 2018), they enable learning task
specific output mapping with a shared feature extractor. Multi-
head networks are effective in that allow learning of task
specific parameters which can we recalled and so help to al-
leviate forgetting. Single-head networks are commonly used
as a more difficult baseline for CL benchmarks (Farquhar
and Gal 2018; van de Ven and Tolias 2018). In our work
multi-head networks are used as they prevent interference.

Algorithm 1: OWL: Training
Input: Tasks T = {Ti}Mi=1.
Initialize: θ and φ, ΩQ = Ωπ = ∅.
for t = 1, 2, . . . ,M do

1. See Task Tt
2. Train Q-function with parameters {θz, θi} and regu-
larization ΩQ.
if A is continuous then

3. Train policy with parameters {φz, φi} with regu-
larization Ωπ .

4. Calculate Q-function EWC regularization and ΩQ :=

{LQEWC,Ω
Q}.

if A is continuous then
5. Calculate policy EWC regularization and Ωπ :=
{LπEWC,Ω

π}.
6. Empty the experience reply buffer D = ∅.
7. Evaluate according to Algorithm 2.

Alleviating forgetting: We represent a factorized Q-
function as having parameters θ = {θz, θ1:M}, where θz are
feature extractor parameters and θ1:M the heads. For discrete
problems one can follow the maximum Q-values to obtain the
next action. For parameterized policies we can equally con-
struct our policy similarly with parameters φ = {φz, φ1:M}
where φz are the neural network feature extraction layers,
and φ1:M are linear policy heads. To address forgetting in
the shared neural network feature extractors we use regular-
ization methods. In particular we found EWC to work well
and is a simple approach to prevent forgetting (Kirkpatrick
et al. 2016), (we also tried a functional regularization (Hinton,
Vinyals, and Dean 2015; Li and Hoiem 2017) but found it un-
derperformed; see Section D). We train our agent according
to Algorithm 1. As we see more and more tasks new heads
can easily be added and so we do not need to prespecify the
number of tasks or policy heads M ∈ {1, . . . ,∞}.

5.2 Selecting Policies as a Multi-Armed Bandit
Problem

At test time we do not tell OWL which task it is being eval-
uated on. We consider the set of arms M to be the set of
policies which can be chosen to act at each timestep of the
test task. The aim is to find the policy which achieves the
highest reward on a given test task. We use a modified version
of the Exponentially Weighted Average Forecaster algorithm
(Cesa-Bianchi and Lugosi 2006), as has been shown to be
successful adapting components of RL algorithms (Ball et al.
2020). In this setup we consider M experts making recom-
mendations at the beginning of each round. After sampling
a decision it ∈ {1, · · · ,M} from a distribution pt ∈ ∆M

with the form pt(i) ∝ exp (`t(i)) the learner experiences a
loss ltit ∈ R. The distribution pt is updated by changing `t
as follows:

`t+1(i) =

{
`t(i) + η

lti
pt(i) if i = it

`t(i) otherwise,
(2)

7146



A

B

C

A B

C

Figure 4: Median performance (with inter-quartile range) across 10 seeds. Pale blue shaded regions correspond to the timesteps
when the task in question is being trained on. A, Task 1 arm position from the OWL agent (oracle) B, Task 2 arm position from
the OWL agent (oracle) C, Optimal arm position for Exp Replay for Tasks 1 and 2 (note that the reward function also has angular
velocity terms thus the OWL/SAC agent isn’t able to place the arms exactly at ±90◦ without obtaining a sub optimal reward).
Exp Replay clearly displays interference.

for some step size parameter η. We consider the case where
the selection of φi is thought of as choosing amongM experts
which we identify as the different policies {φi}Mi=1, trained on
the corresponding Q-functions {θi}Mi=1. The loss we consider
is of the form lit = 1/Ĝφi

(θi), where Gφi
(θi) is the TD

error or the log likelihood of the observed reward from the
test task, rt given the predicted Q-values. If required, we
can then perform a normalization of G, hence Ĝ. Henceforth
we denote by ptφ the exponential weights distribution over φ
values at time t. The pseudocode for our test-time procedure
is shown in Algorithm 2.

