
Multiple-Source Domain Adaptation via Coordinated Domain Encoders and
Paired Classifiers

Payam Karisani
Emory University

payam.karisani@emory.edu

Abstract

We present a novel multiple-source unsupervised model for
text classification under domain shift. Our model exploits the
update rates in document representations to dynamically inte-
grate domain encoders. It also employs a probabilistic heuris-
tic to infer the error rate in the target domain in order to pair
source classifiers. Our heuristic exploits data transformation
cost and the classifier accuracy in the target feature space. We
have used real world scenarios of Domain Adaptation to eval-
uate the efficacy of our algorithm. We also used pretrained
multi-layer transformers as the document encoder in the ex-
periments to demonstrate whether the improvement achieved
by domain adaptation models can be delivered by out-of-the-
box language model pretraining. The experiments testify that
our model is the top performing approach in this setting.

1 Introduction
Modern classifiers typically rely on large amount of train-
ing data. Collecting large training sets is expensive and in
some cases very challenging, e.g., in legal domain (Holzen-
berger, Blair-Stanek, and Van Durme 2020) or in social me-
dia domain (Karisani, Choi, and Xiong 2021; Karisani and
Karisani 2020). There exist several techniques to address
the lack of training data, one of which is Domain Adapta-
tion (Ben-David and Schuller 2003), where a classifier is
trained in one domain (the source domain) and evaluated
in another domain (the target domain). One of the funda-
mental assumptions of text classification is that training and
test data follow an identical distribution. A classifier trained
in one domain, typically is a poor predictor for another do-
main (Ben-David et al. 2010). Therefore, Domain Adapta-
tion primarily tackles the domain shift challenge (Torralba
and Efros 2011). One of the major areas of Domain Adap-
tation, which is also the subject of our study, is the unsuper-
vised setting where there is no labeled target data available.

Theoretical studies (Ben-David et al. 2010) have shown
that the outcome of Domain Adaptation is primarily influ-
enced by the performance of the classifier in the source do-
main and the discrepancy between the source and the target
domains. The former can be improved irrespective of do-
main shift, therefore, existing domain adaptation models pri-
marily focus on the latter. These models approach the task
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either explicitly by minimizing the divergence between the
two distributions (Long et al. 2015) or via a binary classifier
to increase the domain confusion and to reduce the diver-
gence (Ganin and Lempitsky 2015). In either case, the aim is
to obtain domain-invariant features between the source and
the target (Yosinski et al. 2014).

In this article, we study multiple-source Domain Adapta-
tion (Mansour, Mohri, and Rostamizadeh 2009). In this set-
ting, there are multiple labeled source domains available and
the goal is to minimize the classification error in the target
domain. While the availability of multiple sources provides
us with more opportunities, this also comes with challenges.
Naively applying single-source domain adaptation models in
a multiple-source setting may cause negative transfer (Pan
and Yang 2010), i.e., deterioration in performance. In this
work, we propose an objective function to minimize negative
transfer via the coordination between the representations of
source domains. Additionally, based on the intuition that ev-
ery source classifier may specialize in predicting some re-
gions of the target domain, we present a heuristic criterion
to guide the weak source classifiers by the reliable ones.

We evaluate our model in two datasets consisting of user-
generated data in Twitter. We select this domain because it is
considerably less explored compared to other domains, e.g.,
sentiment analysis. The documents in this domain are short
and their language is highly informal (Karisani, Agichtein,
and Ho 2020). Additionally, due to the nature of the tasks in
this domain the class distributions are typically imbalanced
(Karisani and Agichtein 2018). Taken together, these are sig-
nificant challenges for existing methods. The results in this
setting testify that our model is the most robust approach
across various cases and consistently outperforms multiple
state of the art baselines.

2 Related Work
Mansour, Mohri, and Rostamizadeh (2009) theoretically
show that, in multiple-source domain adaptation setting,
simply combining the source classifiers yields a high pre-
diction error. They show that there always exists a weighted
average of the source classifiers that has a low error pre-
diction in the target domain–their weights are derived
from the source distributions. Therefore, existing multiple-
source models typically rely on either inventively aggregat-
ing source data (Guo, Shah, and Barzilay 2018) or craft-
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ing source classifiers (Xu et al. 2018). While studies oc-
casionally make an attempt to theoretically justify their ap-
proach (Long et al. 2015), majority of existing domain adap-
tation studies rely on intuitions and heuristics (Tzeng et al.
2017; Zhao et al. 2020; Isobe et al. 2021). In this work, we
show the same pragmatism and propose an intuitive objec-
tive function to reduce the risk of negative transfer, and also
present a probabilistic heuristic to encourage the collabora-
tion between source classifiers.

