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Abstract
Under data distributions which may be heavy-tailed, many
stochastic gradient-based learning algorithms are driven by
feedback queried at points with almost no performance guar-
antees on their own. Here we explore a modified “anytime
online-to-batch” mechanism which for smooth objectives
admits high-probability error bounds while requiring only
lower-order moment bounds on the stochastic gradients. Us-
ing this conversion, we can derive a wide variety of “anytime
robust” procedures, for which the task of performance analy-
sis can be effectively reduced to regret control, meaning that
existing regret bounds (for the bounded gradient case) can
be robustified and leveraged in a straightforward manner. As
a direct takeaway, we obtain an easily implemented stochas-
tic gradient-based algorithm for which all queried points for-
mally enjoy sub-Gaussian error bounds, and in practice show
noteworthy gains on real-world data applications.

Introduction
The ultimate goal of many learning tasks can be formulated
as a minimization problem:

min
h

R(h), s.t. h ∈ H. (1)

What characterizes this as a learning problem is that R
(henceforth called the true objective) is unknown to the
learner, who must choose from the hypothesis classH a final
candidate based only on incomplete and noisy (stochastic)
feedback related to R (Haussler 1992; Vapnik 1999). One of
the most ubiquitous and well-studied feedback mechanisms
is the stochastic gradient oracle (Hazan 2016; Nemirovsky
and Yudin 1983; Shalev-Shwartz 2012), in which the learner
generates a sequence of candidates (ht) based on a sequence
of random sub-gradients (Gt), which are unbiased in the fol-
lowing sense:

E
[
Gt |G[t−1]

]
∈ ∂ R(ht), for all t ≥ 1. (2)

Here ∂ R(h) denotes the sub-differential of R evaluated at
h, and we denote sub-sequences by G[t]

..= (G1, . . . , Gt).1

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1More strictly speaking, for each t, this inclusion holds almost
surely over the random draw of G[t], and the conditional expecta-
tion is that of Gt conditioned on the sigma-algebra generated by
G[t−1]. See Ash and Doléans-Dade (2000, Ch. 5–6) for additional
background on probabilistic foundations.

Our problem of interest is that of efficiently minimizing R(·)
over H when the noisy feedback is potentially heavy-tailed,
i.e., for all steps t, it is unknown whether the distribution of
Gt is congenial in the sub-Gaussian sense, or heavy-tailed
in the sense of having infinite or undefined higher-order mo-
ments (Chen, Su, and Xu 2017). By “efficiently,” we mean
procedures with performance guarantees (high-probability
error bounds) on par with the case in which the learner
knows a priori that the feedback is sub-Gaussian (Devroye
et al. 2016; Nazin et al. 2019).

Recently, notable progress has been made on this front,
with a common theme of making principled modifications
(e.g., truncation, data splitting + validation, etc.) to the the
raw feedback (Gt) before passing it to a more traditional
stochastic gradient-based update, to achieve sub-Gaussian
bounds (with optimal dependence on the confidence level)
while assuming just finite variance (Davis et al. 2019; Gor-
bunov, Danilova, and Gasnikov 2020; Nazin et al. 2019).
Here we focus on two key limitations to the current state
of the art: (a) many robust learning algorithms only have
such guarantees when R is strongly convex (Chen, Su, and
Xu 2017; Davis et al. 2019; Holland and Ikeda 2019); (b)
without strong convexity, sub-Gaussian guarantees are un-
available for the iterates (ht) being queried in (2), only for
a running average of these iterates (Gorbunov, Danilova,
and Gasnikov 2020; Nazin et al. 2019). While there ex-
ist general-purpose “anytime” online-to-batch conversions
to ensure that the points being queried have guarantees
(Cutkosky 2019), even the most refined conversions either
require bounded gradients or are only in expectation (Joulani
et al. 2020), meaning that under potentially heavy-tailed gra-
dients, a direct anytime conversion based on existing results
fails to achieve the desired guarantees.

