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Abstract

We consider the problem of acquiring causal representations
and concepts in a reinforcement learning setting. Our ap-
proach defines a causal variable as being both manipulable by
a policy, and able to predict the outcome. We thereby obtain a
parsimonious causal graph in which interventions occur at the
level of policies. The approach avoids defining a generative
model of the data, prior pre-processing, or learning the tran-
sition kernel of the Markov decision process. Instead, causal
variables and policies are determined by maximizing a new
optimization target inspired by mediation analysis, which dif-
fers from the expected return. The maximization is accom-
plished using a generalization of Bellman’s equation which is
shown to converge, and the method finds meaningful causal
representations in a simulated environment.

Introduction
Hard open problems in reinforcement learning, such as dis-
tributional shift, generalization from small samples, disen-
tangled representations and counter-factual reasoning, are
intrinsically related to causality (Schölkopf 2019). Fur-
thermore, causal representations have been emphasized as
central to concept acquisition and knowledge representa-
tion (Tenenbaum et al. 2011).

Statistical causal analysis, as developed and popularized
by Judea Pearl, assumes that data arises as transformations
of noise sources according to a causal graph (Pearl 2009).
From a practical perspective, describing data generatively as
arising from non-linear transformations of i.i.d. noise is an
approach that underlies the most successful machine learn-
ing models today (Shrestha and Mahmood 2019). Such an
approach has been successfully applied for example in fast
concept acquisition (Tenenbaum et al. 2011; Lake, Salakhut-
dinov, and Tenenbaum 2015), as well as in control (Deisen-
roth and Rasmussen 2011; Levine et al. 2016).

Our approach differs from these in terms of the scale of
modeling, a term coined by Peters, Janzing, and Schölkopf
(2017):

Although traditional examples of causal modeling, such
as the SMOKING → TAR DEPOSITS → CANCER exam-
ple (Pearl and Mackenzie 2018), do offer a generative pro-
cess of the few variables included in the analysis, they do not
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Figure 1: In the DOORKEY environment, the agent (red)
must learn to pick up a key to open the door and get to the
goal. Our causal agent learns a small, coarse-grained causal
network, and uses it when training its policy.

offer a generative process of the underlying temporal phe-
nomena (i.e. patient history). The variables are said to be in
a descriptive relationship to the underlying phenomena, to
emphasize that they are not identified as high-level variables
in a generative process, but rather features computed from a
more complicated underlying phenomena.

The reduction of the data-generating process to a few ab-
stract primitives in a causal relationship is central to con-
cept acquisition (Tenenbaum et al. 2011), and more broadly
to knowledge representation (Davis, Shrobe, and Szolovits
1993).

We aim to answer the following question: Can we auto-
matically learn a parsimonious causal model which is de-
scriptive, rather than generative, of the underlying problem,
while still capturing relevant causal knowledge?

To illustrate, consider the DOORKEY environment, fig. 1.
The agent must pick up the key, open the door and go to the
goal state in order to receive the reward. Instead of identi-
fying a generative process of the agent moving around the
maze, our approach identifies a binary causal variable (for
instance, whether the door is opened or not) and builds a
small causal graph representing the causal relationship be-
tween the identified variable, policy choice and return. The
agent is thereby imbued with the causal knowledge that the
identified variable is in a causal relationship with the return.

Our approach1 has two central features: First, that we do

1Code: https://gitlab.compute.dtu.dk/tuhe/causal nie
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not identify a causal variable as a latent variable in a genera-
tive model of the data, or as a latent factor which arises from
maximizing the expected return with respect to the policy.
Instead, we replace the expected return with an alternative
maximization target, the natural indirect effect (NIE), which
is maximized to identify a causal variable. Second, the ap-
proach naturally ensures a candidate causal variable repre-
sents a feature of the environment the agent can manipulate,
thereby ensuring the information is relevant for the agent.
This distinguishes between relevant causal concepts and ir-
relevant ones. In the DOORKEY example (fig. 1), a variable
corresponding to being one step away from the goal would
be a necessary cause for completing the environment. How-
ever, it would be no easier to manipulate such a variable than
simply reaching the goal state.

