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Abstract
We consider a general task called partial Wasserstein cov-
ering with the goal of providing information on what pat-
terns are not being taken into account in a dataset (e.g.,
dataset used during development) compared with another
dataset(e.g., dataset obtained from actual applications). We
model this task as a discrete optimization problem with partial
Wasserstein divergence as an objective function. Although
this problem is NP-hard, we prove that it satisfies the sub-
modular property, allowing us to use a greedy algorithm with
a 0.63 approximation. However, the greedy algorithm is still
inefficient because it requires solving linear programming for
each objective function evaluation. To overcome this ineffi-
ciency, we propose quasi-greedy algorithms that consist of a
series of acceleration techniques, such as sensitivity analysis
based on strong duality and the so-called C-transform in the
optimal transport field. Experimentally, we demonstrate that
we can efficiently fill in the gaps between the two datasets
and find missing scene in real driving scenes datasets.

Introduction
A major challenge in real-world machine learning applica-
tions is coping with mismatches between the data distribu-
tion obtained in real-world applications and those used for
development. Regions in the real-world data distribution that
are not well supported in the development data distribution
(i.e., regions with low relative densities) result in potential
risks such as a lack of evaluation or high generalization er-
ror, which in turn leads to low product quality. Our motiva-
tion is to provide developers with information on what pat-
terns are not being taken into account when developing prod-
ucts by selecting some of the (usually unlabeled) real-world
data distribution, also referred to as application dataset,1 to
fill in the gaps in the development dataset. Note that the term
“development” includes choosing models to use, designing
subroutines for fail safe, and training/testing models.

Our research question is formulated as follows. To re-
solve the lack of data density in development datasets, how
and using which metric can we select data from applica-
tion datasets with a limited amount of data for develop-
ers to understand? One reasonable approach is to define

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1More precisely, we call a finite set of data sampled from the
real-world data distribution application dataset in this study.

Figure 1: Concept of PWC. PWC extracts some data from
an unlabeled application dataset by minimizing the partial
Wasserstein divergence between the application dataset and
the union of the selected data and a development dataset.
PWC focuses on regions in which development data are
lacking compared with the application dataset, whereas
anomaly detection extracts irregular data, and active learn-
ing selects to improve accuracy.

the discrepancy between the data distributions and select
data to minimize this discrepancy. The Wasserstein distance
has attracted significant attention as a metric for data dis-
tributions (Arjovsky, Chintala, and Bottou 2017; Alvarez-
Melis and Fusi 2020). However, the Wasserstein distance
is not capable of representing the asymmetric relationship
between application datasets and development datasets, i.e.,
the parts that are over-included during development increase
the Wasserstein distance.

In this paper, we propose partial Wasserstein covering
(PWC) that selects a limited amount of data from the ap-
plication dataset by minimizing the partial Wasserstein di-
vergence (Bonneel and Coeurjolly 2019) between the appli-
cation dataset and the union of the development dataset and
the selected data. PWC, as illustrated in Fig. 1, selects data
from areas with fewer development data than application
data in the data distributions (lower-right area in the blue
distribution in Fig. 1) while ignoring areas with sufficient
development data (upper-middle of the orange distribution).
We also highlight the data selected through an anomaly de-
tection method, LOF (Breunig et al. 2000), where irregular
data (upper-right points) were selected, but the major density
difference was ignored. Furthermore, we show the selection
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obtained using an active learning method, coreset with a k-
center (Sener and Savarese 2018), where the data are chosen
to improve the accuracy rather than fill the gap in terms of
the distribution mismatch.

Our main contributions are summarized as follows.

• We propose PWC that extracts data that are lacking in a
development dataset from an application dataset by mini-
mizing the partial Wasserstein divergence between an ap-
plication dataset and the development dataset.

• We prove that PWC is a maximization problem involv-
ing a submodular function whose inputs are the set of
selected data. This allows us to use a greedy algorithm
with a guaranteed approximation ratio.

• Additionally, we propose fast heuristics based on sensi-
tivity analysis and the Sinkhorn derivative for an acceler-
ated computation.

• Experimentally, we demonstrate that compared with
baselines, PWC extracts data lacking in the development
data distribution from the application distribution more
efficiently.

Preliminaries
In this section, we introduce the notations used throughout
this paper. We then describe partial Wasserstein divergences,
sensitivity analysis for LP, and submodular functions.