In this paper, in order to address the issues described
above, we introduce a modified mechanism for making the
“anytime” conversion (Algorithm 1), which is both easy
to implement and robust to the underlying data distribu-
tion. More concretely, assuming only that R is convex and
smooth, and that raw gradients have finite variance, we ob-
tain martingale concentration guarantees for truncated gradi-
ents queried at a moving average (Lemma 2), which lets us
reduce the problem of obtaining error bounds to that of re-
gret control (section ), substantially broadening the domain
to which the anytime conversion of Cutkosky (2019) can be
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applied. Regret control for online learning algorithms (under
bounded gradients) is a well-studied problem, and in sec-
tion we show that existing well-known regret bounds can
be readily modified to utilize the control offered by Lemma
2. In particular, we look at vanilla FTRL (Lemma 4), mirror
descent (Lemma 5), and AO-FTRL (Theorem 8), giving us
“anytime robust” analogues to results given in expectation
by Joulani et al. (2020). As a natural takeaway, we obtain
a stochastic gradient-based procedure (section ) for which
all queried points have sub-Gaussian error bounds (Corol-
lary 7), a methodological improvement over the averaging
scheme of Nazin et al. (2019), which we also empirically
demonstrate has substantial practical benefits (section ). Our
results are stated with a high degree of generality (works on
any reflexive Banach space), and taken together are sugges-
tive of an appealing general-purpose learning strategy.

Outline of the paper In section we set out our basic no-
tation, describe the basic principle underlying anytime con-
versions and highlight the impact it has on the excess risk.
Our general-purpose robustified anytime algorithm design
is described in detail in section , where we establish control
over the gradient estimation error, and show how this leads
to a robust analogue of existing regret-based excess error
bounds, valid under potentially heavy-tailed gradients. We
then put these general results to work in section , where we
illustrate how it is straightforward to apply our techniques
to many important classes of online learning algorithms to
obtain variants which are both anytime and robust. In sec-
tion , we carry out empirical investigations using real-world
benchmark datasets to explore the practical utility of any-
time feedback. Finally, we note that formal definitions of key
concepts, support lemmas, and detailed proofs of all results
in the main text are provided in the appendix (supplementary
materials).

Preliminaries
Terms and Notation
The underlying space For the underlying hypothesis
classH, we shall assumeH ⊂ V , where (V , ‖·‖) is a normed
linear space. For any normed space (V , ‖ ·‖), we will denote
by V∗ the usual dual of V , namely the set of all continuous
linear functionals on V . As is traditional, the norm for the
dual is defined ‖f‖∗ ..= sup{a : |f(v)| ≤ a‖v‖, v ∈ V}
for f ∈ V∗. We denote the distance from a point v to a set
A ⊂ V by dist(v;A) ..= inf{‖v − u‖ : u ∈ A}. We use
the notation 〈·, ·〉 to represent the coupling function between
V and V∗, namely 〈v∗, v〉 ..= v∗(v) for each v∗ ∈ V∗ and
all v ∈ V ; when V is a Hilbert space this coincides with the
usual inner product. We denote the extended real line by R.

Convexity and smoothness We say that a function f :
V → R is convex if for all 0 < α < 1 and u, v ∈ V , we have
f(αu + (1 − α)v) ≤ αf(u) + (1 − α)f(v). The effective
domain of f is defined dom f ..= {u ∈ V : f(u) < ∞}.
A convex function f : V → R is said to be proper if
−∞ < f and dom f 6= ∅. For any proper convex func-
tion f : V → R, the sub-differential of f at h ∈ V is
∂f(h) ..= {v∗ ∈ V∗ : f(u)− f(h) ≥ 〈v∗, u− h〉, u ∈ V}.

For readability, we will sometimes make statements in-
volving multi-valued functions; for example, the statement
“〈∂f(h), u〉 = a,” is equivalent to the statement “〈v∗, u〉 =
a for all v∗ ∈ ∂f(h).” When we say a certain point h∗ is a
stationary point of f on H, we mean that h∗ ∈ H and 0 ∈
∂f(h∗). If the convex function f happens to be (Gateaux)
differentiable at some h ∈ H, then the sub-differential con-
tains a unique element, ∂f(h) = {∇f(h)}, the gradient
of f at h. When we say that f is λ-smooth on some open
convex set U ⊂ V , we mean that ‖∇f(h) − ∇f(h′)‖∗ ≤
λ‖h−h′‖ for all h, h′ ∈ U . For any sub-differentiable func-
tion f , we write Df (u; v) ..= f(u)− f(v)−〈∂f(v), u− v〉;
when f happens to be convex and differentiable, this be-
comes the usual Bregman divergence induced by f .