To optimize the NIE in a reinforcement learning set-
ting, we apply suitable generalizations of Bellman’s equa-
tion. This allows us to apply most actor-critic methods, and
specifically, to use an off-policy method based on the V -
trace estimator (Espeholt et al. 2018).

Related Work: Determining causal variables has previ-
ously been examined in image data from a latent-variable
perspective (Besserve et al. 2020; Lopez-Paz et al. 2017)
and time-series signals, using (temporal) state aggrega-
tion (Zhang, Gong, and Schölkopf 2015). However, these
approaches apply a latent-variable criteria which is distinct
from ours. The problem of determining causal variables
has also been investigated from a fairness-perspective, see
Zhang and Bareinboim (2018).

In a reinforcement-learning setting, the option-critic ar-
chitecture considers state-dependent policies similar to ours,
but from a non-causal perspective Bacon, Harb, and Precup
(2017), and Zhang et al. (2019) learn a state representation
using sufficient statistics criteria. Determining latent states
to best explain the observations is closely related to the re-
ward machine architecture (Camacho et al. 2019; Icarte et al.
2018), which learns binary feature-vector representations in
logical, rather than causal, relationships. Nabi, Kanki, and
Shpitser (2018) learn policies that optimize a path-specific
effect, which is a generalization of the indirect effect. Our
approach is different, since we learn both a causal variable
and the manipulation policies jointly using a causal criteria.

In recent work, reinforcement learning has been applied
for causal discovery in graphs with pre-defined variables,
using meta-learning (Dasgupta et al. 2019) and active learn-
ing (Amirinezhad, Salehkaleybar, and Hashemi 2020), for
example. Wang, Yang, and Wang (2020) consider con-
founded observational data in a reinforcement learning set-
ting, and their approach is noteworthy as they suggest a mod-
ified Q-learning update. These approaches, however, con-
sider just a handful of variables that can be observed (and
manipulated), which is a different setup than the one consid-
ered herein.

Methods
Consider a general γ-discounted episodic Markov decision
problem in which states, actions and rewards at time steps
t = 0, 1, . . . , T are denoted St, At and Rt+1 respectively,

and the goal is to maximize the expectation of the return
vπ(s) = Eπ [Gt | St = s] where Gt =

∑∞
k=9 γ

kRt+k+1.
The expectation is with respect to the behavior policy
π(a|s) = Pr(At = a|St = s). For easier interpretation,
the examples involve sparse reward +1, given at the end of
the episode in case of successful termination.

Mediation Analysis
Mediation analysis (Alwin and Hauser 1975; Pearl 2012)
deals with decomposing the total causal effect, p(Y =
y|do(X = x)), a treatment variable X exerts an outcome
variable Y into different causal pathways, which may pass
through intermediate mediating variables.

In the simplest setting (see fig. 2, left), X could be
whether a school pupil received extracurricular studies,
while Y is their academic performance at the end of the year,
and the mediating variable Z could correspond to extra study
time.

Mediation analysis allows us to quantify the extent to
which a third variable, such as Z, mediates the effect of
X on Y . The most important measure is the natural indi-
rect effect (Pearl 2012, 2001), which measures the extent to
which X influences Y , solely through Z. For a transition of
X = x (starting value) to X = x′ (manipulated value), it
is defined as expected change in Y , affected by holding X
constant at its natural value X = x, and changing Z to the
value it would have attained had X been set to X = x′. This
quantity involves a nested counter-factual, and cannot be es-
timated in general; however, for specific causal diagrams,
it has a closed-form expression. For instance, in the simple
case given in fig. 2 (left), it is defined as (Pearl 2001):

NIEx→x′(Y ) =
∑
z

E [Y |x, z] [P (z|x′)− P (z|x)]. (1)

The NIE has intuitively appealing properties: It is large
when Z is highly influenced by our choice of manipulation
X = x, x′, meaning that Z is easy to manipulate, and the
first term reflects that Z should influence the outcome Y .
The product implies a trade-off between these two effects.
In our application, we let X = Π denote our choice of pol-
icy, and then use the NIE to index good (versus bad) choices
of the observable variable Z and policies Π. Hence, we hy-
pothesize that by maximizing the NIE, rather than the ex-
pected return, we can determine relevant causal variables,
which correspond to useful concepts for the agent.

