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Abstract

It is an essential product requirement of Yahoo Mail to distin-
guish between personal and machine-generated emails. The
old production classifier in Yahoo Mail was based on a simple
logistic regression model. That model was trained by aggre-
gating features at the SMTP address level. We propose build-
ing deep learning models at the message level. We train four
individual CNN models: (1) a content model with subject and
content as input, (2) a sender model with sender email ad-
dress and name as input, (3) an action model by analyzing
email recipients’ action patterns and generating target labels
based on senders’ opening/deleting behaviors and (4) a salu-
tation model by utilizing senders’ “explicit salutation” signal
as positive labels. Next, we train a final full model after ex-
ploring different combinations of the above four models. Ex-
perimental results on editorial data show that our full model
improves the adjusted-recall from 70.5% to 78.8% and the
precision from 94.7% to 96.0% compared to the old produc-
tion model. Also, our full model significantly outperforms a
state-of-the-art BERT model at this task. Our new model has
been deployed to the current production system (Yahoo Mail
6).

Introduction
Grbovic et al. (2014) showed that today’s mail web traffic
is dominated by machine-generated messages, originating
from mass senders, such as social networks, e-commerce
sites, travel operators etc; and a classifier should first distin-
guish between machine and human-generated messages be-
fore attempting any finer classification. A human generated
email comes from an individual person. A machine gener-
ated email is an automatic email, a mass marketing email,
and/or a template email. The annotation guideline details
about Human/Machine email’s definition are in Appendix.

There are a lot of well-known applications on mail
area, including spam detection (Kumaresan, Saravanaku-
mar, and Balamurugan 2019; Douzi et al. 2020; Moham-
madzadeh and Gharehchopogh 2021) user’s future action
prediction (Di Castro et al. 2016), email threading (Ailon
et al. 2013) and information extraction (Agarwal and Singh
2018; Di Castro et al. 2018; Sheng et al. 2018). Recently, re-
search community has made more interesting applications,
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such as cyber security events detection (Vinayakumar et al.
2019), commitment detection (Azarbonyad, Sim, and White
2019), intent detection (Shu et al. 2020) and online template
induction (Whittaker et al. 2019). Most of these applica-
tions depend on training high-quality classifiers on emails.
For mail classification, there has been some research efforts
to learn email embedding by leveraging various aspects/fea-
tures of emails. Sun et al. (2018) used only the sequence of
B2C templates as input to learn representations. Kocayusu-
foglu et al. (2019) utilized HTML structure of emails to help
classify machine-generated emails. Potti et al. (2018) lever-
aged both text and image content of commercial emails to
classify emails.

The recent advancement in natural language processing
(NLP), especially in text classification, has proposed various
deep learning model architectures for learning text represen-
tation in place of feature engineering. Fundamental work in
this area involves with learning word representations by pre-
dicting a word’s context (Mikolov et al. 2013; Bojanowski
et al. 2017). Later work extended to learn representations
for longer sequences of text, at sentence-length level and
document-length level (Yang et al. 2016; Le and Mikolov
2014; Kiros et al. 2015; Joulin et al. 2016). Most recently,
motivated by the Transformer architecture (Vaswani et al.
2017), the BERT model (Devlin et al. 2018) and its varia-
tions (Yang et al. 2019; Liu et al. 2019; Lan et al. 2020) pre-
trained bidirectional representations from unlabeled text.

It is an essential product requirement of Yahoo Mail
to distinguish between personal and machine-generated
emails. The model proposed by Yahoo researchers (Grbovic
et al. 2014) has been deployed into previous Yahoo Mail pro-
duction system. This model relies on a large number of well
designed features for prediction, including content, sender,
behavioral, and temporal behavioral features. In spite of its
accurate prediction, this old production model has a “sender
cold-start” issue with 70% of email traffic covered (Grbovic
et al. 2014). The model may not be able to conduct appropri-
ate learning for new senders with few associated messages,
especially when the most predictive features are historical
behavioral features and new users do not have enough his-
tory to provide reliable features. Another drawback of the
production model is that it is a simple logistic regression
model without utilizing the recent development in NLP. In
addition to considering behavior features, the previous pro-
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duction model uses only bag of words as content input with-
out taking into account signals from text sequence like long
short-term memory (LSTM) and CNN models.

