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Abstract
Multi-view clustering has received a lot of attentions in data
mining recently. Though plenty of works have been investi-
gated on this topic, it is still a severe challenge due to the com-
plex nature of the multiple heterogeneous features. Particu-
larly, existing multi-view clustering algorithms fail to con-
sider the topological structure in the data, which is essential
for clustering data on manifold. In this paper, we propose to
exploit the implied data manifold by learning the topological
relationship between data points. Our method coalesces mul-
tiple view-wise graphs with the topological relevance consid-
ered, and learns the weights as well as the consensus graph
interactively in a unified framework. Furthermore, we manip-
ulate the consensus graph by a connectivity constraint such
that the data points from the same cluster are precisely con-
nected into the same component. Substantial experiments on
benchmark datasets are conducted to validate the effective-
ness of the proposed method, compared to the state-of-the-art
algorithms over the clustering performance.

Introduction
In many real scenarios, data are often generated from dif-
ferent sources in diverse domains or described by various
feature sets (i.e., views) (Bickel and Scheffer 2004; Huang,
Kang, and Xu 2020). A prime example is the documents,
which can be written in different languages; other promi-
nent examples include images as well as web pages, the for-
mer is represented by different visual descriptors, and the
latter is typically classified based on their content or citation
links (Liu et al. 2018; Wang, Yang, and Liu 2019). These
data are referred to as multi-view data. Usually, different
views capture different aspects of information, any of which
suffices for mining knowledge (Li, Chen, and Wang 2019).
Multi-view clustering, which partitions the data points into
distinct clusters according to their compatible and comple-
mentary information encoded in heterogeneous features, has
attracted widespread attention in the domain of unsupervised
learning during the past two decades (Huang et al. 2021b;
Nie, Cai, and Li 2017).

Numerous multi-view clustering methods have been in-
vestigated up to now, among which the graph-oriented multi-
view clustering methods make up a large proportion due
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their efficiency of learning relationships and underlying
common structure shared by multiple views. (Liang, Huang,
and Wang 2019) designed a new alternating optimization
scheme such that the consistent and inconsistent parts of
each single-view graph can be explicitly detected. (Huang
et al. 2021a) proposed to simultaneously leverage the multi-
view consistency and the multi-view diversity in a joint
framework. Due to the efficiency of extracting similari-
ties between multiple views, the kernel strategy is widely
utilized to boost the learning performance of multi-view
clustering methods. (Tzortzis and Likas 2012) expressed
each view in terms of given kernel matrix, and learned a
weighted combination of the kernels in parallel to the par-
titioning. (Houthuys, Langone, and Suykens 2018) formu-
lated the multi-view kernel spectral clustering as a weighted
kernel canonical correlation analysis in a primal-dual opti-
mization setting, in which a coupling term is included to
enforce the clustering scores corresponding to the differ-
ent views to align. (Huang et al. 2019) further performed
multi-view clustering task and learned similarity relation-
ships in kernel spaces simultaneously. Moreover, multiple
kernel learning is adopted such that the clustering perfor-
mance is robust to the input kernel matrix. (Chen, Xiao, and
Zhou 2019) presented a novel kernelized method to handle
nonlinear data structures by jointly learning the representa-
tion tensor and affinity matrix.

There are also several works that seek for a joint graph
compatible across multiple views by making use of the bi-
partite graph fusion method. For instance, (Li et al. 2015)
used the local manifold fusion to integrate heterogeneous
features, and approximated the similarity graphs using bi-
partite graphs for multi-view spectral clustering. Further-
more, this kind of multi-view spectral clustering method is
able to handle the out-of-sample problem. Inspired by the
idea of anchor graph, (Nie et al. 2020) and (Kang et al. 2020)
involved a small number of the data points as anchors so that
the bipartite relations of anchor points and the data points
can be used to cover the affinity of the entire point cloud.

Although graph-oriented multi-view clustering methods
achieve promising results, there still exist several drawbacks.
For one thing, the similarity predefined in data graph is large
only for the neighbors. Considering that real world data are
typically sampled from a nonlinear manifold, the distant data
points may keep high consistency if they are linked by con-
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secutive neighbors. Therefore, these methods cannot fully
investigate the latent topological structure of data lying on
manifold. For another, the clustering performance of these
methods are critically relies on initial graphs as they did not
involve the graph learning as a part of the optimization pro-
cedure, which could lead to a degradation of their perfor-
mance.