6 Experiments
To test our approach, we consider challenging CRL problems
where tasks have similar or identical state and actions spaces
but distinct goals/rewards. Our main hypothesis is that these
tasks cannot be solved continually with a single policy, using
a shared replay buffer. Our primary baseline, which we call
Experience Replay (Exp Replay in figures) corresponds to
this case (Rolnick et al. 2019) and has been shown to be a very
effective baseline in CL (Balaji et al. 2020). In each setting
we test two versions of our algorithm, which we refer to
as Oracle and Adaptive. With the Oracle, the OWL agent
is told at test time which task is being evaluated. Finally,
we consider the multi-arm bandit (MAB) approach, denoted
Adaptive. Code is available at https://github.com/skezle/owl.

6.1 Pendulums with Interfering Goals

The first setting we consider is a simple yet challenging take
on the well-known Pendulum-v0 environment (Brockman
et al. 2016). Typically, the policy is rewarded for placing
the pendulum at 0◦. Instead, we amend the reward func-
tion to produce two interfering tasks, with optimal positions:
{+90◦,−90◦}. We have continuous actions and train a multi-
head policy and Q-function using Soft Actor Critic (Haarnoja
et al. 2018b). We train on each task three times, switching
every 20, 000 environment steps. For more details on our
implementation see Section C.1. Results are shown in Fig. 4.

Algorithm 2: OWL: Testing
Input: tasks seen so far T = {T1, . . . , Tτ}, Q-functions
{φi}Mi=1, step size η, maximum number of timesteps T .
Initialize: p1

φ as a uniform distribution, s1 as the initial state
of the test task.
for Tj ∈ T do

for t = 1, . . . , T − 1 do
1. Select it ∼ ptφ, and set πtest = πφit

.
2. Take action at ∼ πtest(st), and receive reward rt
and the next state st+1 from Tj .
3. Use Equation 2 to update ptφ with ltit =

Ĝφt
(θt+1)

First, we see evidence confirming our first hypothesis that
training with a shared replay buffer over all tasks leads to
suboptimal performance on both tasks due to the interfering
nature of the tasks (Exp Replay). The Exp Replay agent
(grey) learns to place the pendulum at 0◦. As we see on
the bottom right, this balances the conflicting goals, but is
suboptimal for both individual tasks (see Fig.4C). Secondly,
the Oracle version of OWL (orange), which knows the
task under evaluation at test time, performs well since two
separate policies trained on the individual tasks (black,
dashed) and displays minimal forgetting. Encouragingly we
can almost achieve this same performance without informing
the agent of the task index, using our adaptive mechanism
(green). Our method also outperforms LPG-FTW (Mendez,
Wang, and Eaton 2020) which uses 2.5x more gradient
steps as our method builds on top of SAC which yields
state-of-the-art results in continuous control. Regarding
feedback to the algorithm, we explore the importance of the
probabilistic networks in the Appendix, Section D.

6.2 MiniGrid Environments
MiniGrid is a challenging set of procedurally generated maze
environments (Chevalier-Boisvert, Willems, and Pal 2018).
Each environment is partially observable, with the agent only

7147



Figure 5: Left, Median performance across 10 seeds for three different MiniGrid environments trained continually. Shaded
envelopes correspond to the inter-quartile range. Shaded pale blue regions corresponds to the current training task. OWL
Adaptive and Oracle are able to prevent forgetting and interference while Exp. Replay fails. Right, Bandit arm probabilities
over the course of a roll-out to demonstrate how the TD error feedback is used to select the right arm/policy to solve the task
(note these have been smoothed for visualization purposes).

“seeing” a small region of visual input out of a larger state.
Additionally, each state is an image, and rewards are sparse
(the agent only receives a reward for navigating to the green
tile in Figure 3), which makes it harder for agents to find
learning signals. We use the SimpleCrossing environment,
which has a single wall and gap. The environment seed cor-
responds to different wall position, orientation and gap. The
initial observation can look identical (or very similar) for
two different environments, and the agent has to explore to
discover the wall location and door position.