Miscellaneous notation For indexing purposes, we de-
note the set of all positive integers no greater than k by
[k] ..= {1, . . . , k}. We denote α1:t

..=
∑t
i=1 αi for any in-

teger t ≥ 1, using the convention α1:0
..= 0 as needed.

We also denote sub-sequences in a similar fashion, with
α[t]

..= (α1, . . . , αt); this applies not only to (αt), but also
(ht), (Gt) and other sequences used throughout the paper.
Indicator functions (i.e., Bernoulli random variables) are
typically denoted as I{event}.

Anytime Conversions
As preparation, we start with almost no assumptions on the
learning algorithm or feedback-generating process. Let (ht)
be an arbitrary sequence of candidates, henceforth referred
to as the ancillary iterates. Letting (αt) be a sequence of
positive weights, we consider the corresponding main iter-
ates (ht), defined for all t ≥ 1 as

ht = Weighting
[
ht;h[t−1]

]
..=

∑t
i=1 αihi
α1:t

. (3)

As a starting point, we note that the excess error of the
weighted main iterates can be expressed in a convenient
fashion.
Lemma 1 (Anytime lemma). Let V be a linear space, and
let R : V → R be sub-differentiable. Let (ht) be an arbitrary
sequence of ht ∈ dom R, and let (ht) be generated via (3).
Then we have

R(hT )− R(h∗)

=
1

α1:T

[
T∑
t=1

αt
[
〈∂ R(ht), ht − h∗〉 −DR(h∗;ht)

]
−
T−1∑
t=1

α1:t DR(ht;ht+1)

]
for any reference point h∗ ∈ dom R and T ≥ 1.

The above equality is a slight generalization of the any-
time online-to-batch inequality introduced by Cutkosky
(2019) and sharpened by Joulani et al. (2020); it follows by
direct manipulations utilizing little more than the definition
of DR. The key point of Lemma 1 is that we can obtain con-
trol over the main iterates R(ht) using an ideal quantity that
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Algorithm 1: Anytime robust online-to-batch conversion.

inputs: Weights (αt), thresholds (ct), algorithmA, initial
point h1, max iterations T .
Initialize h1 = h1.
for t ∈ [T − 1] do

Obtain stochastic gradient Gt at ht, satisfying (4).
Set Gt = Process[Gt; ct] following (6)–(7).
Ancillary update: ht+1 = A(ht).
Main update:
ht+1 = Weighting[ht+1;h[t]], as in (3).

end for
return: hT .

depends directly on ht, rather than simply ht, as is typical of
traditional online-to-batch conversions (Cesa-Bianchi, Con-
coni, and Gentile 2004). This is important because it opens
the door to new stochastic feedback processes, driven by the
main iterates, rather than the ancillary ones. In other words,
we want feedback that provides an estimate of some element
of ∂ R(ht), rather than ∂ R(ht). When R is convex, we have
DR ≥ 0, and the subtracted terms can be utilized to sharpen
our guarantees once we have regret bounds, as will be dis-
cussed in the technical appendices.

Anytime Robust Algorithm Design
In Algorithm 1, we give a summary of the modified online-
to-batch conversion that we utilize throughout the rest of the
paper. Essentially, we start with an arbitrary online learning
algorithm A, query the potentially heavy-tailed stochastic
feedback after averaging the iterates, and process the raw
gradients in a robust fashion before updating. In the follow-
ing paragraphs, we describe the details of these steps.

Raw feedback process Let (Gt) denote a sequence of
stochastic gradients Gt ∈ V∗, which are conditionally un-
biased in the sense that we have

E[t−1]Gt
..= E

[
Gt |G[t−1]

]
∈ ∂ R(ht) (4)

for all t ≥ 1, recalling our notation G[t]
..= (G1, . . . , Gt).

We emphasize to the reader that (4) differs from the tradi-
tional assumption (2) in terms of the points at which the
sub-differential is being evaluated (ht rather than ht). As is
traditional in the literature (Nazin et al. 2019; Nguyen et al.
2018), we shall also assume a uniform bound on the condi-
tional variance, namely that for all t ≥ 1, we have

E[t−1] ‖Gt −E[t−1]Gt‖∗ ≤ σ2 <∞. (5)

We will not assume anything else about the underlying dis-
tribution of (Gt); as such, the gradients clearly may be un-
bounded or heavy-tailed in the sense of having infinite or
undefined higher-order moments. In this setting, while one
could naively use the raw sequence (Gt) as-is, since we
have made extremely weak assumptions on the underlying
distribution, it is always possible for heavy-tailed data to
severely destabilize the learning process (Brownlees, Joly,
and Lugosi 2015; Chen, Su, and Xu 2017; Lecué, Lerasle,
and Mathieu 2018). As such, it is desirable to process the

raw gradients in a statistically principled manner, such that
the processed output provides useful feedback to be passed
directly to A.