Notations
Vectors and matrices are denoted in bold (e.g., x and A),
where xi and Aij denote the ith and (i, j)th elements, re-
spectively. To clarify the elements, we use notations such as
x = (f(i))i and A = (g(i, j))ij , where f and g specify the
element values depending on their subscripts. 〈·, ·〉 denotes
the inner product of matrices or vectors. 1n ∈ Rn is a vector
with all elements equal to one. For a natural number n, we
define [[n]] := {1, · · · , n}. For a finite set V , we denote its
power set as 2V and its cardinality as |V |. The L2-norm is
denoted as ‖ · ‖. The delta function is denoted as δ(·). R+

is a set of real positive numbers, and [a, b] ⊂ R denotes a
closed interval. I[·] denotes an indicator function (zero for
false and one for true).

Partial Wasserstein Divergence
In this paper, we consider the partial Wasserstein diver-
gence (Figalli 2010; Bonneel and Coeurjolly 2019; Chapel,
Alaya, and Gasso 2020) as an objective function. Partial
Wasserstein divergence is designed to measure the discrep-
ancy between two distributions with different total masses
by considering variations in optimal transport. Throughout
this paper, datasets are modeled as empirical distributions
that are represented by mixtures of delta functions without
necessarily having the same total mass. Suppose two em-
pirical distributions (or datasets) X and Y with probabil-
ity masses a ∈ Rm+ and b ∈ Rn+, which are denoted as
X =

∑m
i=1 aiδ(x

(i)) and Y =
∑n
j=1 bjδ(y

(j)). Without
loss of generality, the total mass of Y is greater than or equal
to that of X (i.e.,

∑m
i=1 ai = 1 and

∑n
j=1 bj ≥ 1).

Based on the definitions above, we define the partial
Wasserstein divergence as follows:2

PW2(X,Y ) := min
P∈U(a,b)

〈P,C〉 ,where

U(a,b) = {P ∈ [0, 1]m×n | P1n = a, P>1m ≤ b},
(1)

where Cij := ‖x(i) − y(j)‖2 is the transport cost between
x(i) and y(j), and Pij is the amount of mass flowing from
x(i) to y(j) (to be optimized). Unlike the standard Wasser-
stein distance, the second constraint in Eq. (1) is not de-
fined with “=”, but with “≤”. This modification allows us to
treat distributions with different total masses. The condition
P>1m ≤ b indicates that the mass in Y does not need to be
transported, whereas the condition P1n = a indicates that
all of the mass in X should be transported without excess
or deficiency (just as in the original Wasserstein distance).
This property is useful for the problem defined below, which
treats datasets with vastly different sizes.

To compute the partial Wasserstein divergence, we must
solve the minimization problem in Eq.(1). In this paper,
we consider the following two methods. (i) LP using sim-
plex method. (ii) Generalized Sinkhorn iteration with en-
tropy regularization (with a small regularization parameter
ε > 0) (Benamou et al. 2015; Peyré and Cuturi 2019).

As will be detailed later, an element in mass b varies when
adding data to the development datasets. A key to our algo-
rithm is to quickly estimate the extent to which the partial
Wasserstein divergence will change when an element in b
varies. If we compute PW2 using LP, we can employ a sen-
sitivity analysis, which will be described in the following
paragraph. If we use generalized Sinkhorn iterations, we can
use automatic differentiation techniques to obtain a partial
derivative with respect to bj .

LP and Sensitivity Analysis
The sensitivity analysis of LP plays an important role in our
algorithm. Given a variable x ∈ Rm and parameters c ∈
Rm, d ∈ Rn, and A ∈ Rn×m, the standard form of LP
can be written as follows: min c>x, s.t. Ax ≤ d, x ≥ 0.
Sensitivity analysis is a framework for estimating changes in
a solution when the parameters c,A, and d of the problem
vary. We consider a sensitivity analysis for the right-hand
side of the constraint (i.e., d). When dj changes as dj +
∆dj , the optimal value changes by y∗j∆dj if a change ∆dj
in dj lies within (dj , dj), where y∗ is the optimal solution
of the following dual problem corresponding to the primal
problem: max d>y s.t. A>y ≥ c, y ≥ 0.We refer readers
to (Vanderbei 2015) for the details of calculating the upper
bound dj and the lower bound di.