We employ DQN to handle the discrete action space (Mnih
et al. 2015), see Section C.2 for implementation details. We
train the same methods as the previous experiment on three
distinct MiniGrid grid worlds continually, repeating each
three times for 1M steps. We use the TD error in Eq (1)
as feedback to the MAB. OWL (Oracle) is able to consis-
tently solve all environments after one round Figure 5. OWL
(Adaptive) is able to dynamically select the correct policy
most of the time after seeing each task once, and continu-
ously improves, with the final performance almost matching
OWL (oracle)1. Exp Replay exhibits significant interference
between tasks.

Scaling to more tasks. We now scale to 5
SimpleCrossing tasks (denoted as SC in plots) and
another set of 5 tasks with 3 SimpleCrossing and 2
DoorKey environments (denoted as SC+DK). The set of
tasks are repeated 3 times each task is seen for 0.75M
environment steps. For Exp Replay we adjust the buffer
size to 4M ensure that data from all tasks are in the buffer
over the course of training. We note that Exp. Replay again
suffers from interference while OWL is able to overcome it
(and forgetting) see Figures 10 and 11 in the appendix.

1For videos of OWL in action, see: https://sites.google.com/
view/crlwithoutconflict/

We explore different arm selection strategies in Figure 6.
We compare the multi-armed bandit (MAB) versus random
policy head selection at each step of the roll-out (OWL
(rand)), versus selecting the policy head with the largest ex-
pected reward (OWL (max Q)) and versus selecting the policy
with the largest expected reward at each step of the roll-out
(max Q∀t). We see that approaches which use the Q-value
to select the policy fail, as does Exp Replay. Random policy
selection performs well, but the MAB performs significantly
better than random policy selection, a t-test with unequal
variances has a p-value of 0.06 for the SC policies, there isn’t
a significant difference for the SC+DK policies. Thus there
are statistically significant benefits to using the MAB. The
MAB approach can also behave similarly to a random policy
head selection can perform well (Bergstra and Bengio 2012;
Mania, Guy, and Recht 2018).

Generalization Results. Many works have focused on
generalization properties of RL agents in the MiniGrid envi-
ronment (Goyal et al. 2020), training on hundreds of levels.
Instead, we train on just 5 levels sequentially, which pro-
duces a significant risk of overfitting. We take the final SC
and SC+DK policies and evaluate them on 100 different, un-
seen tasks Figure 7. We find that our OWL agent is able to
transfer effectively to these unseen tasks, solving up to 40%
of unseen levels single walled levels, around 4× more than
Exp Replay. OWL can even solve harder environments where
Exp Replay totally fails. This exciting result demonstrates
that the OWL agent is able to re-use each of the base policies
learnt sequentially for solving totally different tasks. Ran-
domly selecting policies in the roll-out is a strong strategy
which the MAB can emulate. This demonstrates potential
for our approach in a hierarchical RL setting, with links to
options (Bacon, Harb, and Precup 2017).

7148



Figure 6: Final performance for different OWL policy selection strategies and Exp Replay.

Figure 7: Mean and std error proportion of successes for 100 different environments which have not been seen during training
for 10 seeds. OWL is able to generalize to unseen environments while Exp Replay fails.

6.3 Ablations
OWL decreases in performance when we remove the EWC,
Table 1. By replacing the EWC with a distillation regulariza-
tion which ensures that the outputs from the previous task’s
Q-function remain similar to the previous task’s Q-function
for the current task (Hinton, Vinyals, and Dean 2015; Li and
Hoiem 2017), also decreases performance, see Section D.2
for more details. Distillation regularization works well for
classification problems, however we are performing regres-
sion, which could explain the drop in performance compared
to EWC. We also compare to a Full Rehearsal (FR) which
is an upper bound to OWL performance. FR has a buffer for
each task and a separate policy head for each task, as such
it does not scale gracefully as the number of tasks increase
in comparison to OWL, see Section G in the appendix for
implementation details.