Our model, which we call Coordinated Encoders and
Paired Classifiers (CEPC ), possesses two distinct quali-
ties. First, it employs the intuitive idea of coordination be-
tween source encoders. The aim of coordination is to or-
ganize source domains such that the domains with similar
characteristics share the same encoder. Existing studies re-
sort to different approaches. For instance, Peng et al. (2019)
share one encoder between all source domains, however,
aim to reduce the discrepancy between them via a new loss
term. Guo, Pasunuru, and Bansal (2020) incorporate mul-
tiple discrepancy terms and dynamically select source do-
mains. Yang et al. (2020a) dynamically select data points
and Wright and Augenstein (2020) dynamically aggregate
source classifiers.

The second quality of our model is to exploit the prop-
erties of source data to pair source classifiers via a heuris-
tic criterion. Here, we aim to guide the weak classifiers
by the more reliable ones, therefore, the weak classifiers
can adjust their class boundaries based on the information
that is not available in their training data. Previous stud-
ies have explored the interaction between source classifiers
using different approaches. Zhao et al. (2020) adversarially
train source classifiers and use the distance between source
and target domains to fine-tune their model. Different from
their work, in our model source classifiers are paired and
can interact. Isobe et al. (2021) employ the KL divergence
term as an objective term, however, their model is developed
for the multi-target setting. Other relevant approaches in this
area include combining semi-supervised learning and unsu-
pervised domain adaptation to guide source classifiers (Yang
et al. 2020b), and using attention mechanism to assign target
data points to source domains (Cui and Bollegala 2020).

3 Proposed Method
In multiple-source unsupervised domain adaptation, we are
given a set of M source domains S1, S2, . . . , SM denoted
by {(X

sj
i , y

sj
i )}

nsj

i=1 where (Xs•
i , ys•i ) is the i-th labeled doc-

ument in S• and ns• is the number of documents in S•. We
are also given a target domain T denoted by {Xt

i}
nt

i=1, where
Xt
i is the i-th unlabeled document and nt is the number of

documents in the domain T . The aim is to train a model
which minimizes the prediction error in the target domain
using the labeled source data. Note that the distributions of
the documents in the source domains and the target domain
are different, thus, a classifier trained on the source domains
is typically a poor predictor for the target domain.

Figure 1 illustrates our model (CEPC ). Here, we as-
sume that there are three source domains available. For each
source domain, there is an encoder (E) and a classifier (C).

𝑺𝟏 Document Encoder
(𝐄𝟏)

Source (𝑺𝟏) 
Documents

Target (𝐓) 
Documents

𝑺𝟏 Classifier
(𝐂𝟏)
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Discrepancy 
Loss

Divergence 
Loss
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Figure 1: Overview of our model for a task with three source
domains. The output of each domain encoder is used in the
corresponding source classifier. To train each pair of (en-
coder, classifier) three loss terms are minimized: 1) the reg-
ular classification loss, 2) the discrepancy loss between the
encoded source and target data (see Section 3.5), and 3) the
divergence loss between the output of the source classifiers
(see Section 3.2). The dashed line indicate shared parame-
ters (see Section 3.1).

Each pair is trained by three objective terms, namely: the
classification loss, the discrepancy loss, and the divergence
loss. The classification loss, which is the Negative Log-
Likelihood, quantifies the calibration error of the classifier
in the labeled source data. The discrepancy loss, quantifies
the variation between the distribution of the encoded source
and target documents, and the divergence loss, which quan-
tifies the inconsistency between the output of source classi-
fiers. The dashed lines indicate shared parameters between
the modules. At test time, the source classifiers–along their
corresponding encoders–are used to label target documents,
and a majority voting is used to obtain the final labels.

The encoder in our model is employed to project docu-
ments into a shared low-dimensional space. For the discus-
sion about the classification and the discrepancy loss terms
see Section 3.5. Here, we discuss the divergence loss, which
aims to minimize the inconsistency between source classi-
fiers. The intuition behind this loss term is that because the
distribution of the data in each source domain is unique, this
can potentially lead to source classifiers that specialize in
particular regions of the target domain. If we succeed in de-
tecting these regions we can exploit the information to pair
the classifiers. That is, a classifier which is expected to per-
form well in one region, can guide the other classifiers and
adjust their class boundaries.