In this work, we propose to classify messages into hu-
man/machine category by solely relying on the message it-
self as input without any additional feature engineering. To
further improve prediction accuracy, useful user behavior
signals are utilized as target labels rather than input: sepa-
rate training data sets are created by generating target labels
from these signals, and individual sub-models are built by
keeping the same input for each set of created training data.
Finally, the full model combines these sub-models for final
prediction. By directly building the full model at message
level, we naturally solve the cold-start issue as only message
itself can predict well without any behavioral information as
input.

In summary, we are not aware of any work at mail clas-
sification that (1) builds CNN models based on generated
target labels from users’ behavior signals – senders’ ex-
plicit salutation at the beginning of message and recipients’
opening/deleting behaviors; (2) explores potential options
for combining sub-models into a final model and analyzes it.
We aim to deliver a human/machine classifier that answers
the following questions:
• Can we automatically learn representations from the

message itself without any feature engineering in order
to predict the class? We show that the content model with
email subject and content only as input can achieve better
performance than the feature-engineered logistic regres-
sion model with 2 million features (Section ).

• Can we leverage some useful behavioral signal to further
improve the model performance? How can these signals
help the model without bringing burden of saving/updat-
ing extra feature inputs? Instead of adding these signals
as feature inputs, we trained two individual CNN mod-
els by generating target labels from users’ behaviors: one
based on recipients’ opening/deleting behaviors, and the
other based on senders’ “explicit salutation” at the be-
ginning of email. Then our full model combined these
models into one final classifier. Specifically, the proposed
final full model improves the adjusted-recall by 11.8%
compared against the old production model, while at the
same time lifts the precision from 94.7% to 96.0%.

• Can we propose a model with great prediction accuracy
based on pure message information, with simple model
structure and good inference latency in order to deploy it
on production system? We keep a simple neural network
model structure (Section ), and build our own vocabu-
lary dictionary. With comparable number of words as
GloVe , models built with our own dictionary can achieve
the same prediction accuracy with embedding dimension
64, in contrast to using GloVe word embedding with di-
mension 300. This reduces our model size by almost 4
times smaller than using pre-trained GloVe embedding.
The full model is deployed into Yahoo Mail 6 production
system, and is able to finish running inference on 30M
messages within one hour.

The rest of this paper is organized as follows. We in-
troduce our proposed model architecture in Section . We

Figure 1: Detailed illustration of a convolutional block.

present details on how training and testing data are obtained
in Section . Our experiments and results are shown in Sec-
tion , with adjusted precision/recall computation presented
in the Appendix. Section concludes the ongoing work.

Model Architecture
In this section, we introduce the design of the model ar-
chitecture for human/machine classifier. We first introduce
the individual sub-models based on different features and
signals separately. For all sub-models, the main component
is the temporal convolutional module, which simply com-
putes a 1-D convolution using temporal convolution, batch
normalization, and max-pooling to deal with the temporal
textual data. The final full model combines the four CNN
models by joining each model’s individual representations
at different levels.

Before exploring these model structures, let us first define
some notations.

Convolutional Block First, for the ease of the notation,
we make use of convolutional block, following Edizel,
Mantrach, and Bai (2017). The temporal convolutional mod-
ule consists of a set of filters with various sliding window
sizes. Each filter applies a convolution operation on its in-
put, with its weights learnt during the training. By running a
contextual sliding window over the input word/letter-trigram
sequence, each filter can learn its pattern. In this work,
we use a stride of 1. We represent our convolutional block
by “Temp Conv,[1,2,...,k],f ”, where [1,2,...,k] represents all
sliding window sizes applied for convolution operation and
f corresponds to the number of filters for each sliding win-
dow size in [1,2,...,k]. Max pooling is used to force the
model to keep only the most useful local features produced
by the convolutional layers; the maximum value across each
sliding window over the whole sequence is selected for each
filter. Batch normalization is also used to normalize its in-
put, which brings an additional regularization effect and as
a result, accelerates the training (Ioffe and Szegedy 2015).

A convolutional block (see Figure 1) consists of a se-
quence of one convolutional layer, a batch normalization
layer, a ReLU activation function, and finally a max-pooling
layer; it will be denoted by Conv Block,[1,2,...,k],f with the
number of filters f for each sliding window size in [1,2,...,k].