Regrading the aforementioned deficiencies, we propose
to exploit the implied data manifold by learning the topo-
logical relationship between data points. To be more spe-
cific, instead of the utilizing Euclidean structure, a more suit-
able manifold topological structure is explored to calculate
the intrinsic similarities. We explicitly exploit the manifold
structure of data by propagating the topological connectivi-
ties between data points from near to far. We further struc-
turize the consensus graph by a connectivity constraint so
that the data points from the same cluster are precisely con-
nected into the same component. As a result, the proposed
method coalesces multiple view-wise graphs with the topo-
logical relevance considered, and learns the weights as well
as the structured consensus graph interactively in a unified
framework. Substantial experiments on both toy data and
real datasets are conducted to validate the effectiveness of
exploring manifold topological structure, and demonstrate
its superior performance compared to state-of-the-art com-
petitors.

Preliminary
Previous studies have shown that real world data are typ-
ically sampled from a nonlinear low-dimensional mani-
fold which is embedded in the high dimensional ambient
space (Roweis and Saul 2000; Zhang, Wang, and Zha 2011;
Minh, Bazzani, and Murino 2016). Thus it is obviously cru-
cial to uncover the manifold structure implied within the
original data matrix.

Recently, (Wang, Chen, and Li 2017) presented a
propagation-based manifold learning method to reveal the
intrinsic structures of crowds and calculate collectiveness by
exploring the topological relationship between individuals.
It is based on a simple yet intuitive assumption that the topo-
logical connectivities between individuals could be propa-
gated from near to far. That is, the spatial similarity between
two individuals may be low, but their topological relevance
to each other would be high if they are linked by consecu-
tive neighbors. Instead of the utilizing Euclidean structure, a
more suitable manifold topological structure is explored to
calculate the intrinsic similarities. According to the topolog-
ical structure learning theory, if two data points keep high
consistency, their topological relevance to any other point is
assumed to be similar.

Given a similarity graph G ∈ Rn×n, where n is number
of data points. Based on the assumption that data points with
large similarity would share similar topological relevance to
any other point, (Wang, Chen, and Li 2017) proposed to ex-
tract the topological relationship of data points by minimiz-
ing the following objective function

min
Z

1

2

n∑
i,j,k=1

Gjk (Zij − Zik)
2
+ α ‖Z− I‖2F , (1)

where i, j, and k are data points indexes, Z indicates the
target topological relationship matrix, and Zij denotes the
data point j’s topological relevance to i. In Eq. (1), the first
term is essentially a smoothness constraint that follows the
above assumption, i.e., it guarantees that data points j and k
share similar topological relationship with data point i if j
and k are similar. The second term is actually a fitting con-
straint that prevents the trivial solution, where all the ele-
ments of Z to be identical. And the parameter α balances
the two terms. Based on Eq. (1), the topological consistency
is propagated through neighbors with high similarities, and
the distant data points will keep close relationship if they are
linked by consecutive neighbors. Finally, the optimization to
the cost function defined in Eq. (1) is able to guide the search
of the topological relationship matrix Z.

Notwithstanding, the learned Z does not contain the ex-
plicit cluster structures, hence a subsequent postprocessing
step is required to obtain the final discrete clustering results.
Moreover, it is designed for the single-view setting, and thus
cannot be directly applied for multi-view clustering tasks.

Our Proposed Methodology
In order to utilize the manifold topological structure for
multi-view clustering, in this paper we extend the for-
mulation introduced in Eq. (1) to the multi-view clus-
tering domain. For multi-view data with m views, let
G(1),G(2), . . . ,G(m) be the corresponding input similar-
ity graphs, and G(v) ∈ Rn×n(1 ≤ v ≤ m). According to
Eq. (1), we can search the topological relationship for each
view by solving

min
Z(v)

1

2

m∑
v=1

n∑
i,j,k=1

G
(v)
jk

(
Z

(v)
ij − Z

(v)
ik

)2
+ α

∥∥∥Z(v) − I
∥∥∥2
F

s.t.
(
z
(v)
i

)T
1 = 1, z

(v)
ij ≥ 0.