Overall design for robust feedback A simple and popu-
lar approach to deal with heavy-tailed random vectors is to
use norm-based truncation (Catoni and Giulini 2017; Nazin
et al. 2019). As with Nazin et al. (2019), we process the raw
gradients as follows:

Process [G; c] ..=

{
g̃, if ‖G− g̃‖∗ > c

G, else.
(6)

Here c > 0 is a threshold, the point g̃ ∈ V∗ used in this
sub-routine is an “anchor” in the dual space, associated with
some “primal anchor” h̃ ∈ H assumed to satisfy

P
{

dist(g̃; ∂ R(h̃)) > ε̃σ
}
≤ δ. (7)

We discuss settings of the anchor points and the critical
thresholds in the following paragraphs. To concisely sum-
marize the robust feedback that we use, instead of naively
using (Gt) as feedback for A, we will pass (Gt), defined
by Gt ..= Process [Gt; ct], based on a sequence of thresh-
olds (ct). The anchors g̃ and h̃ remain fixed throughout the
learning process.

Determining the anchor points Let us first assume a pri-
mal anchor h̃ ∈ H is given; the key requirement we need
to fulfill is the equation (7), which asks that the dual anchor
g̃ we choose be ε̃σ-close to some sub-gradient of R with
probability no less than 1 − δ. To achieve this under our
weak assumptions on the stochastic gradient distribution is
straightforward using modern robust mean estimation tech-
niques. Perhaps the simplest example is generalized median-
of-means, as follows. Under our assumption 4, we can ob-
tain m unbiased stochastic gradients G1, . . . , Gm, such that
E[i−1]Gi ∈ ∂ R(h̃) for all i ∈ [m]. Assuming k divides
m, partition these points into k equal-sized subsets, com-
pute the empirical means G1, . . . , Gk for each subset, and
set the dual anchor as g̃ = GeoMed{G1, . . . , Gk}, where
the sub-routine GeoMed refers to the geometric median of
these points, a convex program for which many efficient al-
gorithms are known (Vardi and Zhang 2000; Cohen et al.
2016). It is well known that under this g̃ setting, if we set
k = d8 log(δ−1)e, then (7) holds with

ε̃ ≤ 4

√
(1 + 8 log(δ−1))

m
.

See Lugosi and Mendelson (2019) for additional back-
ground on this and other robust vector mean estimators. Fi-
nally, we emphasize that the choice of primal anchor h̃ ∈ H
is arbitrary, in that the theoretical guarantees to be discussed
shortly hold regardless of which h̃ we choose, given that
the dual anchor is selected in the manner just described. In
practice, the difference between “good” and “bad” primal
anchors is in the bias incurred by the truncation (6). More
concretely, considering the ideal case where h̃ is a stationary
(interior) point, we have 0 ∈ ∂ R(h̃) and thus thresholding
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‖G‖∗ is sufficient. On the other hand, when h̃ is far from
a stationary point, g̃ may have a large norm. If the learning
process finds a good ht such that Gt tends to be small, then
‖Gt − g̃‖∗ may be large, even though we probably want to
use Gt as-is without truncation. This bias must be dealt with
by proper threshold settings, which we describe in the next
paragraph.