Other Functions In addition to “Conv Block,[1,2,...,k],f ”,
we denote fully connected layers with no activation function
by “FC, O, L1, L2” where O is the number of output neurons
and L1, L2 represents the penalty parameters for L-1 and
L-2 regularization respectively. For simplicity, we use “BN,
ReLU” to denote a batch normalization layer followed by a
ReLU activation function.
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Look up table, Vw

Conv Block, [1,2,3,4],128

   Subject

Look up table, Vw

Conv Block, [1,2,3,4],128

   Content

Concatenate

Dropout, 0.4

FC, 512, 0.0, 0.001

BN, ReLU

FC, 128, 0.0, 0.001

BN, ReLU

Dropout, 0.4

FC, 2, 0.0001, 0.0001

Output: 128×4×2

Figure 2: Model structure of the content model and the ac-
tion model

In all of our models, we fix the sequence length at s, with
subscripts used to denote for each specific feature. For ex-
ample, ssubject represents the sequence length for the sub-
ject input. When the sequence length is smaller than s, the
remaining positions are fully padded with index 0. When
the sequence length is larger than s, we simply ignore all the
words appearing after the sth position of the sequence.

Each sub-model considers a word-unigram/letter-trigram
dictionary, and creates a vectorial representation for each
word or letter-trigram, depending on the specific model. We
use V with subscripts to denote dictionary for different fea-
tures, with Vw, Vtrig , Vname corresponding to word dictio-
nary for subject and content, letter-trigram dictionary for
sender email address, and word dictionary for sender name
respectively.

Each single model is detailed in the following.

Content Model
The content model (also called base model in this
manuscript) uses email subject and content as inputs to pre-
dict human/machine (H/M) category, with the model struc-
ture shown in Figure 2.

In this base model, the inputs are a fixed-size padded sub-
ject with sequence length ssubject and a fixed-size padded
content with sequence length scontent. This model starts
with a look-up table that creates a vectorial representation
for each word and converts both subject and content inputs
into tensors with size ssubject×e and scontent×e separately,
where e is embedding dimension size. We first apply two
separate convolutional blocks “Conv Block,[1,2,...,k],f ” with
k = 4 and f = 128 for both subject and content inputs, re-

Look up table, Vtrig

Conv Block, [1,2,3],128

Email Address   

Look up table, Vname

Conv Block, [1,2,3],128

   Name

Concatenate

FC, 64, 0.0, 0.001

FC, 2, 0.0001, 0.0001

Output: 128×3×2

Dropout, 0.6 Dropout, 0.6

Figure 3: Model structure of the sender model.

sulting in a one-dimensional tensor with length k×f = 512
for both subject and content inputs. These two tensors are
concatenated into a single vector with length 1024, which
then goes through a dropout layer with dropout rate r = 0.4.
The resulting vector will be the input to two fully connected
layers, with each fully connected layer followed by a batch
normalization and ReLU activation function. After using
one more dropout with the same dropout rate, a final layer
with two hidden units is implemented before applying soft-
max function to calculate estimated probability score.

Sender Model
The sender model uses sender’s email address and name as
inputs to predict H/M category, with the model structure in
Figure 3.

The model contains (1) a letter-trigram representation
layer obtained by running a contextual sliding window over
the input sequence on sender email address followed by cre-
ating vectorial representation for each letter-trigram through
Vtrig; (2) in parallel with the above step, a word-unigram
representation layer obtained by creating vectorial represen-
tation for each word in sender name through Vname; (3) a
convolutional block Conv Block,[1,2,3],128 and a followed
dropout layer with dropout rate 0.6 for both resulting repre-
sentations obtained from sender email address and name in-
put; (4) a concatenation layer that concatenates the resulting
sender email features and name features obtained from the
previous step; (5) a fully connected layer with 64 output neu-
rons and L2-norm penalty with penalty parameter 0.001; (6)
a final fully connected layer that output 2 units, containing
both L1-norm and L2-norm with the same penalty parameter
0.0001.