(2)
Here we constrain that the sum of each row of Z(v) is
one, and all elements of Z(v) are non-negative. It is clear
that if point j is connected with many similar neighbors, it
will largely affect the objective value. Hence we propose a
normalized version of Eq. (2) so that each point is treated
equally, which can be formulated as

min
Z(v)

1
2

m∑
v=1

n∑
i,j,k=1

G
(v)
jk

(
Z

(v)
ij√
D

(v)
jj

− Z
(v)
ik√
D

(v)
kk

)2

+ α
∥∥Z(v) − I

∥∥2
F

s.t.
(
z
(v)
i

)T
1 = 1, z

(v)
ij ≥ 0,

(3)
where D(v) is the degree matrix of G(v).

Once the topological relationship matrices of all views are
obtained, we need to adopt a set of suitable weights µ(v)(1 ≤
v ≤ m) to reflect the importance of each view. In detail, we
can approximate every Z(v) with different confidences by
learning a consensus graph S. This thought can be modeled
by minimizing the linear combination of

∥∥S− µ(v)Z(v)
∥∥2
F

.
Furthermore, as pointed out by (Mohar et al. 2001; Nie et al.
2020), we can manipulate the consensus graph to contain
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exactly c connected components by adding a connectivity
constraint rank (LS) = n − c, where c is the number of
clusters and LS is the Laplacian matrix of S. Thus we arrive
at

min
Z(v),S,µ(v)

1

2

m∑
v=1

n∑
i,j,k=1

G
(v)
jk

 Z
(v)
ij√
D

(v)
jj

−
Z

(v)
ik√
D

(v)
kk

2

+α
∥∥∥Z(v) − I

∥∥∥2
F
+ β

∥∥∥S− µ(v)Z(v)
∥∥∥2
F

s.t.
(
z
(v)
i

)T
1 = 1, z

(v)
ij ≥ 0,

(
s
(v)
i

)T
1 = 1, s

(v)
ij ≥ 0,

µ(v) ≥ 0,
m∑
v=1

µ(v) = 1, rank (LS) = n− c

(4)
We see that Eq. (4) is difficult to solve due to the rank

constraint as it depends on S. Let σi (LS) be the i-th small-
est eigenvalue of LS . The constraint rank (LS) = n − c

would be satisfied if
∑k
i=1 σi (LS) = 0 as LS is a posi-

tive semidefinite matrix. We incorporate the constraint term∑k
i=1 σi (LS) into the cost function, thus our model can be

finally formulated as

min
Z(v),S

F,µ(v)

m∑
v=1

1

2

n∑
i,j,k=1

G
(v)
jk

 Z
(v)
ij√
D

(v)
jj

−
Z

(v)
ik√
D

(v)
kk

2

+ α
∥∥∥Z(v) − I

∥∥∥2
F︸ ︷︷ ︸

topological relevance learning

+β
∥∥∥S− µ(v)Z(v)

∥∥∥2
F︸ ︷︷ ︸

graph fusion

+2λTr
(
FTLSF

)︸ ︷︷ ︸
partition label learning

s.t.
(
z
(v)
i

)T
1 = 1, z

(v)
ij ≥ 0,

(
s
(v)
i

)T
1 = 1, s

(v)
ij ≥ 0,

µ(v) ≥ 0,
m∑
v=1

µ(v) = 1,FTF = I,

(5)
where F ∈ Rn×c denotes the cluster indicator matrix, λ is
a self-tuned parameter, and the following Ky Fan’s Theo-
rem (Fan 1949) is employed

c∑
i=1

σi (LS) = min
F

Tr
(
FTLSF

)
s.t. F ∈ Rn×c,FTF = I.

(6)

It is noteworthy that our model formulated in Eq. (5) is dis-
tinct from other approaches in several aspects:
• Orthogonal to other multi-view clustering methods, our

model explicitly exploit the implied data manifold by
learning the topological relationship between data points.
Considering the topological relevance of two data points
could be high if they are linked by consecutive neigh-
bors, it is critical to search a suitable manifold topologi-
cal structure so that the intrinsic similarities can be better
calculated.

• It is well-known that learning with multi-stage strategy
usually leads to sub-optimal performance. Therefore, we

propose a joint learning framework that seamlessly inte-
grates subtasks including topological relevance learning,
graph fusion, and partition label learning together.