Additionally, we introduce an intuitive algorithm to auto-
matically coordinate domain encoders. In Figure 1, we see
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that the parameters of E2 and E3 are shared, while E1 has
an exclusive set of parameters. The common theme in the
literature is to have a shared encoder between source do-
mains (Peng et al. 2019; Guo, Pasunuru, and Bansal 2020).
While this design decision has been made for a good reason
(Caruana 1997), we argue that if negative transfer (Pan and
Yang 2010) occurs in the shared encoder, it can propagate in
the model and can exacerbate the problem. Thus, we aim to
automatically coordinate the encoders to minimize the risk
of negative transfer. Below, we introduce our algorithm for
coordinating encoders. Then, we propose our heuristic crite-
rion to pair source classifiers. Finally, we explain our train-
ing procedure.

3.1 Coordinated Domain Encoders
To provide an effective coordination between domain en-
coders we base our approach on the extent in which encoders
must be updated to become domain-invariant. The intuition
is that if two source domains with disproportional update
rates share their encoders, one domain can potentially dom-
inate the encoder updates and leave the counterpart domain
under-trained. This problem is more serious when multiple
domains share one encoder and one of them introduces neg-
ative transfer. In this case, the domination can cause a total
failure. In the remainder of this section, we make an attempt
to formalize and implement this intuitive idea by making a
connection between encoder coordination and the training
procedure in single source domain adaptation models.

We begin by considering the typical objective function
(Long et al. 2015) of training a model under domain shift
with a single source domain S and minimizing a discrep-
ancy term:

L =
1

ns

ns∑
i=1

J(θ(Xs
i ), y

s
i ) + λD(E(Xs), E(Xt)), (1)

where the model is parameterized by θ, J is the cross-
entropy function, E(Xs) and E(Xt) are the output of the
encoder for all source and target documents respectively, D
is the discrepancy term, and λ > 0 is a scaling factor–the
rest of the terms were defined earlier in the section. The dis-
crepancy term D governs the degree in which the parameters
of the encoder must update to reduce the variation between
source and target representations. The examples of such a
loss term include central moment discrepancy (Zellinger
et al. 2019) and association loss (Haeusser et al. 2017). The
reason to employ the scale factor λ is that unconditionally
reducing the variation between source and target represen-
tations can deteriorate the classification performance in the
source domain. This can subsequently deteriorate the perfor-
mance in the target domain, which is undesirable.

In the case that two source domains S1 and S2 share one
encoder, Equation 1 is written as follows:

L =

2∑
j=1

1

nsj

nsj∑
i=1

J(θ(X
sj
i ), y

sj
i ) + λF(E(Xs1), E(Xs2), E(Xt)),

(2)

where E(Xs1), E(Xs2), and E(Xt) are the output of the en-
coder for the documents in S1, S2, and T respectively. Here,

F is an arbitrary discrepancy function to force the encoder
to remain domain-invariant between S1, S2, and T . One ex-
ample of such an objective is proposed by Peng et al. (2019).
In our model, we assume this loss function is linear in terms
of two discrepancy terms in the source domains, i.e.,:

F = λ1D(E(Xs1), E(Xt)) + λ2D(E(Xs2), E(Xt)), (3)

where λ1 and λ2 are two scaling factors of the introduced
linear terms. Given the generalized form of Equation 3 for
M source domains–i.e., a weighted average of M discrep-
ancy terms–we coordinate source encoders based on the op-
timal values of λ in each single source domain adaptation
model. More specifically, we group the source domains that
their corresponding optimal scale factor λ is the same in
their single source domain adaptation model. This prevents
source domains from dominating the direction of the updates
in the encoder by ensuring that the magnitude of the gradi-
ents of this term is roughly the same for the domains with
a shared encoder. Note that this approach assumes that the
primary distinction between the magnitude of the gradients
of D are caused by the coefficients λ• in Equation 3. While
this assumption is harsh, it is justifiable by the presumption
that source domains are usually semantically close and so
are their representations.

Determining the optimal value of λ is challenging be-
cause there are no target labeled documents available. One
can heuristically set this value (Long et al. 2015) or can
take a subset of source domains as meta-targets (Guo, Shah,
and Barzilay 2018). However, these methods ignore the
characteristics of the actual target domain. Here, we use a
proxy task to collectively estimate the values of these hyper-
parameters using labeled source documents and unlabeled
target documents. Because the obtained values are the esti-
mations of the optimal quantities we call them the pseudo-
optimal.

For a task with M labeled source domains we aim to max-
imize the consistency between the pseudo-labels generated
by the single source domain adaptation models in the target
domain. Thus, we seek to find one scale factor λ for each
pair of source and target domains such that if the trained
model is used to label a set of target documents, the consis-
tency between the labels across the models is the highest. To
this end, we iteratively assume each set of the pseudo-labels
is the ground-truth and quantify the agreement between this
set and the others. In fact, by maximizing the consistency be-
tween the pseudo-labels across the models, we validate the
value of each scale-factor by the output of the other models.
While there are still possibilities that all of the models at the
same time converge to a bad optima and result in a unique set
of noisy pseudo-labels, it is unlikely to observe such a result
because the models are neural networks and their parameter
space is very large.