Action Model
To leverage user behaviors from different sources, we study
the relationship between an email’s H/M category and the
email recipient’s action with the question “how an email re-
cipient’s action is affected by the email’s H/M category?”.
We focus on “open” and “delete” actions with the assump-
tion that human messages tend to be opened more, and
deleted less than machine messages do. Table 1 shows the
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random open, not not open, A\B
deleted (A) deleted (B)

H 5.10 26.94 1.74 75.23
M 67.02 49.31 76.19 2.93
U 27.88 23.75 22.07 21.84

Table 1: Percentage of messages for human (H), machine
(M), and unknown (U) categories respectively under differ-
ent actions.

percentages of messages for human, machine, and unknown
categories under different recipients’ actions from labeled
data. With random sampling from the whole email pool,
5.10% of sampled messages belong to human category. Re-
stricting the sampling based on deleted and not opened mes-
sages (denoted by B) will produce only 1.74% human cate-
gory messages. Restricting the sampling from messages that
are opened and not deleted by recipients (denoted byA) will
produce 26.94% human category messages. A higher per-
centage, 75.23%, of human category messages can be ob-
tained by further filtering setA (denoted byA\B): removing
messages whose corresponding senders appear inB fromA.
Note that the above statistics are calculated by taking into
account more than 20% messages in unknown category. Ig-
noring the unknown messages for action A \B will yield to
96.25% of human messages.

Based on the above strong correlation between message’s
category and the recipients’ action on messages, we generate
a set of training data with
• messages that are “deleted and not opened” (B) as nega-

tive label 0;
• messages that are “open and not deleted” with removing

senders appearing inB and corresponding messages (A\
B) as positive label 1.

With this newly generated message-level training data, we
train a CNN model with subject and content as input, using
the same model structure as content model (see Figure 2).

Salutation Model
This model is motivated by analyzing false negative mes-
sages produced by the previous production model. We find
out that messages with explicit salutation (e.g. starting with
“Dear ...”) tend to be sent by someone who knows the per-
son, thus belonging to human messages. Here, a message is
defined to contain “explicit salutation” if there is a match
between the recipient names and the beginning part of the
email body. Considering this relationship, we generate an-
other set of training data with
• messages that contain explicit salutation as positive label

1;
• messages that do not contain explicit salutation as nega-

tive label 0.
With the generated message-level training data, we train a

CNN model using the beginning part of email body as input,
which is defined as the sequence of words before the first
comma or the first 7 words if there is no comma. The model
structure is described in Figure 4. It includes a word em-
bedding layer, a convolutional block followed by a dropout

FC, 2, 0.0001, 0.0001

Output: 128×3

Dropout, 0.6

FC, 64, 0.0, 0.001

Look up table, Vsalutation

Conv Block, [1,2,3],128

Beginning part of email body   

Figure 4: Model structure of the salutation model.

layer, and two fully connected layers with 64 units and 2
units respectively.

Full Model
Finally, our full model combines the above four sub-models.
There are multiple options to combine these above models:

• at raw feature level: use all input features from each sub-
model and train a classifier from scratch;

• at representation level: use learnt representations before
the softmax layer from each sub-model;

• at final output level: use the predicted scores directly as
the input of the final model;

• at final output level with rectification: use the predicted
scores with rectification as the input of the final model.

Before building separate sub-models as proposed, we ex-
periment the first option: creating one model using all raw
features (subject, content, sender email address and name)
as input, and training all parameters all at once. This re-
sulting model turns out to perform slightly worse than the
content model using subject and content only, due to the
over-fitting issue brought by sender email address. Compar-
ing the last two options “at final output level directly versus
with rectification”, our experiments show that using recti-
fication produce a better performance. Using the predicted
scores without any correction from sender model and ac-
tion model make the model confused for the cases when the
predicted scores are not confident (not close to 1.0 or 0.0).
Thus, to avoid the confusion brought by predictions with
low-confidence, we use the final output with rectification in
order to effectively make use of the confident predictions
by sub-models. Let f(p, q) denote a ReLU activation func-
tion with modification, where p is the predicted probability
score output. For a threshold q(0 ≤ q ≤ 1), f(p, q) = p if
p ≥ q otherwise f(p, q) = 0. In this work q = 0.99 is used.
Let p be the estimated probability score for a label, we use
p+ = f(p, 0.99) and p− = f(1 − p, 0.99) as final output
with rectification to capture the strong positive and negative
signal from the model output. For better intuition, for exam-
ples, fixing q at 0.99, p = 0.995 will result in p+ = 0.995
and p− = 0.0; p = 0.005 will result in 0.0 and 0.995 corre-
spondingly; a probability score between 0.01 and 0.99 for p
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will produce 0.0 for both positive and negative signals.
After experimenting with different options, the final full