• We manipulate the consensus graph S by a connectivity
constraint so that it contains exactly c connected compo-
nents. Thus S can be considered as an indicator matrix,
where the points from the same cluster are connected into
the same component. In this way, the discretization pro-
cedure is no longer required in our model. Hence it is an
end-to-end single-stage learning paradigm.

Optimization
In this section, we design an iterative updating algorithm
to solve the optimization problem in Eq. (5). Since it is
not jointly convex in all variables, we propose to optimize
the objective function with respect to one variable while
fix other variables. And the procedure repeats until conver-
gence.

Update F
With other variables fixed, we solve F according to

min
F∈Rn×c,FTF=I

Tr
(
FTLSF

)
, (7)

which is a classical spectral problem and the corresponding
solution can be obtained by calculating the c eigenvectors of
LS corresponding to the c smallest eigenvalues.

Update Z(v) for Each View
For each Z(v), we need to solve

min
Z(v)

1

2

m∑
v=1

n∑
i,j,k=1

G
(v)
jk

 Z
(v)
ij√
D

(v)
jj

−
Z

(v)
ik√
D

(v)
kk

2

+α
∥∥∥Z(v) − I

∥∥∥2
F
+ β

∥∥∥S− µ(v)Z(v)
∥∥∥2
F

s.t.
(
z
(v)
i

)T
1 = 1, z

(v)
ij ≥ 0.

(8)

Note that Eq. (8) is independent for different v, thus for
the v-th view we have

min
z
(v)
i

1

2

n∑
i=1

{
n∑

j,k=1

G
(v)
jk

 Z
(v)
ij√
D

(v)
jj

−
Z

(v)
ik√
D

(v)
kk

2

+α
n∑
j=1

∥∥∥Z(v)
ij − Iij

∥∥∥2
F
+ β

n∑
j=1

∥∥∥Sij − µ(v)Z
(v)
ij

∥∥∥2
F

}

s.t.
(
z
(v)
i

)T
1 = 1, z

(v)
ij ≥ 0.

(9)

For each i, Eq. (9) can be further rewritten in a vector
form as

min
z
(v)
i

(
z
(v)
i

)T (
I−D−

1
2G(v)D−

1
2

)
z
(v)
i

+α
∥∥∥z(v)i − ei

∥∥∥2
2
+ β

∥∥∥si − µ(v)z
(v)
i

∥∥∥2
2

s.t.
(
z
(v)
i

)T
1 = 1, z

(v)
ij ≥ 0.

(10)
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Algorithm 1: Algorithm to solve Eq. (13)
Input: a nonzero matrix A and a nonzero vector b.

Set 1 < ρ < 2, initialize η > 0, q.
Output: Z(v).

1: repeat
2: Update p according to (16).
3: Update z

(v)
i according to (17).

4: Update η ← ρη.
5: Update q← q+ η

(
z
(v)
i − p

)
.

6: until converge

Denote A =
(
1 + α+ β

(
µ(v)

)2)
I − D−

1
2G(v)D−

1
2

and b = 2αei + 2βµ(v)si, Eq. (10) can be stated as

min(
z
(v)
i

)T
1=1,z

(v)
ij ≥0

(
z
(v)
i

)T
Az

(v)
i −

(
z
(v)
i

)T
b. (11)

It is clear that Eq. (11) is a quadratic convex optimization
problem, and we can solve it with the classical augmented
Lagrangian multiplier (ALM) method (Bertsekas 1997). In
detail, Eq. (11) can be solved by tackling its counterpart

min(
z
(v)
i

)T
1=1,z

(v)
ij ≥0,p=z

(v)
i

(
z
(v)
i

)T
Ap−

(
z
(v)
i

)T
b. (12)

Via ALM, the augmented Lagrangian function of Eq. (12)
can be defined as

min(
z
(v)
i

)T
1=1,z

(v)
ij ≥0,p

(
z
(v)
i

)T
Ap−

(
z
(v)
i

)T
b

+
η

2

∥∥∥∥z(v)i − p+
1

η
q

∥∥∥∥2
2

,

(13)

where the second term in Eq. (13) is a penalty function term
which guarantees that p = z

(v)
i , η and q are the correspond-

ing penalty coefficient and parameter, respectively.
Note that p and z

(v)
i can be iteratively optimized:

1) Update p with fixed z
(v)
i . The Lagrange function of

Eq. (13) w.r.t. p is

Lp =
(
z
(v)
i

)T
Ap+

η

2

∥∥∥∥z(v)i − p+
1

η
q

∥∥∥∥2
2

, (14)

Taking the derivative of Lp w.r.t p and setting the derivative
to zero, i.e.,

∂Lp

∂p
= 0, (15)

thus we have

p = z
(v)
i −

1

η

(
AT z

(v)
i + q

)
. (16)

2) Update z
(v)
i with fixed p. The Lagrange function of

Eq. (13) w.r.t. z(v)i can be written as

min(
z
(v)
i

)T
1=1,z

(v)
ij ≥0

∥∥∥∥z(v)i − p+
1

η
q+

Ap− b

η

∥∥∥∥2
2

, (17)

Algorithm 2: The Algorithm for Eq. (5)

Input: Initial graphs {G(1),G(2), . . . ,G(m)} for the m
views, cluster number c, parameters α and β.
Initialize the weight of each view µ(v) = 1

m .
Initialize the consensus graph S =

∑m
v=1 µ

(v)G(v).
Output: The indicator matrix S ∈ Rn×n with exactly c

connected components.
1: repeat
2: Update F according to Eq. (7).
3: Update Z(v) by Algorithm 1.
4: Update S according to Eq. (21).
5: Update µ(v) according to Eq. (24).
6: until converge

which has a closed-form solution and can be readily ob-
tained by the optimization algorithm proposed in (Huang,
Nie, and Huang 2015).

According to the ALM principles (Bertsekas 1997), η can
be exaggerated increasingly during each iteration, and q is
updated by q ← q + η

(
z
(v)
i − p

)
. The detailed algorithm

to solve Eq. (13) is summarized in Algorithm 1.

Update S
Drop all unrelated terms of Eq. (5) w.r.t. S, thus we have

min
S

m∑
v=1

β
∥∥∥S− µ(v)Z(v)

∥∥∥2
F
+ 2λTr

(
FTLSF

)
s.t.

(
s
(v)
i

)T
1 = 1, s

(v)
ij ≥ 0.

(18)

Since Eq. (18) is independent for different i, thus we obtain

min
si

m∑
v=1

n∑
i,j=1

(
sij − µ(v)z

(v)
ij

)2
+
λ

β
‖fi − fj‖22 sij

s.t.
(
s
(v)
i

)T
1 = 1, s

(v)
ij ≥ 0,

(19)

Eq. (19) can be further written as

min
si

n∑
i=1

(
m∑
v=1

(
sij − µ(v)z

(v)
ij

)2
+
λ

β
‖fi − fj‖22 sij

)

s.t.
(
s
(v)
i

)T
1 = 1, s

(v)
ij ≥ 0,

(20)
For each i, we get the following compact formulation

min
sTi 1=1,sij≥0

∥∥∥∥∥si −
(

m∑
v=1

µ(v)z
(v)
i −

λ

2β
hi

)∥∥∥∥∥
2

2

, (21)

which can be effectively solved by the optimization algo-
rithm proposed in (Huang, Nie, and Huang 2015).

Update µ(v) for Each View
Optimizing Eq. (5) w.r.t. µ(v) is equivalent to solving

min∑m
v=1 µ

(v)=1,µ(v)≥0

m∑
v=1

∥∥∥S− µ(v)Z(v)
∥∥∥2
F
. (22)
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Method ACC NMI Purity F-score Precision Recall ARI
SC(AllFea) 56.09±3.55 52.66±3.90 72.54±3.59 51.15±5.38 55.64±6.70 47.38±4.59 37.83±7.01

Co-train 56.45±4.77 56.55±3.61 76.15±2.03 53.87±4.44 62.43±4.87 47.38±4.10 42.31±5.48
Co-reg 55.86±4.00 55.38±1.77 74.56±2.18 54.08±4.68 58.20±5.92 50.55±3.94 41.38±6.24
DiMSC 76.15±0.56 63.47±0.82 80.30±0.56 68.59±0.35 64.28±0.84 78.29±0.60 56.01±0.57
WMSC 57.75±0.75 49.45±1.05 71.72±0.78 50.72±0.87 54.76±1.08 47.24±0.76 37.21±1.14
AWP 54.44±0.00 45.88±0.00 63.31±0.00 42.46±0.00 38.19±0.00 47.80±0.00 22.42±0.00