Submodular Function
Our covering problem is modeled as a discrete optimization
problem involving submodular functions, which are a sub-

2The partial optimal transport problems in the literature contain
a wider problem definition than Eq.(1) as summarized in Table 1 (b)
of (Bonneel and Coeurjolly 2019), but this paper employs this one-
side relaxed Wasserstein divergence corresponding to Table 1 (c)
in (Bonneel and Coeurjolly 2019) without loss of generality.
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class of set functions that play an important role in discrete
optimization. A set function φ : 2V → R is called a submod-
ular iff φ(S ∪T ) +φ(S ∩T ) ≤ φ(S) +φ(T ) (∀S, T ⊆ V ).
A submodular function is monotone iff φ(S) ≤ φ(T ) for
S ⊆ T . An important property of monotone submodular
functions is that a greedy algorithm provides a (1− 1/e) ≈
0.63-approximate solution to the maximization problem un-
der a budget constraint |S| ≤ K (Nemhauser, Wolsey, and
Fisher 1978). The contraction φ̃ : 2V → R of a (mono-
tone) submodular function φ, which is defined as φ̃(S) :=
φ(S ∪ T )− φ(T ), where T ⊆ V , is also a (monotone) sub-
modular function.

Partial Wasserstein Covering Problem
Formulation
Our goal is to fill in the gap between the application dataset
Dapp by adding some data from a candidate dataset Dcand
to a small dataset Ddev. We consider Dcand = Dapp (i.e.,
we copy some data in Dapp and add them into Ddev) in the
above-mentioned scenarios, but we herein consider the most
general formulation. We model this task as a discrete op-
timization problem called the partial Wasserstein covering
problem.

Given a dataset for development Ddev = {y(j)}Ndev
j=1, a

dataset obtained from an application Dapp = {x(i)}Napp
i=1 ,

and a dataset containing candidates for selection Dcand =
{s(j)}Ncand

j=1 , where Napp ≥ Ndev, the PWC problem is de-
fined as the following optimization:3

max
S⊆Dcand

s.t. |S|≤K

−PW2(Dapp, S ∪ Ddev) + PW2(Dapp,Ddev) (2)

We select a subset S from the candidate dataset Dcand un-
der the budget constraint |S| ≤ K (� Ncand), and then add
that subset to the development dataDdev to minimize the par-
tial Wasserstein divergence between the two datasets Dapp
and S ∪ Ddev. The second term is a constant with respect to
S, which is included to make the objective non-negative.

In Eq. (2), we must specify the probability mass (i.e., a
and b in Eq. (1)) for each data point. Here, we employ a uni-
form mass, which is a natural choice because we do not have
prior information regarding each data point. Specifically, we
set the weights to ai = 1/Napp for Dapp and bj = 1/Ndev for
S ∪ Ddev. With this choice of masses, we can easily show
that PW2(Dapp, S ∪ Ddev) =W2(Dapp,Ddev) when S = ∅,
where W2(Dapp,Ddev) is the Wasserstein distance. There-
fore, based on the monotone property, the objective value is
non-negative for any S.

The PWC problem in Eq.(2) can be written as a mixed
integer linear program (MILP) as follows. Instead of using
the divergence between Dapp and S ∪ Ddev, we consider the
divergence between Dapp and Dcand ∪Ddev. Hence, the mass

3We herein consider the partial Wasserstein divergence be-
tween the unlabled datasets, because the application and candidate
datasets are usually unlabeled. If they are labeled, we can use the
labels information as in (Alvarez-Melis and Fusi 2020).

b is an (Ncand + Ndev)-dimensional vector, where the first
Ncand elements correspond to the data in Dcand and the re-
maining elements correspond to the data inDdev. In this case,
we never transport to data points in Dcand \ S, meaning we
use the following mass that depends on S:

bj(S) =

{
I[s(j)∈S]
Ndev

, if 1 ≤ j ≤ Ncand
1
Ndev

, if Ncand + 1 ≤ j.
(3)

As a result, the problem is an MILP problem with an objec-
tive function 〈P,C〉 w.r.t. S ⊆ Dcand and P ∈ U(a,b(S))
with |S| ≤ K and ai = 1/Napp.

One may wonder why we use the partial Wasserstein di-
vergence in Eq.(2) instead of the standard Wasserstein dis-
tance. This is because the asymmetry in the conditions of
the partial Wasserstein divergence enables us to extract only
the parts with a density lower than that of the application
dataset, whereas the standard Wasserstein distance becomes
large for parts with sufficient density in the development
dataset. Furthermore, the guaranteed approximation algo-
rithms that we describe later can be utilized only for the
partial Wasserstein divergence version.

Submodularity of the PWC Problem
In this section, we prove the following theorem to guarantee
the approximation ratio of the proposed algorithms.