model (Figure 5) uses the content model as base model, and
combines (1) final predicted probability scores with recti-
fication from both sender model and action model, (2) a
lower-level representation layer from salutation model. In
detail, the following items are concatenated to build the fi-
nal classifier:

• content model: representations with 128 hidden units,
trainable for the full model;

• sender model: positive and negative signals denoted by
p+sender and p−sender, where psender is estimated proba-
bility for positive label from sender model’s final output;

• action model: negative signals denoted by p−action, where
paction is estimated probability for positive label from
action model’s final output;

• salutation model: representations with 64 hidden units
before the final layer.

In this full model, all parameters from the base model are
trainable, while all outputs from the other three models are
fixed by freezing their graphs. As shown in Figure 5, boxes
in light red color represents fixed model or fixed parameters
that are not trainable in the full model. As mentioned before,
we do not train all parameters at once in the final model to
avoid over-fitting by some features. In contrast, all parame-
ters in the base model (in blue) are trainable, to fine-tune the
full model. The model performance results will be shown in
Section .

Data
Before describing the experiments setup, we first describe
how training data and testing data are collected.

Data Labeling
Both the training and testing data are constructed by sam-
pling from the Yahoo Mail corpus. During this process, user
privacy was protected through a strict data policy. Data stor-
age and retention follow Verizon Media policies for General
Data Protection Regulation (GDPR) enforcement. All peo-
ple involved with this project had limited access to messages
in compliance with Verizon Media privacy policies.

In this work, we consider three types of labeling data:
manual labeling from human editors, inheriting labels from
previous Yahoo researchers’ work (Grbovic et al. 2014), cre-
ating pseudo labels from old production model.

Manual Labeling Manual labeling consists of having hu-
man editors assign labels to small set of email messages.
Given mail data sensitivity, only a very small number of
users have agreed to have their emails examined, and only
a limited number of responsible editors are involved.

Different sets of email data for editorial judgements were
created based on two techniques - active learning technique
and over-sampling technique. Active learning was used to
create hard examples iteratively, to help model training.
Over-sampling was used to create validation data (4K+ mes-
sages) and test data (4K+ messages), for resolving the small
class issue (details presented in Appendix). Note that the

data sampled by active learning was used for model train-
ing only. All test/evaluation data were obtained via over-
sampling strategy. For our human/machine classification
problem, human class is a minor class. To alleviate this im-
balanced data issue, we proposed to over-sample positive
data from model-predicted positive data to obtain test data;
this can greatly improve the confidence for precision met-
rics without hurting recall metrics. This effect of oversam-
pling on test data was analyzed analytically in a probabilis-
tic framework; this piece of work was submitted to another
conference recently.

Inheriting Labels Previous Yahoo researchers (Grbovic
et al. 2014) took great effort to collect ground-truth labels for
human and machine category at sender level. Their work left
us a total around 200K senders, with approximately 100K
senders labeled as human and machine each.

Creating Pseudo Labels We created pseudo labels by
taking advantage of the great performance of the previous
production model. Senders with very confident prediction
scores are sampled as pseudo labels. The number of pseudo
labels created from this source will be described in Section
for each model separately.

Training Data Sampling
Despite drawing labeled messages based on senders from
inheriting labels and creating pseudo labels, the distribution
is skewed towards higher volume senders (machine senders
in most cases). As a result, training models on skewed data
often lead to over-fitting and causes biases towards larger
senders. We alleviate this issue by (1) removing duplicated
messages with the same sender and subject within each day;
(2) limiting the number of samples within one day for both
human and machine senders.