MCGC 56.80±0.00 34.21±0.00 65.09±0.00 51.58±0.00 41.21±0.00 68.93±0.00 31.72±0.00
mPAC 60.95±0.00 57.58±0.00 71.01±0.00 54.74±0.00 55.61±0.00 53.90±0.00 41.32±0.00
LMSC 61.48±3.44 49.72±2.31 70.89±1.33 58.52±2.65 60.87±2.88 56.46±3.79 46.58±3.24
GMC 69.23±0.00 54.80±0.00 74.56±0.00 60.47±0.00 48.44±0.00 80.45±0.00 44.31±0.00
CDG 71.78±6.04 69.88±5.42 81.54±3.17 67.43±5.38 66.27±2.82 66.05±8.36 57.99±6.29
Ours 78.70±0.00 65.93±0.00 82.25±0.00 70.71±0.00 69.97±0.00 82.33±0.00 60.14±0.00

Table 1: Clustering performance (mean±standard deviation) on dataset 3sources (%).

Method ACC NMI Purity F-score Precision Recall ARI
SC(AllFea) 71.22±3.24 68.29±0.90 73.31±2.30 63.46±1.91 60.78±2.28 66.43±2.20 59.22±2.15

Co-train 76.97±1.27 70.30±0.59 77.65±0.37 67.09±1.02 66.20±1.04 68.05±2.16 63.40±1.09
Co-reg 66.64±4.79 62.75±1.96 67.83±3.49 56.64±2.45 55.51±3.24 57.86±1.74 51.73±2.81
DiMSC 87.47±0.27 75.64±0.12 87.99±0.17 83.00±0.13 82.34±0.11 83.73±0.16 72.81±0.13
WMSC 90.55±0.02 84.41±0.04 90.55±0.02 83.00±0.05 82.45±0.05 83.56±0.04 81.10±0.05
AWP 74.85±0.00 73.94±0.00 74.85±0.00 72.24±0.00 64.66±0.00 81.83±0.00 68.77±0.00

MCGC 82.40±0.00 83.27±0.00 84.70±0.00 79.04±0.00 72.99±0.00 86.18±0.00 76.51±0.00
mPAC 61.45±0.00 60.39±0.00 61.70±0.00 56.79±0.00 51.98±0.00 62.57±0.00 51.51±0.00
LMSC 81.41±4.59 80.71±1.75 84.98±2.77 77.44±2.75 73.97±4.11 81.36±2.22 74.81±3.11
GMC 88.20±0.00 89.32±0.00 88.20±0.00 86.53±0.00 82.60±0.00 90.85±0.00 84.96±0.00
CDG 86.00±0.00 85.88±0.00 86.00±0.00 81.94±0.00 81.59±0.00 82.28±0.00 79.93±0.00
Ours 96.85±0.00 92.86±0.00 96.85±0.00 93.80±0.00 93.73±0.00 93.87±0.00 93.12±0.00

Table 2: Clustering performance (mean±standard deviation) on dataset HW (%).

For each view, the Lagrange function of Eq. (22) is

L =
m∑
v=1

∥∥∥S− µ(v)Z(v)
∥∥∥2
F
+ γ

(
m∑
v=1

µ(v) − 1

)
(23)

where γ is the Lagrange multiplier for the v-th view.
Setting the derivative of L w.r.t µ(v) to zero, we have

µ(v) =
2Tr

(
SZ(v)T

)
− γ

2Tr
(
Z(v)Z(v)T

) . (24)

Considering the constraint
∑m
v=1 µ

(v) = 1, we can compute
γ and further get each µ(v).

The detailed algorithm to solve the objective in Eq. (5) is
summarized in Algorithm 2.