To formally state this idea we denote the set of M scale
factors by Λ. The iterative procedure mentioned above for
M single source models can be expressed as follows:

Corr(Λ) =
∑
λi∈Λ

∑
λj∈Λ,λi ̸=λj

F1(yλi
, yλj

), (4)

where Corr(Λ) is the cumulative pair-wise correlation
between the set of scale factors Λ. The two sets of mentioned
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pseudo-labels are denoted by yλi
and yλj

–more specifically,
yλi

is the set of pseudo-labels assigned to the documents in
the target domain T by the classifier trained on the docu-
ments in Si and T when we use λi as the scale factor. In
this procedure, to quantify the agreement between two la-
beled sets we use the F1 measure, therefore, F1(a, b) is the
F1 measure between the set of ground-truth labels a and the
predictions b. To obtain the best scale-factors, we select the
set with the highest pair-wise correlation, i.e.,:

Λ∗ = argmax
Λ

Corr(Λ). (5)

In solving the search problem above, we also add the con-
straint that in each single source domain adaptation problem
the distribution of target pseudo-labels should be similar to
that of the labels in the source domain–we measure the sim-
ilarity by the Jensen-Shannon distance. This inductive bias
helps us to select the scale factors that result in the target
classifiers that behave similarly to the source classifiers.1
The procedure above results in a set of pseudo-optimal scale
factors–one scale factor for each pair of source and target
domains. These hyper-parameters can be used to coordinate
domain encoders, i.e., to determine which source domains
have a shared encoder, and to train a multiple-source unsu-
pervised model using the generalized forms of Equations 2
and 3–see Sections 3.5 and 4 for the exact choices of the loss
functions. In the next section, we present our heuristic cri-
terion to pair source classifiers and further enhance the final
prediction.

3.2 Paired Source Classifiers
Each source classifier in a multiple-source domain adapta-
tion model is trained on a distinct set of documents. It is
expected that this distinction results in a set of classifiers
that may be reliable in particular regions of the target fea-
ture space and be erroneous in other regions. The intuition
behind the idea of pairing source classifiers is to enhance
model prediction by transferring the knowledge from the
classifiers that are expected to perform well in a region to the
classifiers that are expected to under-perform in that vicinity.
In other words, source classifiers can potentially guide each
other to adjust their class boundaries.

To formalize and implement this idea is to answer three
questions: 1) how to transfer knowledge between source
classifiers, 2) how to detect the regions that source classifiers
are reliable in, and 3) how to incorporate these two mod-
ules into a single framework. Note that these are challenging
questions; because source classifiers are trained on different
sets of documents and thus, their class boundaries are po-
tentially different. On the other hand, target data which is
shared between the classifiers, is unlabeled.

To answer the first question we exploit the pseudo-labels
of target documents generated by each source classifier.

1For each single source model, we sort the scale factors based
on the Jensen-Shannon distance between the distributions of the
source labels and the target pseudo-labels. Then, we greedily iterate
over the scale factors to find a set that results in an agreement rate
higher than a very small threshold (0.005) from the previous step.

More specifically, during each iteration of the training proce-
dure we use a shared batch of target documents to be labeled
by all source classifiers. Then we use these pseudo-labels
to adjust the classifier outputs during the back propagation
phase. To formalize this idea we use Kullback–Leibler di-
vergence term. The KL divergence quantifies the amount
of divergence between two distributions. Using this term in
an objective function forces two classifiers to yield close
outputs–by thwarting gradients in the direction of the reli-
able model (i.e., detaching it from the computational graph),
we can force the weak classifier to adjust.

To answer the second question we propose a criterion (in
Sections 3.3 and 3.4) to assign each target document to a
source domain. Our heuristic criterion assumes that the pre-
diction error of a classifier under domain shift is a function
of two quantities: 1) it is disproportional to the magnitude
of the data transformation between source and target docu-
ments, and 2) it is proportional to the prediction capacity of
the trained classifier. In other words, we aim to measure the
data transformation applied to a target document, as well as
the accuracy of the resulting classifier in the region that the
target document is transferred to. For now we denote this
indicator function by I.