Theorem 1. Given the datasets X = {x(i)}Nx
i=1 and Y =

{y(j)}Ny

j=1, and a subset of a dataset S ⊆ {s(j)}Ns
j=1, φ(S) =

−PW2(X,S∪Y )+PW2(X,Y ) is a monotone submodular
function.

To prove Theorem 1, we reduce our problem to the partial
maximum weight matching problem (Bar-Noy and Rabanca
2016), which is known to be submodular. First, we present
the following lemmas. The proofs of lemmas are provided
in the supplementary materials.

Lemma 1. Let Q be the set of all rational numbers, and
m and n be positive integers with n ≤ m. Consider A ∈
Qm×n and b ∈ Qm. Then, the extreme points x∗ of a convex
polytope defined by the linear inequalities Ax ≤ b are also
rational, meaning that x∗ ∈ Qn.

Lemma 2. Let l,m, and n be positive integers, and Z =
[[n]]. Given a positive-valued m-by-n matrix R > 0, the fol-
lowing set function ψ : 2Z → R is a submodular function:

ψ(S) = max
P∈U≤(1m/m,b(S))

〈R,P〉 ,

where bj(S) = I[j∈S]
l ∀j ∈ [[n]].

(4)

Here, U≤(a,b(S)) is a set defined by replacing the con-
straint P1n = a in Eq. (1) with P1n ≤ a.

Lemma 3. If |S| ≥ l, there exists an optimal so-
lution P∗ in the maximization problem of ψ satisfying
P∗1n = 1m

m (i.e., P∗ := arg maxP∈U≤( 1m
m ,b(S)) 〈R,P〉 =

arg maxP∈U( 1m
m ,b(S)) 〈R,P〉).
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Proof of Theorem 1. Given Cmax = maxi,j Cij + γ,
where γ > 0, the following is satisfied:

φ(S) = (−Cmax + max
P∈U(a,b(S))

〈R,P〉)

− (−Cmax + max
P∈U(a,b(∅))

〈R,P〉),
(5)

where R = (Cmax − Cij)ij > 0, m = Nx, n = Ns + Ny ,
and l = Ny . Here, |S ∪ Y | ≥ Ny = l and Lemma 3
yield φ(S) = ψ(S ∪ Y ) − ψ(Y ). Since φ(S) is a contrac-
tion of the submodular function ψ(S) (Lemma 2), φ(S) =
−PW2(X,S∪Y )+PW2(X,Y ) is a submodular function.

We now prove the monotonicity of φ. For S ⊆ T , we have
U(a,b(S)) ⊆ U(a,b(T )) because b(S) ≤ b(T ). This im-
plies that φ(S) ≤ φ(T ).

Finally, we prove Proposition 1 to clarify the computa-
tional intractability of the PWC problem.
Proposition 1. The PWC problem with marginals a and
b(S) is NP-hard.

The proofs of Proposition 1 are provided in the supple-
mentary materials.

Algorithms
MILP and Greedy Algorithms The PWC problem in
Eq. (2) can be solved directly as an MILP problem. We re-
fer to this method as PW-MILP. However, this is extremely
inefficient when Napp, Ndev, and Ncand are large.

As a consequence of Theorem 1, a simple greedy al-
gorithm provides a 0.63 approximation because the prob-
lem is a type of monotone submodular maximization
with a budget constraint |S| ≤ K (Nemhauser, Wolsey,
and Fisher 1978). Specifically, this greedy algorithm se-
lects data from the candidate dataset Dcand sequentially in
each iteration to maximize φ. We consider two baseline
methods, called PW-greedy-LP and PW-greedy-ent.
PW-greedy-LP solves the LP problem using the simplex
method. PW-greedy-ent computes the optimal P? using
Sinkhorn iterations (Benamou et al. 2015).

Even for the greedy algorithms mentioned above, the
computational cost is still high because we need to calcu-
late the partial Wasserstein divergences for all candidates on
Dapp in each iteration, yielding a computational time com-
plexity ofO(K·Ncand·CPW ). Here,CPW is the complexity of
the partial Wasserstein divergence with the simplex method
for the LP or Sinkhorn iteration.