7 Conclusion and Future Work
We consider a challenging CRL setting where different tasks
have the same observation. We showed that established expe-
rience replay methods which are task agnostic with a single
predictor network fail due to interference. Our main contri-
bution is to highlight this interference problem and introduce
a simple yet effective approach for this paradigm, which we
call OWL. OWL is able to limit forgetting while training on
tasks sequentially by using aQ-function with a shared feature

SC SC+DK
Exp Replay 0.01 (0.61, 0.00) 0.00 (0.52, 0.00)

OWL (orcl) 0.85 (0.97, 0.72) 0.60 (0.98, 0.44)
OWL (adpt) 0.59 (0.75, 0.48) 0.63 (0.79, 0.45)
OWL - EWC (orcl) 0.45 (0.53, 0.39) 0.40 (0.48, 0.30)

OWL - EWC (adpt) 0.49 (0.60, 0.39) 0.50 (0.62, 0.37)
OWL - EWC + DL (orcl) 0.45 (0.53, 0.36) 0.34 (0.40, 0.29)

OWL - EWC + DL (bndt) 0.53 (0.61, 0.38) 0.39 (0.45, 0.33)

Full Rehearsal 0.99 (0.99, 0.97) 0.99 (1.00, 0.98)

Table 1: Comparisons and ablations for OWL evaluating on
the 5 SC and SC+DK tasks for 10 seeds.

extractor and a population of linear heads for each task. OWL
does not require knowledge of the task at test time, but is still
able to achieve close to optimal performance using a multi-
armed bandits algorithm. We evaluated OWL on challenging
RL environments such as MiniGrid, where we were able to
solve five different tasks with similar observations. Finally,
we showed it is possible to transfer our learned policies to
unseen and more difficult environments.

There are a variety of exciting future directions for this
work. For instance, exploring change detection methods using
more robust probabilistic models in RL, to detect shifts in
reward and state-action distributions.

7149



References
Ahn, H.; Cha, S.; Lee, D.; and Moon, T. 2019. Uncertainty-
based Continual Learning with Adaptive Regularization. In
Neural Information Processing Systems.
Aljundi, R.; Caccia, L.; Belilovsky, E.; Caccia, M.; Lin, M.;
Charlin, L.; and Tuytelaars, T. 2019a. Online continual
learning with maximally interfered retrieval. arXiv preprint
arXiv:1908.04742.
Aljundi, R.; Lin, M.; Goujaud, B.; and Bengio, Y. 2019b.
Gradient based sample selection for online continual learning.
In Advances in Neural Information Processing Systems.
Bacon, P.-L.; Harb, J.; and Precup, D. 2017. The Option-
Critic Architecture. In AAAI, 1726–1734.
Balaji, Y.; Farajtabar, M.; Yin, D.; Mott, A.; and Li, A. 2020.
The Effectiveness of Memory Replay in Large Scale Contin-
ual Learning. arXiv preprint arXiv:2010.02418.
Ball, P.; Parker-Holder, J.; Pacchiano, A.; Choromanski, K.;
and Roberts, S. 2020. Ready Policy One: World Building
Through Active Learning. International Conference on Ma-
chine Learning.
Barreto, A.; Dabney, W.; Munos, R.; Hunt, J. J.; Schaul,
T.; Van Hasselt, H.; and Silver, D. 2016. Successor fea-
tures for transfer in reinforcement learning. arXiv preprint
arXiv:1606.05312.
Bellemare, M.; Candido, S.; Castro, P.; Gong, J.; Machado,
M.; Moitra, S.; Ponda, S.; and Wang, Z. 2020. Autonomous
navigation of stratospheric balloons using reinforcement
learning. Nature, 588: 77–82.
Bellemare, M. G.; Naddaf, Y.; Veness, J.; and Bowling, M.
2012. The Arcade Learning Environment: An Evaluation
Platform for General Agents. CoRR, abs/1207.4708.
Bellman, R. 1957. A Markovian decision process. Journal
of Mathematics and Mechanics, 6(5): 679–684.
Benjamin, A. S.; Rolnick, D.; and Kording, K. P. 2019. Mea-
suring and Regularizing Networks in Function Space. In
International Conference on Learning Representations.
Bergstra, J.; and Bengio, Y. 2012. Random Search for Hyper-
Parameter Optimization. In Journal of Machine Learning
Research.
Bishop, C. M. 2006. Pattern recognition and machine learn-
ing. springer.
Bishop, C. M.; and Svensén, M. 2012. Bayesian hierarchical
mixtures of experts. arXiv preprint arXiv:1212.2447.
Brockman, G.; Cheung, V.; Pettersson, L.; Schneider, J.;
Schulman, J.; Tang, J.; and Zaremba, W. 2016. OpenAI
Gym. arXiv:1606.01540.
Caccia, M.; Rodriguez, P.; Ostapenko, O.; Normandin, F.;
Lin, M.; Page-Caccia, L.; Laradji, I. H.; Rish, I.; Lacoste,
A.; Vázquez, D.; et al. 2020. Online fast adaptation and
knowledge accumulation (osaka): a new approach to contin-
ual learning. Advances in Neural Information Processing
Systems, 33.
Cesa-Bianchi, N.; and Lugosi, G. 2006. Prediction, learning,
and games. Cambridge university press.