Given the two arguments above, our framework for pair-
ing source classifiers naturally consists of the product of the
KL divergence term and the indicator function I, because
one of these terms transfers the knowledge (the KL diver-
gence term), and the other (the indicator function) governs
the direction of the knowledge transfer. Thus the objective
function for one source classifier must follow the loosely
defined form below:

Ψ(S) ∝
∑
i=1

I(S, di)×KL(•), (6)

where the summation is over the entire documents in the
batch, I is our indicator function for the source domain
S and the document di, and KL(•) is the KL divergence
between the classifier in the source domain S and all
the other source classifiers. Equation 7 (which follows the
form above) introduces our exact objective function for one
source domain (Si):

Ψ(Si) =

B∑
d=1

I(Si, Xt
d)

M∑
k=1,k ̸=i

L∑
j=1

Ci(Xt
d, j) log

Ci(Xt
d, j)

Ck(Xt
d, j)

,

(7)

where B is the number of documents in the batch, M is the
number of source domains, L is the number of class labels,
Ci is the source classifier of Si, and Ci(Xt

d, j) is the j-th
output of Ci after the softmax layer for the d-th document in
the batch. I(Si, Xt

d) is our indicator function which returns
1 if the source classifier Ci is the best classifier for labeling
the d-th target document, otherwise, it returns 0.

Equation (7) reduces the degree of discrepancy between
source classifiers in labeling target documents. The indica-
tor function I ensures that only the best source classifiers
guide the other ones. Given the objective term Ψ(Si) for one
source domain, the final divergence loss is obtained by the
summation over all of the domains:

Ldiv =

∑M
i=1 Ψ(Si)

M − 1
, (8)
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where M , as before, is the number of source domains. Since
each source classifier is paired with M − 1 classifiers in the
other domains, we normalize Ldiv by M − 1.

In the next two sections we propose our method to quan-
tify the function I. As we stated before, to calculate I,
we need to calculate document transformation costs and the
classifier capacity (or performance) in the feature space.

3.3 Transformation Costs
To incorporate the magnitude of the transformation in our
scoring criterion, we measure the distance between the rep-
resentations of the source and the target documents when
the model is trained only for the source task. The intuition is
that the resulting distance is what we would try to eliminate
if we trained the classifier for the target task. To implement
this idea, we calculate the point-wise distance between the
following two covariance matrices: 1) the covariance matrix
of the encoded source data E(Xs)–recall that E is our do-
main encoder–when the classifier is fully trained on source
data, and 2) the covariance matrix of the encoded target data
E(Xt) using the same encoder.

We begin by calculating the covariance of the encoded
source documents:

Cs =

1
ns

∑ns
i=1 (E(Xs

i )− µs)⊺(E(Xs
i )− µs)

1− 1
ns

, (9)

where (•)⊺ is the matrix transpose, ns is the number of
source documents, and µs is the mean of the source rep-
resentations: µs =

∑ns
i E(Xs

i )

ns
. Then we calculate the point-

wise covariance (i.e., the contribution of one document to
the covariance matrix) of the target data:

Ct
r =

1
nt

(E(Xt
r)− µt)⊺(E(Xt

r)− µt)

1− 1
nt

, (10)

where Xt
r is the r-th target document, nt is the number of

target documents, and µt is the mean of the target repre-
sentations. Equations 9 and 10 are the weighted formulation
of covariance matrix, see Price (1972) for the theoretical
derivation of these two equations. Finally, the transforma-
tion cost d(S, Xt

r) for the r-th document in the target domain
with respect to the source domain S is achieved by measur-
ing the difference between the two covariance matrices:

d(S, Xt
r) =

∥∥Ct
r − Cs

∥∥2

F
, (11)

where ∥•∥F is the matrix Frobenius norm.

3.4 Classifier Capacities in Target Domain
The prediction error of a classifier in the target domain is
measurable only if we have access to labeled target docu-
ments. However, this is not the case in unsupervised Domain
Adaptation. Therefore, we aim to estimate this quantity via
a proxy task. Even though target labels are not available, the
density of target data points after the transformation is avail-
able. Note that in the regions that the ratio of source data
points to target data points is high, the classification error
rate in the target domain is probably low. Thus, we use this
ratio as an approximation to the classification performance.

To calculate this density ratio we use the LogReg model (Qin
1998; Wang et al. 2020) which derives the ratio from the out-
put of a logistic regression classifier:

q(S, X) =
PS(X)

PT (X)
=

P (T )P (S|X)
P (S)P (T |X) , (12)

where S is the source domain, X is a sample document, q
is the desired ratio for the document X, PS(X) and PT (X)
are the distribution of source and target documents respec-
tively; and P (T ) and P (S) are the probabilities of picking
a random document from the target and the source domains.
These values are constant, and can be calculated directly,
i.e., P (T ) = nt

nt+ns
. The quantities P (S|X) and P (T |X) are

the probabilities of classifying the document X as source or
target respectively. These values can be calculated by train-
ing a logistic regression classifier on the transformed data
and probabilistically labeling documents as source or target.