To reduce the computational cost, we propose heuristic
approaches called quasi-greedy algorithms. A high-level de-
scription of the quasi-greedy algorithms is provided below.
In each step of greedy selection, we use a type of sensitiv-
ity value that allows us to estimate how much the partial
Wasserstein divergence varies when adding candidate data,
instead of performing the actual computation of divergence.
Specifically, if we add a data point s(j) to S, denoted as
T = {s(j)}∪S, we have b(T ) = b(S)+

ej

Ndev
, where ej is a

one-hot vector with the corresponding jth element activated.
Hence, we can estimate the change in the divergence for data
addition by computing the sensitivity with respect to b(S).
If efficient sensitivity computation is possible, we can speed

Algorithm 1: Data selection for the PWC problem with sen-
sitivity analysis (PW-sensitivity-LP)

1: Input: Dapp,Ddev,Dcand
2: Output: S
3: S ← {}, t← 0
4: while |S| < K do
5: Calculate PW2(Dapp, S ∪ Ddev) , and obtain g∗(t)j

from the sensitivity analysis.
6: j∗ = arg minj∈[[Ncand]],s(j) /∈S g

∗(t)
j

7: S ← S ∪ {s(j∗)}
8: t← t+ 1
9: end while

up the greedy algorithms. We describe the concrete methods
for each of the approaches, simplex method, and Sinkhorn
iterations in the following paragraphs.

Quasi-Greedy Algorithm for the Simplex Method
When we use the simplex method for the partial Wasser-
stein divergence computation, we employ a sensitivity anal-
ysis for LP. The dual problem of partial Wasserstein diver-
gence computation is defined as follows.

max
f∈RNapp ,g∈RNcand+Ndev

〈f ,a〉+ 〈g,b(S)〉 ,

s.t. gj ≤ 0, fi + gj ≤ Cij , ∀i, j,
(6)

where f and g are dual variables. Using sensitivity analysis,
the changes in the partial Wasserstein divergences can be
estimated as g∗j∆bj , where g∗j is an optimal dual solution
of Eq. (6), and ∆bj is the change in bj . It is worth noting
that ∆bj now corresponds to I[s(j) ∈ S] in Eq. (3), and a
smaller Eq. (6) results in a larger Eq. (2). Thus, we propose
a heuristic algorithm that iteratively selects s(j

∗) satisfying
j∗ = arg minj∈[[Ncand]],s(j) /∈S g

∗(t)
j at iteration t, where g∗(t)j

is the optimal dual solution at t. We emphasize that we have
− 1
Ndev

g∗j = φ({s(j)} ∪ S) − φ(S) as long as bj − bj ≥
1/Ndev holds, where bj is the upper bound obtained from the
sensitivity analysis, leading to the same selection as that of
the greedy algorithm. The computational complexity of the
heuristic algorithm isO(K·CPW ) because we can obtain g∗

by solving the dual simplex. It should be noted that we add
a small value to bj when bj = 0 to avoid undefined values
in g. We refer to this algorithm as PW-sensitivity-LP
and summarize the overall algorithm in Algorithm 1.

For computational efficiency, we use the solution matrix
P from the previous step for the initial value in the sim-
plex algorithm in the current step. Any feasible solution
P ∈ U(a,b(S)) is also feasible because P ∈ U(a,b(T ))
for all S ⊆ T . The previous solutions of the dual forms f and
g are also utilized for the initialization of the dual simplex
and Sinkhorn iterations.

Faster Heuristic Using C-Transform The heuristics
above still require solving a large LP in each step, where
the number of dual constraints is Napp × (Ncand + Ndev).
Here, we aim to reduce the size of the constraints in the LP

7118



to Napp × (|S| + Ndev) � Napp × (Ncand + Ndev) using C-
transform (Sect.3.1 in (Peyré and Cuturi 2019)).

To derive the algorithm, we consider the dual Eq.(6). Con-
sidering the fact that bj(S) = 0 for s(j) /∈ S, we first solve
the smaller LP problem by ignoring j such that s(j) /∈ S,
whose system size is Napp × (|S| + Ndev). Let the opti-
mal dual solution of this smaller LP be (f∗,g∗), where
f∗ ∈ RNapp ,g∗ ∈ R|S|+Ndev . For each s(j) /∈ S, we con-
sider an LP in which s(j) is added to S. Instead of solv-
ing each LP such as PW-greedy-LP, we approximate the
optimal solution using a technique called the C-transform.
More specifically, for each j such that s(j) /∈ S, we only
optimize gj and fix the other variables to be the dual optimal
above. This is done by gCj := min{0,mini∈[[Napp]] Cij−f∗i }.
Note that this is the largest value of gj , satisfying the dual
constraints. This gCj gives the estimated increase in the ob-
jective function when s(j) /∈ S is added to S. Finally,
we select the instance j∗ = arg minj∈[[Ncand]],s(j) /∈S g

C
j . As

shown later, this heuristic experimentally works efficiently
in terms of computational times. We refer to this algorithm
as PW-sensitivity-Ctrans.