For content model, most of training data are obtained
by sampling messages from labeled senders: 200K senders
from inherited labels and 1M human senders from creating
pseudo labels. Note that pseudo labels are created for hu-
man senders only to obtain more balanced data at message
level. Sampling one month’s data produces around 9M sam-
ples. The messages labeled by editors based on active learn-
ing are also included with duplicating them (10× - 50×).
The same training data is also used for the full model. For
sender model, we sampled 2M positive and 2M negative
pseudo labels at sender level. The training data for the action
model are sampled based on email recipients’ open/deleting
actions. We sampled recent three days of data, resulting in
around 8M messages. The training data for the salutation
model is the same as the training data for the content model,
but each message was re-labeled based on whether it con-
tains “explicit salutation” (labeled as 1) or not (labeled as
0).

Experiments
To illustrate the effectiveness of the full model architecture,
we compare and present the results of our models against the
strong baseline in the old production model. We also eval-
uate the performance of the BERT model to see how our
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Figure 5: Model structure of the full model

full model (Figure 5) performs compared against the state-
of-the-art model in this H/M task. Different maximum se-
quence length for content scontent during inference time are
also evaluated for content model.

Experiment Configuration
As discussed in Section , the four sub-models are trained
separately before combining them. All these models use
Adam optimizer with learning rate 0.001 and batch size
128. We use dropout rate 0.4, 0.6, 0.4, 0.6 for content,
sender, action, and salutation model respectively. For de-
ciding maximum sequence length s during training, we use
ssubject = 30 and scontent = 1000 for content model and
action model; use saddress = 1000 (representing the num-
ber of characters) and sname = 30 for sender model; use
ssalutation = 10 for salutation model. During inference, we
change scontent from 1000 to 2000, by which only the re-
call metric can improve. Note that all sequence lengths are
at word level, except for saddress at character level.

Vocabulary Dictionary Selection Individual dictionary
is built based on each model’s specific needs. Content
model and action model share the same vocabulary dictio-
nary; we choose top 400K words based on frequency and
top 400K words based on chi-square statistics, producing
598,378 unique words in total for Vw. Similarly, for salu-
tation model, top 200K words based on frequency and top
200K words based on chi-square statistics are selected, pro-
ducing 346,292 unique words in total for Vsalutation. For
sender model, two separate dictionaries Vtrig and Vname are

built for sender address’s letter-trigram and sender name.
The 30K top-frequency letter-trigrams construct Vtrig , and
the 200K top-frequency words construct Vname.

We use embedding dimension 64 for content, sender, and
action model; and dimension 128 for salutation model. We
experiment training content model with our own dictionary
in contrast to using GloVe pre-trained word embedding.
With our own dictionary with embedding dimension 64, we
achieve the same model performance as GloVe with embed-
ding dimension 300. This reduces our model size by almost
4 times compared to using GloVe embedding.

Experiment Metrics
Model performance is often measured by average precision
(AP). Yet this metric is inadequate for us since we are only
interested when precision is above 90%. Thus, recall at a
fixed level of high precision (R@P) is a more appropri-
ate metric. Yet, due to the fact that human class is a very
small class (accounting for only 3-5% of all messages), test
data produced by random sampling will contain a very small
number of positive-class samples since resources for label-
ing test data are limited. With a small number of samples
for positive class, we are not able to obtain accurate preci-
sion/recall metrics. To overcome this issue, we over-sample
the small class and adjust the corresponding precision and
recall afterwards such that it can reflect the real-world sce-
nario. Please see details in Appendix. We use adjusted-
recall, fixing adjusted-precision at 90% and 96% individ-
ually (Adj-R@P=90% and Adj-R@P=96%) as our perfor-
mance metrics.
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Model scontent Adj-R Adj-R
@P=90% @P=96%

BERT(pretrained) 512 78.5% 70.5%
Content(CNN) 512 77.8% 69.5%
Content(CNN) 2000 81.1% 70.4%

Full Model 2000 83.6% 78.8%

Table 2: Adj-R@P=90% and Adj-R@P=96% perfor-
mance metrics for the BERT model, content model with
scontent=512 and 2000 separately, and full model for H/M
classification tasks.