To calculate our indicator function I, defined in Section
3.2, we first rank the source domains based on their deemed
reliability for classifying each target document, thereafter,
we select the domain with the highest reliability score. In
order to disproportionally relate this score to the transforma-
tion cost (i.e., d(S, Xt

r)) and to proportionally relate it to the
classifier capacity (i.e., q(S, Xt

r)) we use a product equation
as follows:

Score(S, Xt
r) = q(S, Xt

r)× ed(S,Xt
r)

−1

, (13)

where Score(S, Xt
r) is the reliability score of the source do-

main S with respect to the target document Xt
r. In the ex-

periments we observed that if we directly use the inverse of
d(•) in the product, due to the magnitude of this term, the
resulting value dominates the entire score. We empirically
observed that an exponential inverse term yields in better re-
sults. Given this reliability score, the most reliable source
domain is selected by the function I, i.e.,:

I(Si, Xt
r) =

{
1 i = argmaxk Score(Sk, Xt

r)
0 otherwise.

(14)

Therefore, given the source domain Si, this function returns
1 if the target document Xt

r has a low transformation cost
and also with a high probability is correctly labeled by the
classifier in Si, otherwise it returns 0.

In Section 3.2, we proposed a method for pairing the
source classifiers. While the aim of this method is primar-
ily to help the under-performing source classifiers, it is
also a medium for transferring knowledge across the doc-
ument encoders. In this regard, this method is not fully ef-
ficient because the transfer of knowledge in this method is
unidirectional–from the reliable classifiers to the others. In
order to fully share the knowledge obtained in one encoder
with all the other encoders, we add one medium classifier to
every encoder. To train the medium classifiers, we pair their
outputs with all the source classifiers using a KL-divergence
loss term. The medium classifiers are not used for testing,
they are discarded after the training. We denote the objec-
tive term for training the medium classifiers by Lmed. In the
next section, we describe our training procedure.
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3.5 Training
To train our model, we first carry out the algorithm proposed
in Section 3.1 to create the coordination between encoders
and also to obtain the pseudo-optimal values of λ in each
source domain. To pair source classifiers (Section 3.2), we
need the transformation costs (Section 3.3) and the classi-
fier capacities (Section 3.4). To calculate the transformation
costs, we train each source classifier once and use Equation
11 to obtain the costs. To calculate the classifier capacities
we need the vector representations of the encoded source
and target documents. Thus, while executing the algorithm
in Section 3.1, we also store the document vectors to calcu-
late the classifier capacities using Equation 12. Finally, the
entire model is trained using the loss function below:

L =

M∑
i

{J(Ci(Xsi), ysi) + λiD(Ei(Xsi), Ei(Xt))}

+ αLdiv + Lmed,

(15)

where M is the number of source domains, Ci is the i-th
source classifier, J is the cross-entropy function, λi is the
i-th pseudo-optimal value of the scale factors, Ei is the i-
th domain encoder, Ldiv is the divergence loss described in
Section 3.2, and α is a penalty term. The penalty term pre-
vents the classifiers from converging to one single classifier
by governing the magnitude of the divergence loss. In order
to further preserve the diversity between source classifiers
during the training we gradually decrease the penalty term
[α → 0]. Lmed is the loss term to train the medium clas-
sifiers. D is the discrepancy objective between source and
target representations; for this term we used the correlation
alignment loss introduced by Sun and Saenko (2016).

4 Experimental Setup
We evaluate our model in two datasets: 1) a dataset on de-
tecting illness reports2 with 4 domains (Karisani, Karisani,
and Xiong 2021), and 2) another dataset on detecting the
reports of incidents with 4 domains that we compiled from
the data collected by Alam et al. (2020). Thus, the entire
data consists of 8 domains. Each domain contains anything
between 5,100 to 6,400 documents–the total of 44,984 doc-
uments. Apart from this data, we compiled a third smaller
dataset on reporting disease cases for tuning the hyper-
parameters of the baselines. The tuning dataset primarily
contains the data collected by Biddle et al. (2020).3

We compare our model with the following baselines:
DAN (Long et al. 2015), CORAL (Sun and Saenko 2016),
JAN (Long et al. 2017), M3SDA (Peng et al. 2019), and
MDDA (Zhao et al. 2020). In the cases of DAN, CORAL,
and JAN we compare with both the best source domain
and the combined source domains–indicated by the suffixes
“-b” and “-c” respectively. Additionally, we compare with
the best and combined source-only models, i.e., training a
classifier on the source and evaluating on the target. This
amounts to the total of 10 baselines.