Quasi-Greedy Algorithm for Sinkhorn Iteration When
we use the generalized Sinkhorn iterations, we can easily ob-
tain the derivative of the entropy-regularized partial Wasser-
stein divergence ∇j := ∂PW2

ε(Dapp, S ∪ Ddev)/∂bj , where
PW2

ε denotes the partial Wasserstein divergence, using au-
tomatic differentiation techniques such as those provided
by PyTorch (Paszke et al. 2019). Based on this derivative,
we can derive a quasi-greedy algorithm for the Sinkhorn
iteration as j∗ = arg minj∈[[Ncand]],s(j) /∈S ∇j (i.e., we re-
place Lines 6 and 7 of Algorithm 1 with this formula). Be-
cause the derivative can be obtained with the same com-
putational complexity as the Sinkhorn iterations, the over-
all complexity is O(K · CPW ). We refer this algorithm
PW-sensitivity-ent.

Related Work
Instance Selection and Data Summarization Tasks for
selecting an important portion of a large dataset are common
in machine learning. Instance selection involves extracting
a subset of a training dataset while maintaining the target
task performance. Accoring to (Olvera-López et al. 2010),
two types of instance selection methods have been studied:
model-dependent methods (Hart 1968; Ritter 1975; Chou,
Kuo, and Chang 2006; Wilson 1972; Vázquez, Sánchez, and
Pla 2005) and label-dependent methods (Wilson and Mar-
tinez 2000; Brighton and Mellish 2002; Riquelme, Aguilar-
Ruiz, and Toro 2003; Bezdek and Kuncheva 2001; Liu and
Motoda 2002; Spillmann et al. 2006). Unlike instance se-
lection methods, PWCs do not depend on either model or
ground-truth labels. Data summarization involves finding
representative elements in a large dataset (Ahmed 2019).
Here, the submodularity plays an important role (Mitrovic
et al. 2018; Lin and Bilmes 2011; Mirzasoleiman, Zadi-
moghaddam, and Karbasi 2016; Tschiatschek et al. 2014).
Unlike data summarization, PWC focuses on filling in gaps
between datasets.

Anomaly Detection Our covering problem can be con-
sidered as the task of selecting a subset of a dataset that
is not included in the development dataset. In this regard,
our method is related to anomaly detectors e.g., LOF (Bre-
unig et al. 2000), one-class SVM (Schölkopf et al. 1999),
and deep learning-based methods (Kim et al. 2019; An and
Cho 2015). However, our goal is to extract patterns that are
less included in the development dataset, but have a certain
volume in the application, rather than selecting rare data that
would be considered as observation noise or infrequent pat-
terns that are not as important as frequent patterns.

Active Learning The problem of selecting data from an
unlabeled dataset is also considered in active learning. A
typical approach usees the output of the target model e.g.,
the entropy-based method (Holub, Perona, and Burl 2008;
Coletta et al. 2019), whereas some methods are independent
of the output of the model e.g., the k-center-based (Sener
and Savarese 2018), and Wasserstein distance-based ap-
proach (Shui et al. 2020). In contrast, our goal is finding
unconsidered patterns during development, even if they do
not contribute to improving the prediction performance by
directly adding them to the training data; developers may
use these unconsidered data to test the generalization perfor-
mance, design subroutines to process the patterns, redevelop
a new model, or alert users to not use the products in certain
special situations. Furthermore, we emphasize that the sub-
modularity and guaranteed approximation algorithms can be
used only with the partial Wasserstein divergence, but not
with the vanilla Wasserstein distance.

Facility Location Problem (FLP) The FLP and related
k-median (ReVelle and Swain 1970) are similar to our prob-
lem in the sense that we select data S ⊆ Dcand to minimize
an objective function. FLP is a mathematical model for find-
ing a desirable location for facilities (e.g., stations, schools,
and hospitals). While FLP models facility opening costs,
our data covering problem does not consider data selection
costs, making it more similar to k-median problems. How-
ever, unlike the k-median, our covering problem allows re-
laxed transportation for distribution, which is known as Kan-
torovich relaxation in the optimal transport field (Peyré and
Cuturi 2019). Hence, our approach using partial Wasserstein
divergence enables us to model more flexible assignments
among distributions beyond naı̈ve assignments among data.