Experiments
We validate the proposed method by comparing it with fol-
lowing state-of-the-art competitors: Co-training multi-view
spectral clustering (Co-train) (Kumar and Daumé 2011),
Co-regularized multi-view spectral clustering (Co-reg) (Ku-
mar, Rai, and Daume 2012), Diversity-induced multiview
subspace clustering (DiMSC) (Cao et al. 2015), Weighted

Datasets n m c dv
3S 169 3 6 3560/3631/3068
HW 2000 6 10 216/76/64/6/240/47
Cal7 1474 6 7 48/40/254/1984/512/928
Cal20 2386 6 20 48/40/254/1984/512/928

Table 3: Characteristics of the data sets.

multi-view spectral clustering (WMSC) (Zong et al. 2018),
Multi-view clustering via adaptively weighted procrustes
(AWP) (Nie, Tian, and Li 2018), Multi-view consensus
graph clustering (MCGC) (Zhan et al. 2019), Multiple Par-
titions Aligned Clustering (mPAC) (Kang et al. 2019), La-
tent multi-view subspace clustering ((LMSC) (Zhang et al.
2020), Graph-based multi-view clustering (GMC) (Wang,
Yang, and Liu 2020), and Multi-view clustering via cross-
view graph diffusion (CGD) (Tang et al. 2020). The standard
spectral clustering (SC) (Ng, Jordan, and Weiss 2002) is in-
cluded as baseline. We perform SC on the concatenated fea-
tures of all views (denoted by SC(AllFea)). Several bench-
mark multi-view data sets are used in this paper: 3source,
Handwritten numerals, Caltech7 and Caltech20. Recall that
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Method ACC NMI Purity F-score Precision Recall ARI
SC(AllFea) 40.55±3.00 29.32±1.00 80.01±0.28 39.34±2.14 68.15±0.29 27.70±2.19 22.00±1.45

Co-train 40.78±3.76 33.24±2.76 79.86±2.36 42.73±3.35 75.53±3.44 29.82±2.77 26.82±3.60
Co-reg 46.09±5.43 38.86±2.57 81.91±1.16 48.54±3.91 79.53±4.80 34.97±3.29 32.76±4.44
DiMSC 41.72±0.80 32.21±0.59 76.19±0.68 42.42±0.56 71.84±0.95 30.10±0.70 25.45±0.18
WMSC 38.92±0.11 28.07±0.01 79.58±0.00 37.78±0.05 67.72±0.02 26.19±0.04 20.73±0.04
AWP 58.96±0.00 46.25±0.00 83.04±0.00 61.83±0.00 87.56±0.00 47.79±0.00 47.56±0.00

MCGC 55.22±0.00 47.00±0.00 82.97±0.00 58.78±0.00 74.21±0.00 48.66±0.00 40.67±0.00
mPAC 54.41±0.00 46.24±0.00 85.14±0.00 57.51±0.00 88.68±0.00 42.55±0.00 43.35±0.00
LMSC 53.05±2.90 47.01±3.20 85.77±1.62 55.18±3.26 85.28±2.82 40.83±3.05 40.33±3.64
GMC 69.20±0.00 58.56±0.00 88.47±0.00 72.17±0.00 88.58±0.00 60.88±0.00 59.43±0.00
CDG 57.15±3.95 51.46±2.55 86.17±1.06 58.88±3.16 86.84±1.91 44.61±3.49 44.37±3.36
Ours 70.22±0.00 60.66±0.00 88.81±0.00 72.52±0.00 89.05±0.00 61.16±0.00 59.94±0.00

Table 4: Clustering performance (mean±standard deviation) on dataset Caltech7 (%).

Method ACC NMI Purity F-score Precision Recall ARI
SC(AllFea) 29.43±1.33 33.96±0.66 60.00±0.66 23.97±0.93 47.92±1.51 15.98±0.69 17.24±0.93

Co-train 38.26±2.18 47.79±1.18 70.83±1.30 33.28±2.02 66.18±2.82 22.23±1.49 27.34±2.07
Co-reg 43.58±4.18 54.91±1.62 76.66±1.48 39.19±3.25 72.24±3.58 26.91±2.61 33.32±3.32
DiMSC 28.69±0.75 27.20±0.42 54.33±0.45 19.52±0.31 39.71±0.65 12.94±0.22 12.52±0.33
WMSC 33.26±1.42 41.50±0.58 67.08±0.52 29.83±1.61 57.61±3.01 20.13±1.12 23.38±1.73
AWP 51.55±0.00 55.90±0.00 73.39±0.00 50.43±0.00 71.62±0.00 42.61±0.00 47.00±0.00