2Available at https://github.com/p-karisani/illness-dataset
3Our code, along the Incident and the tuning datasets that we

compiled, will be available at: https://github.com/p-karisani/CEPC

The classifiers based on pretrained transformers are state-
of-the-art (Karisani and Karisani 2021). We used the pre-
trained bert-base model (Devlin et al. 2019) as the domain
encoder in our model and all of the baselines. As the clas-
sifier, we used a network with one tanh hidden layer of
size 768 followed by a binary softmax layer. This domain
encoder and classifier were used in all baselines. We car-
ried out all of the experiments 5 times and report the aver-
age.4 Because the datasets are imbalanced the models were
tuned for the F1 measure and to construct the document
mini-batches in source domains we used a balanced sam-
pler with replacement–the batch-size was 50 in all experi-
ments. During the tuning we observed that the higher num-
ber of training epochs cause overfitting on the source do-
mains, therefore, we fixed the number of training epochs
to 3. Our model has one hyper-parameter–the penalty term
α in the final objective function. The optimal quantity of this
hyper-parameter in Tuning dataset is 0.9. We set the range of
the scale factors λ to {1.0, 0.1, 0.01, 0.001, 0.0001} in our
algorithm in Section 3.1.

5 Results and Analysis
Results. Table 1 reports the results across the domains,
and Table 2 reports the average results in Incident and Ill-
ness datasets–we also included the in-domain results (la-
beled ORACLE) by training the classifier on 80% of each do-
main and evaluating on the remainder. We observe a substan-
tial performance deterioration by comparing ORACLE and
Source-b, which signifies the necessity of Domain Adapta-
tion. Additionally, we observe that in some cases Source-b
outperforms Source-c, which indicates that simply aggregat-
ing the source domains is not an effective strategy. The re-
sults in Table 1 testify that compared to the baseline models,
CEPC is the top performing model in the majority of the
cases. Table 2 reports the average results, again we see that
on average our model is state-of-the-art.

One particularly interesting observation from Table 1 is
that in certain cases Source-b or Source-c outperform all
of the models (e.g., in Earthquake or Alzheimer’s). This
demonstrates the efficacy of pretraining under domain shift,
which calls for further investigation into this area.
Empirical Analysis. We begin by empirically demonstrat-
ing the efficacy of coordinating encoders (Section 3.1). To
this end, we compare CEPC with a model that has a fixed
scale factor λ.5 Figures 2a and 2b report the results of this
model at varying values of λ. The graphs show that even if
we knew the optimal value of λ, CEPC would still outper-
form this model6–our model is shown by the dashed line.

Next, we further investigate the utility of our algorithm
for finding the pseudo-optimal values of hyper-parameters

4The algorithm in Section 3.1 is similar to a grid search. There
is no need to retake this step in each iteration. Thus, we ran this step
for 5 times with different random seeds. Then we took the average
of the results and cached to be used in all of our experiments.

5We also gradually increased the value of λ in each iteration, as
proposed by Ganin and Lempitsky (2015).

6Note that, in reality the target labels are not available. Thus,
we are comparing our model with the best case scenario.
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F1 in Incident dataset F1 in Illness dataset

Method Explosion Flood Hurricane Earthquake Cancer Diabetes Parkinson’s Alzheimer’s
ORACLE 0.968±0.01 0.902±0.01 0.749±0.01 0.619±0.01 0.865±0.00 0.828±0.02 0.857±0.02 0.792±0.04
Source-b 0.739±0.03 0.794±0.01 0.674±0.02 0.505±0.00 0.771±0.00 0.769±0.00 0.816±0.00 0.799±0.00
Source-c 0.734±0.02 0.777±0.02 0.617±0.01 0.489±0.01 0.801±0.00 0.746±0.03 0.822±0.01 0.802±0.00
DAN-b 0.799±0.02 0.835±0.00 0.640±0.01 0.479±0.00 0.772±0.01 0.779±0.00 0.781±0.01 0.775±0.00

CORAL-b 0.760±0.02 0.823±0.00 0.678±0.01 0.501±0.00 0.773±0.00 0.764±0.01 0.816±0.00 0.789±0.00
JAN-b 0.733±0.01 0.812±0.00 0.682±0.01 0.505±0.00 0.772±0.00 0.758±0.01 0.825±0.00 0.786±0.00
DAN-c 0.857±0.01 0.840±0.00 0.665±0.01 0.450±0.01 0.762±0.01 0.789±0.00 0.792±0.01 0.740±0.02