Threshold settings under smooth objectives Let us fur-
ther assume that R is λ-smooth, still leaving A abstract. In
this case, the sub-differential is simply ∂ R(h) = {∇R(h)},
and so the error that we focus on is naturally that of the ap-
proximation Gt ≈ ∇R(ht), for t ∈ [T ]. With (Gt) gener-
ated as described in Algorithm 1, direct inspection shows us
that

Gt −∇R(ht) = (Gt − g̃)(1− It) + g̃ −∇R(ht) (8)

where It is the Bernoulli random variable defined It ..=
I {‖Gt − g̃‖∗ > ct}. The right-hand side of (8) has two
terms we need to control. The first term is clearly bounded
above by ct, considering the truncation event. As for the sec-
ond term, a smooth risk makes it easy to establish control in
primal distance terms. More explicitly, we have

‖g̃ −∇R(ht)‖∗
≤ ‖g̃ −∇R(h̃)‖∗ + ‖∇R(h̃)−∇R(ht)‖∗
≤ ε̃σ + λ‖h̃− ht‖ (9)

with probability no less than 1− δ, where the latter inequal-
ity follows from λ-smoothness and the anchor property (7).
Taking (8) and (9) together, we readily obtain

‖Gt −∇R(ht)‖∗ ≤ ‖Gt − g̃‖∗(1− It) + ‖g̃ −∇R(ht)‖∗
≤ ct + ε̃σ + λ‖h̃− ht‖ (10)

on an event of probability at least 1− δ. This inequality sug-
gests an obvious choice for the threshold ct that keeps the
preceding upper bound tidy:

ct = ε̃σ + λ‖h̃− ht‖+ c0, t ∈ [T ]. (11)

Here c0 > 0 is positive parameter that is used to control the
degree of bias incurred due to truncation.

Estimation error under smooth objectives Using the
thresholding strategy described in the preceding paragraph,
one can obtain sub-linear bounds on the weighted gradient
error terms, as the next result shows.
Lemma 2. Let R be convex and λ-smooth. LetH ⊂ dom R
be convex with diameter ∆ < ∞. Given confidence pa-
rameter 0 < δ < 1 and iterations T ≥ log(δ−1)(dε̃σe)2,
running Algorithm 1 with thresholds (ct) as in (11) with
c0 = max{λ∆, σ

√
T/ log(δ−1)} + ε̃σ, and weights (αt)

such that E[t−1] αt = αt almost surely, it follows that

T∑
t=1

αt sup
h,h′∈H

[
〈Gt −∇R(ht), h− h′〉

]
≤ max {qδ(T ), rδ(T )}

with probability no less than 1− 2δ, where we have defined

qδ(T ) ..=

2∆σ
√

2 log(δ−1)

α1:T√
T

+

√∑
t=1

α2
t + 2

(
max
t∈[T ]

αt

)
rδ(T ) ..=

2λ∆2 log(δ−1)

[
α1:T

T
+

√
1

T

∑
t=1

α2
t + 2

√
2

(
max
t∈[T ]

αt

)]
.

The main benefit of this lemma is that it holds under very
weak assumptions on the stochastic gradients. The main lim-
itations are that the feasible set has a finite diameter, and
prior knowledge of T and other factors are used for thresh-
olding.

A general strategy Let us define the regret incurred by
Algorithm 1 after T steps by

Regret(T ;A) ..=
T∑
t=1

αt〈Gt, ht − h∗〉, (12)

where the reference point h∗ ∈ dom R is left implicit in
the notation. This weighted linear regret is somewhat spe-
cial since the losses (i.e., h 7→ αt〈Gt, h〉) are evaluated on
the ancillary sequence (ht), but they are defined in terms of
potentially biased stochastic gradients which depend on the
main sequence (ht). With this notion of regret in hand, note
that from Lemma 1, we immediately have the following ex-
pression:

R(hT )− R(h∗) =

1

α1:T

[
Regret(T ;A) +

T∑
t=1

αt〈Gt −∇R(ht), h
∗ − ht〉

−
T∑
t=1

αt DR(h∗;ht)−
T−1∑
t=1

α1:t DR(ht;ht+1)

]
.

(13)

This inequality offers us a nice starting point for analyzing a
wide class of “anytime robust algorithms,” since the second
sum can clearly be controlled using Lemma 2. It just remains
to seek out regret bounds for different choices of the under-
lying algorithm A which are sub-linear, up to error terms
that are amenable to Lemma 2. We give several concrete ex-
amples in the next section. To close this section, by com-
bining our notion of regret with the preceding lemma, we
can obtain a “robust” analogue of Cutkosky (2019, Thm. 1),
which is valid under unbounded, heavy-tailed stochastic gra-
dients.
Corollary 3. Under the assumptions of Lemma 2, for any
reference point h∗ ∈ H, we have

R(hT )− R(h∗)