Experiments

In our experiments, we considered a scenario in which we
wished to select some data in the application dataset Dapp
for the PWC problem (i.e., Dapp = Dcand). For PW-*-LP
and PW-sensitivity-Ctrans, we used IBM ILOG
CPLEX 20.01 (IBM ILOG CPLEX Optimization Studio
2013) for the dual simplex algorithm, where the sensitivity
analysis for LP is also available. For PW-*-ent, we com-
puted the entropic regularized version of the partial Wasser-
stein divergence using PyTorch (Paszke et al. 2019) on a
GPU. We computed the sensitivity using automatic differ-
entiation. We set the coefficient for entropy regularization
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Figure 2: Partial Wasserstein divergence PW2(Dapp, S ∪ Ddev) when data are sequentially selected and added to S (left).
Computational time, where colored areas indicate standard deviations (right).

Figure 3: Approximation ratios evaluated empirically for
K = 15 and 50 random instances.
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Figure 4: Relative frequency of missing category in selected
data. The black bars denote the standard deviations.

ε = 0.01 and terminated the Sinkhorn iterations when the
divergence did not change by at least maxi,j Cij × 10−12

compared with the previous step, or the number of itera-
tions reached 50,000. All experiments were conducted with
an Intel® Xeon® Gold 6142 CPU and an NVIDIA® TITAN
RTX™ GPU.

Comparison of Algorithms
First, we compare our algorithms, namely, the greedy-based
PW-greedy-*, sensitivity-based PW-sensitivity-*,
and random selection for the baseline. For the evaluation,
we generated two-dimensional random values following a
normal distribution for Dapp and Ddev, respectively. Fig-
ure 2 (left) presents the partial Wasserstein divergences be-
tween Dapp and S ∪ Ddev while varying the number of the
selected data when Napp = Ndev = 30 and Fig. 2 (right)
presents the computational times when K = 30 and

Napp = Ndev = Ncand varied. As shown in Fig. 2 (left),
PW-greedy-LP, and PW-sensitivity-LP select ex-
actly the same data as the global optimal solution obtained
by PW-MILP. As shown in Fig. 2 (right), considering the
logarithmic scale, PW-sensitivity-* significantly re-
duces the computational time compared with PW-MILP,
while the naı̈ve greedy algorithms do not scale. In particular,
PW-sensitivity-ent can be calculated quickly as long
as the GPU memory is sufficient, whereas its CPU version
(PW-sensitivity-ent(CPU)) is significantly slower.
PW-sensitivity-Ctrans is the fastest among the
methods without GPUs. It is 8.67 and 3.07 times faster than
PW-MILP and PW-sensitivity-LP, respectively. For
quantitative evaluation, we define the empirical approxima-
tion ratio as φ(SK)/φ(S∗K), where S∗K is the optimal solu-
tion obtained by PW-MILP when |S| = K. Figure 3 shows
the empirical approximation ratio (Napp = Ndev = 30,K =
15) for 50 different random seeds. Both PW-*-LP achieve
approximation ratios close to one, whereas PW-*-ent and
PW-sensitivity-Ctrans have slightly lower approx-
imation ratios4.

Finding a Missing Category
For the quantitative evaluation of the missing pattern find-
ings, we herein consider a scenario in which a category (i.e.,
label) is less included in the development dataset than in
the application dataset5. We employ subsets of the MNIST
dataset (LeCun, Cortes, and Burges 2010), where the devel-
opment dataset contains 0 labels at a rate of 0.5%, whereas
all labels are included in the application data in equal ratios
(i.e., 10%). We randomly sampled 500 images from the val-
idation split for each Dapp and Ddev. We employ the squared
L2 distance on the pixel space as the ground metric for our
method. For baseline methods, we employed LOF (Breunig
et al. 2000) novelty detection provided by scikit-learn (Pe-
dregosa et al. 2011) with default parameters. For the LOF,
we selected top-K data according to the anomaly scores.
We also employed active learning approaches based on en-
tropies of the prediction (Holub, Perona, and Burl 2008;
Coletta et al. 2019) and coreset with the k-center and k-
center greedy (Sener and Savarese 2018; Bachem, Lucic,

4An important feature of PW-*-ent is that they can be exe-
cuted without using any commercial solvers.

5Note that in real scenarios, missing patterns do not always cor-
respond to labels.
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and Krause 2017). For the entropy-based method, we train a
LeNet-like neural network using the training split, and then
select K data with high entropies of the predictions from
the application dataset. LOF and coreset algorithms are con-
ducted on the pixel space.