CORAL-c 0.850±0.01 0.841±0.01 0.685±0.01 0.453±0.02 0.779±0.01 0.786±0.00 0.820±0.00 0.772±0.00
JAN-c 0.836±0.02 0.842±0.00 0.680±0.02 0.451±0.01 0.777±0.01 0.785±0.01 0.818±0.00 0.762±0.01
MDDA 0.722±0.07 0.822±0.02 0.643±0.03 0.431±0.01 0.746±0.02 0.767±0.03 0.794±0.02 0.758±0.01
M3SDA 0.802±0.02 0.849±0.00 0.667±0.01 0.455±0.01 0.743±0.00 0.783±0.00 0.765±0.01 0.713±0.03
CEPC 0.905±0.01 0.857±0.01 0.739±0.01 0.468±0.01 0.808±0.01 0.795±0.00 0.848±0.00 0.794±0.00

Table 1: F1 in the datasets. The baselines show mixed results. CEPC is the most consistent one.

Incident dataset Illness dataset

Method F1 Pre. Rec. F1 Pre. Rec.
ORACLE 0.809 0.775 0.849 0.835 0.811 0.861
Source-b 0.678 0.738 0.642 0.789 0.762 0.820
Source-c 0.654 0.735 0.643 0.793 0.791 0.807
DAN-b 0.688 0.683 0.737 0.777 0.720 0.852

CORAL-b 0.691 0.701 0.710 0.786 0.740 0.845
JAN-b 0.683 0.705 0.687 0.785 0.745 0.838
DAN-c 0.703 0.659 0.828 0.771 0.658 0.935

CORAL-c 0.707 0.681 0.804 0.790 0.709 0.899
JAN-c 0.702 0.682 0.793 0.785 0.702 0.901
MDDA 0.654 0.571 0.847 0.766 0.659 0.921
M3SDA 0.693 0.660 0.814 0.751 0.639 0.925
CEPC 0.742 0.725 0.809 0.811 0.786 0.841

Table 2: Average F1, Precision, and Recall in the datasets.
CEPC outperforms all the baselines.
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Figure 2: 2a-2b) CEPC in comparison with a model with
fixed scale factor λ (Equation 15), in Incident (2a) and Ill-
ness (2b) datasets. 2c) Model sensitivity to the penalty term
α (Equation 15) in Illness dataset.

by comparing this algorithm with the traditional method of
using source domains as meta-targets. Table 3 reports the
results of a model that uses this technique. We see that again
CEPC outperforms this model. This suggests that the target
domain possesses properties that cannot be recovered from
the other source domains.

We also demonstrate whether pairing source classifiers
(Section 3.2) is effective. Additionally, we show the extent
in which the transformation costs (Section 3.3) and the clas-
sifier capacities (Section 3.4) contribute to the performance.
To this end, we report an ablation study on these modules in
Table 4. We see that this technique is indeed effective, and

Dataset Method F1 Precision Recall

Incident Meta-Target 0.713 0.689 0.811
CEPC 0.742 0.725 0.809

Illness Meta-Target 0.799 0.762 0.845
CEPC 0.811 0.786 0.841

Table 3: Using the source domains as meta-targets to tune
for the scale factor λ (Equation 15).

Method F1 Precision Recall
CEPC 0.811 0.786 0.841

CEPC w/o Paired Classifier 0.793 0.713 0.895
CEPC w/o Classifier Capacity 0.801 0.782 0.826

CEPC w/o Transformation Cost 0.809 0.783 0.839

Table 4: Ablation study of the paired classifiers (Sections
3.2, 3.3, and 3.4) in Illness dataset.

also each one of its underlying steps are contributing.
Finally, we report the sensitivity of CEPC to the hyper-

parameter α in Figure 2c (Equation 15). We see that as the
value of α increases, the performance slightly improves.

In this work we demonstrated that several domain adap-
tation models that previously have shown to be competitive,
not necessarily perform well in user-generated data, specifi-
cally in social media data. Our experiments suggest that ev-
ery area may have particular properties and call for further
investigation into under-explored areas. Future work may
evaluate the efficacy of existing models in languages other
than English, specifically those that have lower resources
and are richer in morphology, e.g., Persian and Kurdish.

6 Conclusions
In this work, we proposed a novel model for multiple-source
unsupervised Domain Adaptation. Our model possesses two
essential properties: 1) It can automatically coordinate do-
main encoders by inferring their update rates via a proxy
task. 2) It can pair source classifiers based on their predi-
cated error rates in the target domain. We carried out exper-
iments in two datasets and showed that our model outper-
forms the state of the art.
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