≤ 1

α1:T
[Regret(T ;A) + max {qδ(T ), rδ(T )} −BT ]

with probability no less than 1− 2δ, where BT ≥ 0 denotes
the sum of all the Bregman divergence terms given in (13).
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Anytime Robust Learning Algorithms
Thus far, the underlying algorithm object A used in Algo-
rithm 1 has been left abstract. In this section, we illustrate
how (13) can be utilized for important classes of algorithms,
by obtaining regret bounds that are sub-linear up to error
terms that can be controlled using Lemma 2. Our running
assumptions are that (V , ‖ · ‖) is a reflexive Banach space,
H ⊆ V is convex and closed, R is sub-differentiable, and the
sequence (Gt) driven by (ht) is precisely as in Algorithm 1.

Anytime Robust FTRL
Here we consider the setting in which A is implemented us-
ing a form of follow-the-regularized-leader (FTRL). Letting
(ψt) be a sequence of regularizer functions ψt : V → R, we
are interested in the ancillary sequence (ht) generated by

ht+1 = A(ht) ∈ arg min
h∈H

[
ψt+1(h) +

t∑
i=1

αi〈Gi, h〉

]
.

(14)
The initial value is set using an extra regularizer ψ1, with
h1 ∈ arg minh∈H ψ1(h). We proceed assuming that the se-
quence (ht) exists, but we do not require the minimizer in
(14) to be unique.
Lemma 4. Let A be implemented as in (14), assuming that
for each step t ≥ 1, the regularizer ψt is κt-strongly convex.
Then, for any reference point h∗ ∈ H, we have

Regret(T ;A) ≤

ψT (h∗)− ψ1(h1) +
T∑
t=1

[ψt(ht+1)− ψt+1(ht+1)]

+
T∑
t=1

[
‖∂ R(ht)‖2∗

2κt
+ αt〈∂ R(ht)−Gt, ht+1 − ht〉

]
.

(15)
This lemma is a natural anytime robust analogue of stan-

dard FTRL regret bounds (Orabona 2020, Sec. 7.8). While
the above bound holds as long as R is sub-differentiable, in
the special case where R is smooth, the final sum on the
right-hand side of (15) is amenable to direct application of
Lemma 2, as desired. Combining this with (13), one can im-
mediately derive excess risk bounds for the output of Algo-
rithm 1 under this FTRL-type of implementation, for a wide
variety of regularization strategies.

Anytime Robust SMD
Next we consider the closely related setting in which A
is implemented using a form of stochastic mirror descent
(SMD). Assuming H ⊂ V is bounded, closed, and convex,
let Φ : V → R be a differentiable and strictly convex func-
tion. Let A generate (ht) based on the update

ht+1 = A(ht) = arg min
h∈H

[
〈Gt, h〉+

1

βt
DΦ(h;ht)

]
.

(16)
The function DΦ is the Bregman divergence induced by Φ;
see the appendix for more detailed background. The step
sizes (βt) are assumed positive, but can be set freely.

Lemma 5. Let A be implemented as in (16), with Φ chosen
to be κ-strongly convex on H. Then for any reference point
h∗ ∈ H, we have

〈Gt, ht − h∗〉

≤ DΦ(h∗;ht)−DΦ(h∗;ht+1)

βt
+
βt
2κ
‖∂ R(ht)‖2∗

+ 〈∂ R(ht)−Gt, ht+1 − ht〉
for all t ≥ 1.

This lemma can be interpreted easily as an anytime ro-
bust analogue of traditional regret bounds for SMD (e.g.,
(Orabona 2020, Lem. 6.7)). It can be combined with (13)
and Lemma 2 to obtain the following guarantee.
Theorem 6 (Anytime robust mirror descent). Under the set-
ting of Lemmas 2 and 5, denote the diameter of H with re-
spect to DΦ as ∆Φ

..= suph,h′∈HDΦ(h;h′) < ∞. Setting
the weight sequences such that αt/αt−1 ≥ βt/βt−1 and
βt ≤ κ/λ, we have that for any h∗ which is a stationary
point of R onH, the inequality