MCGC 47.53±0.00 54.57±0.00 68.65±0.00 40.17±0.00 41.74±0.00 38.71±0.00 29.06±0.00
mPAC 55.11±0.00 56.90±0.00 75.82±0.00 51.27±0.00 78.68±0.00 38.02±0.00 45.49±0.00
LMSC 44.46±3.42 55.32±0.75 76.69±0.98 37.49±3.14 68.73±3.46 25.80±2.56 31.42±3.21
GMC 45.64±0.00 38.46±0.00 55.49±0.00 34.03±0.00 22.78±0.00 67.28±0.00 12.84±0.00
CDG 53.35±2.56 58.75±1.17 76.54±0.61 48.41±2.51 75.85±3.79 35.57±2.14 42.43±2.74
Ours 66.81±0.00 57.44±0.00 76.03±0.00 51.62±0.00 70.96±0.00 69.76±0.00 49.14±0.00

Table 5: Clustering performance (mean±standard deviation) on dataset Caltech20 (%).

(a) DiMSC (b) MCGC (c) LMSC (d) Ours

Figure 1: The consensus graph of data set HW learned by different methods. Best viewed in color.

n, m, and c denote the number of samples, views, and clus-
ters, respectively. dv denotes the dimensionality of the fea-
tures in the v-th view. The specific characteristics of these
data sets are given in Table 3.

Seven widely-used metrics are adopted to achieve a com-
prehensive evaluation: clustering accuracy (ACC), Normal-
ized Mutual Information (NMI), Purity, Precision, Recall, F-
score, and Adjusted Rand Index (ARI). Motivated by (Nie,
Cai, and Li 2017), we initialize the initial graphs G(v) by
selecting 20-nearest neighbors among raw data.

Clustering Results

We repeat each experiment 10 times, and their mean val-
ues as well as standard deviations are reported for compari-
son. Note that the best clustering performance is bolded. As
shown in Tables 1–5, it is clear that our approach achieves
the best performance in majority cases, which verifies the
effectiveness of our method. As mentioned before, S can be
considered as an indicator matrix, where the points from the
same cluster are connected into the same component. Once
we obtain the consensus graph, the cluster label of each data
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(a) ACC (b) NMI (c) Purity

(d) F-score (e) Precision (f) Recall

Figure 2: The clustering performance with respect to different parameter settings.

point can be directly assigned without any postprocessing.
Hence our method is very stable and that’s why the stan-
dard deviations of our method are always 0.00. To visualize
the effect of connectivity constraint, we plot the consensus
graph learned by different methods. Taking the dataset HW
as an example, as shown in Figure 1, we see that compared
method DiMSC cannot even find the block diagonal struc-
ture of the consensus graph. MCGC is able to search the
block diagonal structure, but the number of diagonal blocks
is not correct. LMSC can find the correct number of diago-
nal blocks, but it is seriously corrupted. It is clear that our
method almost achieves a pure structured consensus graph
with a much more clear clustering structure, which properly
approximates the ground truth.

Parameter Analysis
This section investigates the clustering performance with re-
spect to different parameter settings. Note that the parameter
λ can be tuned in a heuristic way. That is, we initialize λ to
a random positive value (e.g., λ = 1), then our model is
able to automatically halve or double it when the number
of connected components of S is greater or smaller than the
cluster number c during each iteration. Thus we only need
to search the parameters α and β. For simplicity, we search
both α and β in the range [0.05, 0.1, 0.5, 1, 2, 5, 10]. Taking
the dataset 3sources as an example, in Figure 2 we see that
the clustering performance of our method is relatively stable
under different parameter settings, which demonstrates the
robustness of our model. For simplicity, we can achieve de-

cent results by setting α = β = 1 in practical applications.

Conclusion
In this paper, we propose to exploit the implied data man-
ifold by learning the topological relationship between data
points. Our method coalesces multiple view-wise graphs
with the topological relevance considered, and learns the
weights as well as the consensus graph interactively in a
unified framework. Furthermore, we manipulate the consen-
sus graph by a connectivity constraint so that the data points
from the same cluster are precisely connected into the same
component. To solve the optimization problem of our model,
an efficient iterative updating algorithm is proposed. Sub-
stantial experiments on real datasets are conducted to vali-
date the effectiveness of the proposed method, compared to
the state-of-the-art algorithms.
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