Experimental Results
The experimental results on the editorial test data are sum-
marized in Table 2. For all models we trained (including
BERT), the best checkpoint is selected based on our vali-
dation data. The test data is used only for model inference.
Results show that our full model gives the best overall per-
formance for both metrics Adj-R@P at 90% and 96%. For
reference, the old production model based on logistic regres-
sion produces adjusted-precision 94.7% and adjusted-recall
70.5%. We do not present the corresponding two metrics
Adj-R@P=90% and Adj-R@P=95% in Table 2 like we do
for the other models, since the predicted probability scores
for the old production model are not obtainable. Comparing
our content model with scontent = 2000 against the old pro-
duction model, it produces adj-recall 70.4% at adj-precision
96%, which is better than adj-recall 70.5% at adj-precision
94.7%. The full model, which combines the sender model,
the action model, and the salutation model on top of the
content model, provides huge performance gains by improv-
ing Adj-R@P=96% from 70.4% to 78.8% (a relative 11.9%
gain) and Adj-R@P=90% from 81.1% to 83.6% (a relative
3.1% gain). This performance boost comes from utilizing
the sender feature and the two behavior signals: senders’ ex-
plicit salutation signal and recipients’ opening/deleting be-
haviors. With the full model improving the adj-recall from
70.5% to 78.8% over the old production model (and with
the adj-precision increasing from 94.7% to 96.0%), this re-
sults in a 28% reduction in the number of missed personal
emails, compared to the old production model. Note that
we also experimented different combinations of sub models.
Each sub-model itself is performing reasonably well for this
binary classification task; yet combining the content model
and one another sub model does not always perform signifi-
cantly better than the content model itself. We found that the
sub models interact with each other so that the final model
sees bigger improvement than the aggregated contributions
of all the sub models. The final model performs best due to
some interactions among embeddings from each sub-model.

Besides comparing against the old production model, we
also tried a state-of-the-art BERT model for this task. We ex-
perimented with two variants in addition to hyperparameters
tuning: (1) fine-tuning only for our task using the BERT pub-
lished model as the initial checkpoint; (2) pre-training for
200K steps over mail data using the BERT published model
as the initial model and then fine-tuning for our task after-
wards. We found that pre-training over mail data before fine-

tuning performs significantly better for the task than fine-
tuning only. To our surprise, the BERT model performed
worse than even our content model with scontent = 2000.
This may be explained by the different maximum number
of text input for the BERT model versus our content model
with scontent = 2000. Due to the restriction of maximum
text length in the published BERT model, we can only use
at most 512 as the maximum text length for the BERT
model, because of the high memory requirement for the self-
attention part. Sometimes the latter part of an email can in-
clude important signals for classifying H/M messages, for
example “subscribe” and “unsubscribe”. To make the com-
parison more even, we calculated performance metrics for
the content model with scontent = 512, and found that the
BERT model performs only 1% better at the adjusted-recall.

Conclusions
In this paper, we presented an algorithm to distinguish
human-generated email messages from machine-generated
ones. We developed four sub-models to tackle some specific
problems and combined them as a single model. We did not
create additional features to solve a specific problem. In-
stead, we generated auxiliary target labels for the problem
and let the model implicitly learn features within the model.
We demonstrated that our proposed model outperforms the
old production model and a BERT model. The full model has
been deployed to the current production system and is pow-
ering a new feature called “People view” in Yahoo! Mail.
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Appendix
The Annotation Guideline Details It is not straightfor-
ward to know whether an email was technically sent by a
human or a machine. The guideline is about the nature of the
content of the message rather than who technically sent it.
If the content of the message is “personal” (communicated
within a small group of people who know one another), then
it is labeled as “Human”. Otherwise, it will be labeled as
“Machine”. This definition is well aligned with an alterna-
tive definition (based on who technically sent it) even though
there can be exceptions. Every message in the test data is
judged by at least two annotators. For each message, if all
annotators make the same judgement, then this judgement
will be used as the label of this message. Or else, an addi-
tional annotator will be assigned to make the final decision.