R(hT )− R(h∗) ≤ 1

α1:T

[
αT
βT

∆Φ + max{qδ(T ), rδ(T )}
]

holds with probability no less than 1− 2δ.
In contrast with Nazin et al. (2019) who query at the ancil-

lary iterates, the preceding high-probability error bounds ef-
fectively give us sub-Gaussian guarantees for all points used
to query stochastic gradients. As an important special case,
consider the setting where V is Euclidean space, and the un-
derlying norm used is the `2 norm ‖ · ‖2. In this case, it is
easy to verify that setting Φ(u) = ‖u‖22/2, with κ = 1 the
update (16) amounts to

ht+1 = A(ht) = ΠH
[
ht − βtGt

]
(17)

where ΠH[·] denotes projection ontoH. That is, anytime ro-
bust stochastic gradient descent. These settings lead us to
the following corollary.
Corollary 7 (Anytime robust SGD). Consider A imple-
mented using (17), with weights αt = 1 and βt ≤ 1/λ for
all t ∈ [T ]. Then we have

R(hT )− R(h∗) ≤

2∆2

TβT
+ max

{
8∆σ

√
2 log(δ−1)

T
,

12λ∆2 log(δ−1)

T

}
with probability no less than 1− 2δ.

Anytime Robust AO-FTRL
In this sub-section, we consider the case that A is imple-
mented using an adaptive optimistic follow-the-leader (AO-
FTRL) procedure, namely updating as

ht+1 = A(ht)

∈ arg min
h∈H

[
αt+1〈G̃t, h〉+

t∑
i=1

αi〈Gi, h〉+
t∑
i=0

ϕi(h)

]
.

(18)
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Here (ϕt) is a sequence of regularizers that is now summed
over for later notational convenience. Recalling the FTRL
update (14), then clearly the AO-FTRL update is almost the
same, save for the presence of G̃t at each step t, with the
interpretation is that it provides a prediction of the loss that
will be incurred in the following step, i.e., G̃t ≈ Gt+1.

Theorem 8. Let Algorithm 1 be run under the assumptions
of Lemma 2, with A implemented as in (18), setting G̃t =
Gt−1 for each t > 1. In addition, let each ϕt(·) be convex
and non-negative, and denoting the regularizer partial sums
as ψt(·) ..=

∑t−1
i=0 ϕi(·), let each ψt be κt-strongly convex,

with weights set such that (λ/κt)α
2
t ≤ α1:(t−1) for t > 1.

Then, for any h∗ ∈ H we have

R(hT )− R(h∗)

≤ 1

α1:T

[
α2

1

2κ1
‖∇R(h1)− G̃1‖2∗

+
T∑
t=1

[ϕt−1(h∗)− ϕt−1(ht)] + 2 max {qδ(T ), rδ(T )}

]
with probability no less than 1− 4δ.

This theorem can be considered a robust, high-probability
analogue of the results in expectation given by Joulani et al.
(2020, Thm. 3). As such, it can be readily combined with ex-
isting regularization techniques (Joulani et al. 2020, Sec. 4)
to achieve the same rates (in T ) under potentially heavy-
tailed noise, with minimal computational overhead.

Empirical Analysis
In this section we complement the preceding theoretical
analysis with an application of the proposed learning strat-
egy to real-world benchmark datasets. The practical utility
of various gradient truncation mechanisms has already been
well-studied in the literature (Chen, Su, and Xu 2017; Prasad
et al. 2018; Lecué, Lerasle, and Mathieu 2018; Holland and
Ikeda 2019), and thus our chief point of interest here is if and
when the feedback scheme utilized in Algorithm 1 can out-
perform the traditional feedback mechanism given by (2),
under a convex, differentiable true objective. Put more suc-
cinctly, the key question is: is there a practical benefit to
querying at points with guarantees?

Experimental setup Considering the context of key re-
lated work (Gorbunov, Danilova, and Gasnikov 2020; Nazin
et al. 2019), we focus on averaged SGD as our base-
line, and consider several real-world classification datasets
of varying size, using standard multi-class logistic regres-
sion as our model.2 We test three different learning proce-
dures: averaged SGD using traditional feedback (2) (denoted
SGD-Ave), anytime robust SGD precisely as in Algorithm
1 and Corollary 7 (denoted Anytime-Robust-SGD), and
finally anytime SGD without the robustification sub-routine
Process (denoted Anytime-SGD).

2Additional details for all the datasets used are provided in the
appendix.