Chaudhry, A.; Facebook, M. R.; Research, A. I.; Elhoseiny,
M.; Ajanthan, T.; Dokania, P. K.; Torr, P. H. S.; and Ranzato,
M. . A. 2019. On Tiny Episodic Memories in Continual
Learning. arxiv.org:1902.10486.
Chevalier-Boisvert, M.; Willems, L.; and Pal, S. 2018. Min-
imalistic Gridworld Environment for OpenAI Gym. https:
//github.com/maximecb/gym-minigrid.
Chua, K.; Calandra, R.; McAllister, R.; and Levine, S. 2018.
Deep Reinforcement Learning in a Handful of Trials using
Probabilistic Dynamics Models. In Advances in Neural In-
formation Processing Systems 31, 4754–4765.
Espeholt, L.; Soyer, H.; Munos, R.; Simonyan, K.; Mnih, V.;
Ward, T.; Doron, Y.; Firoiu, V.; Harley, T.; Dunning, I.; et al.
2018. IMPALA: Scalable distributed deep-RL with impor-
tance weighted actor-learner architectures. In International
Conference on Machine Learning.
Eysenbach, B.; and Levine, S. 2019. If MaxEnt RL is the
Answer, What is the Question? arXiv:1910.01913.
Farquhar, S.; and Gal, Y. 2018. Towards robust evaluations
of continual learning. arXiv preprint arXiv:1805.09733.
Gal, Y.; and Ghahramani, Z. 2016. Dropout as a Bayesian
Approximation: Representing Model Uncertainty in Deep
Learning. In International Conference on Machine Learning.
Goyal, A.; Sodhani, S.; Binas, J.; Peng, X. B.; Levine, S.;
and Bengio, Y. 2020. Reinforcement Learning with Compet-
itive Ensembles of Information-Constrained Primitives. In
International Conference on Learning Representations.
Haarnoja, T.; Zhou, A.; Abbeel, P.; and Levine, S. 2018a.
Soft Actor-Critic: Off-Policy Maximum Entropy Deep Rein-
forcement Learning with a Stochastic Actor. In Proceedings
of the 35th International Conference on Machine Learning,
1861–1870.
Haarnoja, T.; Zhou, A.; Hartikainen, K.; Tucker, G.; Ha, S.;
Tan, J.; Kumar, V.; Zhu, H.; Gupta, A.; Abbeel, P.; and Levine,
S. 2018b. Soft Actor-Critic Algorithms and Applications.
CoRR, abs/1812.05905.
Henderson, P.; Islam, R.; Bachman, P.; Pineau, J.; Precup,
D.; and Meger, D. 2018. Deep Reinforcement Learning that
Matters. AAAI.
Hessel, M.; Modayil, J.; Van Hasselt, H.; Schaul, T.; Os-
trovski, G.; Dabney, W.; Horgan, D.; Piot, B.; Azar, M.;
and Deepmind, S. 2017. Rainbow: Combining Improve-
ments in Deep Reinforcement Learning. In AAAI. ISBN
1710.02298v1.
Hinton, G.; Vinyals, O.; and Dean, J. 2015. Distill-
ing the knowledge in a neural network. arXiv preprint
arXiv:1503.02531.
Isele, D.; and Cosgun, A. 2018. Selective Experience Replay
for Lifelong Learning. In AAAI.
Khetarpal, K.; Riemer, M.; Rish, I.; and Precup, D. 2020.
Towards continual reinforcement learning: A review and per-
spectives. arXiv preprint arXiv:2012.13490.
Kingma, D. P.; and Lei Ba, J. 2015. ADAM: A Method for
Stochastic Optimization. In ICLR.
Kingma, D. P.; and Welling, M. 2013. Auto-Encoding Varia-
tional Bayes. CoRR, abs/1312.6114.