We conducted 10 trials using different random seeds
for the proposed algorithms and baselines, except for the
PW-greedy-* algorithms, because they took over 24h.
Figure 4 presents a histogram of the selected labels when
K = 30, where x-axis corresponds to labels of selected
data (i.e., 0 or not 0) and y-axis shows relative frequencies
of selected data. The proposed methods (i.e., PW-*) extract
more data corresponding to the label 0 (0.71 for PW-MILP)
than the baselines. We can conclude that the proposed meth-
ods successfully selected data from the candidate dataset
Dcand(= Dapp) to fill in the missing areas in the distribution.

Missing Scene Extraction in Driving Datasets
Finally, we demonstrate PWC in a realistic scenario,
using driving scene images. We adopted two datasets,
BDD100K (Yu et al. 2020) and KITTI (Object Detection
Evaluation 2012) (Geiger et al. 2013) as the application
and development datasets, respectively. The major differ-
ence between these two datasets is that KITTI (Ddev) con-
tains only daytime images, whereas BDD100k (Dapp) con-
tains both daytime and nighttime images. To reduce compu-
tational time, we randomly selected 1,500 data points for the
development dataset from the test split of the KITTI dataset
and 3,000 data points for the application dataset from the
test split of BDD100k. To compute the transport costs be-
tween images, we calculated the squared L2 norms between
the feature vectors extracted by a pretrained ResNet with 50
layers (He et al. 2016) obtained from Torchvision (Marcel
and Rodriguez 2010). Before inputting the images into the
ResNet, each image was resized to a height of 224 pixels and
then center-cropped to a width of 224, followed by normal-
ization. As baseline methods, we adopted the LOF (Breunig
et al. 2000) and coreset with the k-center greedy (Sener and
Savarese 2018). Figure 5 presents the obtained top-3 images.
One can see that PWC (PW-sensitivity-LP) selects
the major pattern (i.e., nighttime scenes) that is not included
in the development data, whereas LOF and coreset mainly
extracts specific rare scenes (e.g., a truck crossing a street
or out-of-focus scene). The coreset selects a single image
of nighttime scenes; however, we emphasize that providing
multiple images is essential for the developers to understand
what patterns in the image (e.g., nighttime, type of cars, or
roadside) are less included in the image.

The above results indicate that the PWC problem enables
us to accelerate updating ML-based systems when the dis-
tributions of application and development data are different
because our method does not focus on isolated anomalies
but major missing patterns in the application data, as shown
in Fig. 1 and Fig. 5. The ML workflow using our method can
efficiently find such patterns and allow developers to incre-
mentally evaluate and update the ML-based systems (e.g.,
test the generalization performance, redevelop a new model,
and designing a special subroutine for the pattern). Identi-
fying patterns that are not taken into account during devel-

(a) Partial Wassersein covering

(b) LOF

(c) Coreset (k-center greedy)

Figure 5: Covering results when the application dataset
(BDD100k) contains nighttime scenes, but the development
dataset (KITTI) does not. PWC (PW-sensitivity-LP)
extracts the major difference between the two datasets
(i.e., nighttime images), whereas LOF and coreset (k-center
greedy) mainly extract some rare cases.

opment and addressing them individually can improve the
reliability and generalization ability of ML-based systems,
such as image recognition in autonomous vehicles.

Conclusion
In this paper, we proposed the PWC, which fills in the
gaps between development datasets and application datasets
based on partial Wasserstein divergence. We also proved the
submodularity of the PWC, leading to a greedy algorithm
with the guaranteed approximation ratio. In addition, we
proposed quasi-greedy algorithms based on sensitivity anal-
ysis and derivatives of Sinkhorn iterations. Experimentally,
we demonstrated that the proposed method covers the ma-
jor areas of development datasets with densities lower than
those of the corresponding areas in application datasets. The
main limitation of the PWC is scalability; the space com-
plexity of the dual simplex or Sinkhorn iteration is at least
O(Napp · Ndev), which might require approximation, e.g.,
stochastic optimizations (Aude et al. 2016), slicing (Bon-
neel and Coeurjolly 2019) and neural networks (Xie et al.
2019)). As a potential risk, if infrequent patterns in applica-
tion datasets are as important as frequent patterns, our pro-
posed method may ignore some important cases, and it may
be desirable to use our covering with methods focusing on
fairness.
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F.; Fox, E. B.; and Garnett, R., eds., Advances in Neural In-
formation Processing Systems 32, 8024–8035.

7122



Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.;
Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss,
R.; Dubourg, V.; Vanderplas, J.; Passos, A.; Cournapeau, D.;
Brucher, M.; Perrot, M.; and Duchesnay, E. 2011. Scikit-
learn: Machine Learning in Python. Journal of Machine
Learning Research, 12: 2825–2830.
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