Intuition for Adjusting Precision/Recall Before we go
into the notations, we would like to explain why this adjust-
ment is the right way to get correct adjusted precision/recall
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Predicted+ Predicted−
Actual+ n1,1 n1,0

Actual− n0,1 n0,0

Table 3: Confusion Matrix: Population

Predicted+ Predicted−
Actual+ n1,1 · r n1,0 · r′
Actual− n0,1 · r n0,0 · r′

Table 4: Confusion Matrix: Sampling

Predicted+ Predicted−
Actual+ n1,1 · r n1,0 · r′ · (r/r′)
Actual− n0,1 · r n0,0 · r′ · (r/r′)

Table 5: Confusion Matrix: Adjustment

numbers. For a better intuition, we assume (in this Intuition
section only) that the model used for sampling is the same
as the model we would like to calculate performance met-
rics on. Let’s start with the whole population and a classifier,
which gives the following confusion matrix in Table 3. If we
haven’t done any editorial test, we don’t know the values of
n1,1, n1,0, n0,1, and n0,0. Those are unknown but fixed val-
ues. Note that precision is n1,1/(n1,1 + n0,1) and recall is
n1,1/(n1,1 + n1,0).

Now we randomly sample examples from the predicted+
group and the predicted− group using two ratios r and r’ re-
spectively and actually do an editorial test, which will yield
the confusion matrix in Table 4. Note that the numbers in
Table 4 are the expectations if we do sampling many times.

Since we did an editorial test, we now know the values of
n1,1 · r, n1,0 · r′, n0,1 · r and n0,0 · r′. Note that precision
is still n1,1/(n1,1 + n0,1) but recall becomes n1,1 · r/(n1,1 ·
r+ n1,0 · r′). Then, we need to adjust the last column in the
matrix by multiplying r/r′ and get the following confusion
matrix in Table 5.

After this adjustment , we can get the same precision and
recall values as the whole population.

The Adjusted Precision/Recall The section illustrates
how we did over-sampling and adjusted precision/recall for
the small class (+ class).

We did over-sampling based on a model s (denoted by
ψs); then calculated performance metrics on a model f
(denoted by ψf ). First a large number of data are ran-
domly sampled from the population. Model ψs splits this
random sample into two groups G+ and G− by assigning
data with probability score above a cut-off threshold into
group G+ and the remaining in group G−, resulting in a
group size ratio k = G−/G+. Next, we randomly sample
Ms+ and Ms− data points from G+ and G− respectively.
These (Ms+ +Ms−) samples will be used as test data and
judged by editors. Assuming P and N of these samples are
manual-labeled as positive and negative labels respectively
(Ms++Ms− = P +N ). For adjusting precision/recall met-
rics, the Ms− data points should be duplicated Ms+

Ms−
· k (de-

noted by β) times to recover the true +/− proportion in real

+(ψf ) -(ψf )
+(judge),+(ψs) Ps+,f+ Ps+,f−
+(judge),−(ψs) β · Ps−,f+ β · Ps−,f−
−(judge),+(ψs) Ns+,f+ Ns+,f−
−(judge),−(ψs) β ·Ns−,f+ β ·Ns−,f−

Table 6: Adjusted expanded confusion matrix.Here, P and
N represents the number of editor-labeled positive and nega-
tive cases respectively; subscripts s+, s−, f+, f− correspond
to being predicted as positive by ψs, as negative by ψs, as
positive by ψf , and as negative by ψf respectively. For ex-
ample, Ps+,f+ is the number of editor-labeled positive sam-
ples predicted as positive from both ψs and ψf , Ns+,f+ is
the number of editor-labeled negative samples predicted as
positive from both ψs and ψf .

scenario. Table 6 shows the expanded confusion matrix with
metrics from both ψs and ψf , where β is multiplied for data
predicted as negative by ψs to adjust the metrics. Adjusted-
precision and adjusted-recall are following:

Prec(adj) =
Ps+,f+ + β · Ps−,f+

(Ps+,f+ + β · Ps−,f+) + (Ns+,f+ + β ·Ns−,f+)
(1)

and

Recall(adj) =
Ps+,f+ + β · Ps−,f+

(Ps+,f+ + β · Ps−,f+) + (Ps+,f− + β · Ps−,f−)
.

(2)
There are two specific scenarios:

• β = 1: random-sampling, thus adjusted precision/recall
is the same as before adjustment.

• ψs = ψf : two models are the same, so the adjusted-
precision remains the same as before adjustment.

In practice the two models are different and typical values
for beta are between 1 and 10. This depends on the imbal-
ance ratio, the estimated precision and recall, and the desired
precision/recall accuracy level.
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