At a high level, for each dataset of interest, we run multi-
ple independent randomized trials, and for each trial, we run
the methods of interest for multiple “epochs” (i.e., multiple
passes over the data), recording the on-sample (training) and
off-sample (testing) performance at the end of each epoch.
As a simple and lucid example that implies a convex objec-
tive, we use multi-class logistic loss under a linear model;
for a dataset with k distinct classes, each predictor returns
precisely k scores which are computed as a linear combina-
tion of the input features. Thus with k classes and din input
features, the total dimensionality is d = kdin. For these ex-
periments we run 10 independent trials. Everything is im-
plemented by hand in Python (ver. 3.8), making significant
use of the numpy library (ver. 1.20).3 For each method and
each trial, the dataset is randomly shuffled before being split
into training and testing subsets. If n is the size of any given
dataset, then the training set is of size ntr

..= b0.8nc, and the
test set is of size n − ntr. Within each trial, for each epoch,
the training data is also randomly shuffled. For all methods,
the step size in update (17) is fixed at βt = 2/

√
ntr, for all

steps t; this setting is appropriate for Anytime-* meth-
ods due to Corollary 7, and also for SGD-Ave based on
standard results such as Nemirovski et al. (2009, Sec. 2.3).
The (Gt) are obtained by direct computation of the logistic
loss gradients, averaged over a mini-batch of size 8; this size
was set arbitrarily for speed and stability, and no other mini-
batch values were tested. Furthermore, for each method and
each trial, the initial value h1 is randomly generated in a
dimension-wise fashion from the uniform distribution on the
interval [−0.05, 0.05]. All raw input features are normal-
ized to the unit interval [0, 1] in a per-feature fashion. We
do not do any regularization, for any method being tested.
We test three different learning procedures: averaged SGD
using traditional feedback (2) (denoted SGD-Ave), anytime
robust SGD precisely as in Algorithm 1 and Corollary 7 (de-
noted Anytime-Robust-SGD), and finally anytime SGD
without the robustification sub-routine Process (denoted
Anytime-SGD).

Details for Anytime-Robust-SGD First, as a simple
choice of anchors h̃ and g̃, we set h̃ = h1 and estimate
g̃ using the empirical mean on the training data set; this is
meant to provide a transparent baseline for what is possible
without any fine-tuning. As discussed in section , a natural
refinement is to set aside a small subset of data and dedicate
a subset to mean estimation (i.e., computation of the dual an-
chor); see Lugosi and Mendelson (2019) for several exam-
ples of well-known practical robust high-dimensional mean
estimators. As for the thresholds (ct) used in the Process
sub-routine, we set ct =

√
ntr/ log(δ−1) for all t, with a

confidence level of δ = 0.05 fixed throughout.

Results and discussion Our results are summarized in
Figure 1, which plots the average training and test losses. For
each trial, losses are averaged over datasets, and these aver-
age losses are themselves averaged over all trials to obtain
the values plotted here. The impact of using feedback with

3A public repository including all experimental code has been
published: https://github.com/feedbackward/anytime
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Figure 1: Training and test loss versus epoch number, averaged over all trials, for each method. The eight individual plot titles
correspond to dataset names.

guarantees is immediate; in all cases, we see a notable boost
in learning efficiency. This positive effect holds essentially
uniformly across the datasets used, with no hyperparame-
ter tuning. For CIFAR-10, we observe that the robustified
version performs worse than than vanilla anytime averaged
SGD; this looks to be due to the simple h̃ = h1 setting, and
can be readily mitigated by updating h̃ after one pass over
the data. It is reasonable to conjecture that if we were to shift
to more complex non-linear models, from the resulting lack
of convexity in the objective, there might emerge a tradeoff
between the stability encouraged by Algorithm 1, and the
benefits of parameter space exploration that are incidental to
the noisier gradients arising under (2).

Future Directions
From a technical perspective, the most salient direction
moving forward is strengthening the robust estimation sub-
routines to reduce the amount of prior knowledge required,
and to potentially extend the methodology to cover non-
smooth R. The requirement of a bounded domain can be
removed (in the non-anytime setting) by using a more so-
phisticated update procedure (Gorbunov, Danilova, and Gas-
nikov 2020), and extending insights of this nature to refine
or modify the procedure used to obtain Lemma 2 is of nat-
ural interest. In most learning tasks of interest, the variance
of the underlying feedback distribution may change signifi-
cantly, and an adaptive strategy for setting (ct) is of interest
both for strengthening formal guarantees and improving ef-
ficiency and stability in practice.
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