7150



Kirkpatrick, J.; Pascanu, R.; Rabinowitz, N. C.; Veness, J.;
Desjardins, G.; Rusu, A. A.; Milan, K.; Quan, J.; Ramalho, T.;
Grabska-Barwinska, A.; Hassabis, D.; Clopath, C.; Kumaran,
D.; and Hadsell, R. 2016. Overcoming catastrophic forgetting
in neural networks. CoRR, abs/1612.00796.
Lakshminarayanan, B.; Pritzel, A.; and Blundell, C. 2017.
Simple and Scalable Predictive Uncertainty Estimation using
Deep Ensembles. In Neural Information Processing Systems.
Lee, S.; Ha, J.; Zhang, D.; and Kim, G. 2020. A Neural
Dirichlet Process Misture Model for Task-Free Continaul
Learning. In International Conference on Learning Repre-
sentations.
Li, Z.; and Hoiem, D. 2017. Learning without Forgetting.
IEEE Transactions on Pattern Analysis and Machine Intelli-
gence.
Lin, L.-J. 1992. Self-Improving Reactive Agents Based on
Reinforcement Learning, Planning and Teaching. Mach.
Learn., 8(3–4): 293–321.
Lin, X.; Zhen, H.-L.; Li, Z.; Zhang, Q.; and Kwong, S. 2019.
Pareto multi-task learning. arXiv preprint arXiv:1912.12854.
Lopez-Paz, D.; and Ranzato, M. . A. 2017. Gradient Episodic
Memory for Continual Learning. In Advances in Neural
Information Processing Systems.
Mania, H.; Guy, A.; and Recht, B. 2018. Simple random
search provides a competitive approach to reinforcement
learning. arXiv preprint arXiv:1803.07055.
Mendez, J. A.; Wang, B.; and Eaton, E. 2020. Lifelong Policy
Gradient Learning of Factored Policies for Faster Training
Without Forgetting. In Advances in Neural Information Pro-
cessing Systems.
Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A. A.; Veness,
J.; Bellemare, M. G.; Graves, A.; Riedmiller, M.; Fidjeland,
A. K.; Ostrovski, G.; Petersen, S.; Beattie, C.; Sadik, A.;
Antonoglou, I.; King, H.; Kumaran, D.; Wierstra, D.; Legg,
S.; and Hassabis, D. 2015. Human-level control through deep
reinforcement learning. Nature.
Nekoei, H.; Badrinaaraayanan, A.; Courville, A.; and Chan-
dar, S. 2021. Continuous Coordination As a Realistic Sce-
nario for Lifelong Learning. arXiv:2103.03216.
Nguyen, C. V.; Li, Y.; Bui, T. D.; and Turner, R. E. 2018.
Variational Continual Learning. In International Conference
on Learning Representations.
Nix, D. A.; and Weigend, A. S. 1994. Estimating the mean
and variance of the target probability distribution. In IEEE
International Conference on Neural Networks - Conference
Proceedings, volume 1, 55–60.
OpenAI; Andrychowicz, M.; Baker, B.; Chociej, M.;
Józefowicz, R.; McGrew, B.; Pachocki, J. W.; Pachocki, J.;
Petron, A.; Plappert, M.; Powell, G.; Ray, A.; Schneider, J.;
Sidor, S.; Tobin, J.; Welinder, P.; Weng, L.; and Zaremba, W.
2018. Learning Dexterous In-Hand Manipulation. CoRR,
abs/1808.00177.
Rajendran, J.; Irpan, A.; and Jang, E. 2020. Meta-Learning
Requires Meta-Augmentation. In Advances in Neural Infor-
mation Processing Systems 33.

Ring, M. B. 1994. Continual learning in reinforcement envi-
ronments. Ph.D. thesis, University of Texas at Austin.
Robert M. French. 1999. Catastrophic forgetting in con-
nectionists networks. Trends in Cognitive Sciences, 3(4):
128–135.
Rolnick, D.; Ahuja, A.; Schwarz, J.; Lillicrap, T.; and Wayne,
G. 2019. Experience Replay for Continual Learning. In
Advances in Neural Information Processing Systems 32, 350–
360.
Rusu, A. A.; Rabinowitz, N. C.; Desjardins, G.; Soyer, H.;
Kirkpatrick, J.; Kavukcuoglu, K.; Pascanu, R.; and Hadsell, R.
2016. Progressive Neural Networks. CoRR, abs/1606.04671.
Sabour, S.; Frosst, N.; and Hinton, G. E. 2017. Dynamic
routing between capsules. arXiv preprint arXiv:1710.09829.
Schaul, T.; Horgan, D.; Gregor, K.; and Silver, D. 2015. Uni-
versal value function approximators. In International confer-
ence on machine learning, 1312–1320. PMLR.
Schwarz, J.; Czarnecki, W.; Luketina, J.; Grabska-Barwinska,
A.; Teh, Y. W.; Pascanu, R.; and Hadsell, R. 2018. Progress
& Compress: A scalable framework for continual learning.
In Dy, J. G.; and Krause, A., eds., Proceedings of the 35th
International Conference on Machine Learning, ICML 2018,
Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018,
volume 80 of Proceedings of Machine Learning Research,
4535–4544. PMLR.
Shin, H.; Lee, J. K.; Kim, J.; and Kim, J. 2017. Continual
Learning with Deep Generative Replay. In Advances in
Neural Information Processing Systems.
Silver, D.; Huang, A.; Maddison, C. J.; Guez, A.; Sifre,
L.; van den Driessche, G.; Schrittwieser, J.; Antonoglou,
I.; Panneershelvam, V.; Lanctot, M.; Dieleman, S.; Grewe,
D.; Nham, J.; Kalchbrenner, N.; Sutskever, I.; Lillicrap, T. P.;
Leach, M.; Kavukcuoglu, K.; Graepel, T.; and Hassabis, D.
2016. Mastering the game of Go with deep neural networks
and tree search. Nat., 529(7587): 484–489.
Sutton, R. S.; Barto, A. G.; et al. 1998. Introduction to
reinforcement learning, volume 135. MIT press Cambridge.
van de Ven, G. M.; and Tolias, A. S. 2018. Three scenar-
ios for continual learning. In NeurIPS Continual Learning
workshop.
Van Hasselt, H.; Guez, A.; and Silver, D. 2015. Deep Rein-
forcement Learning with Double Q-learning. In AAAI. ISBN
1509.06461v3.
Wang, Z.; Schaul, T.; Hessel, M.; Lanctot, M.; and de Freitas,
N. 2016. Dueling Network Architectures for Deep Reinforce-
ment Learning Hado van Hasselt. In ICML.
Watkins, C. J. C. H.; and Dayan, P. 1992. Q-learning. Ma-
chine Learning, 8(3): 279–292.
Yu, T.; Kumar, S.; Gupta, A.; Levine, S.; Hausman, K.; Finn,
C.; University, S.; Berkeley, U. C.; and At Google, R. 2020.
Gradient Surgery for Multi-Task Learning. In Advances in
Neural Information Processing Systems.
Zenke, F.; Poole, B.; and Ganguli, S. 2017. Continual Learn-
ing Through Synaptic Intelligence. In International Confer-
ence on Machine Learning.

7151