Causes and Effects in Reinforcement Learning
The most natural causal variable to include in a causal dia-
gram is the expected return Y = G0, since manipulating Y ,
and therefore learning which variables are relevant for ma-
nipulating Y , should remain the eventual goal of the agent.

Since we consider causal variables as aggregates of many
individual states, no single action can reasonably be consid-
ered a treatment variable. Rather, we consider a treatment
equivalent to the choice to follow policy Π = a rather than
Π = b.

In the following, we focus on the simplest possible case,
in which the mediating variable Z is binary, with the mean-
ing that Z = 1, if the event which Z corresponds to took
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Figure 2: Left: A mediation analysis diagram in which a cause/effect X → Y is mediated by a variable Z. Center: Application
to reinforcement learning: The variable X corresponds to a choice between two policies, the effect Y is the return, and Z is a
(learned) variable which influences Y . We wish to quantify how the policy choice influences Y through the variable Z. Right:
Π = a indicates that we follow a baseline policy πa. This is compared to a policy Π = b obtained by following the policy πb

until the first time t where Zt = 1 occurs, after which we follow πa. Both πa, πb, and the distribution of Zt, needs to be learned.

place during an episode (and otherwise Z = 0). This is anal-
ogous to how SMOKING is true if the person was smoking at
some point in the period covered by a study. We therefore
define Z as a stopped process

Z = max{Z0, Z1, . . . ZT . . . }. (2)

where Zt ∈ {0, 1} for n = 0, 1, . . . , T denotes whether Z
became true at time t. Zt is assumed to only depend on the
state, and have distribution Bern (Φ(st)). With these defi-
nitions, the causal pathway Π → Z → Y denotes that the
choice of policy Π influences Y by obtaining or making true
Z, whereas Π → Y means the choice of policy alone influ-
ences Y , regardless of Z.

Example: Consider the DOORKEY environment from
fig. 1. The graphs Π→ Z → Y or Π→ Y would reflect ei-
ther that our choice of Π affects the reward Y through Z, or
that the variable Z is irrelevant, and only the choice of pol-
icy matters. The outcome depends on the choice of policy
and definition of Z.

The combined policy: Inspired by the traditional relation-
ship between X and Z in mediation analysis, we assume that
if Π = a then the agent follows a policy πa which is trained
to simply maximize Y , and that otherwise, if Π = b, the
agent follows a policy πb which attempts to make Z true
(i.e. it is trained with Z as the reward signal). To obtain a
well-defined policy for all states, the Π = b policy switches
back to πa once Z = 1, see fig. 2 (right). In other words, we
assume that the agent at time step t follows the policy:

π =

{
πa if Π = a

(1− Z0:t)πb + Z0:tπa if Π = b.
(3)

where Z0:t = max{Z0, . . . , Zt}. Since Z and Π are binary,
the NIE from eq. (1) simplifies to (Pearl 2001):

NIE = (E [Y |Z = 1, πa]− E [Y |Z = 0, πa])

× (P (Z = 1|πb)− P (Z = 1|πa)) . (4)

Conditioning on πa or πb means that the actions are gener-
ated from the given policy.

The NIE has the intuitively appealing property of being
separated into a product of two simpler terms, which must
both be large for the NIE to be large. The first involves the

return, but only conditional on policy πa. A high value of the
NIE implies an increased chance of successful completion of
the environment, when Z = 1 relative to Z = 0.

The second term involves both policies, but uses Z as a re-
ward signal, which is computed during the episode, and will
therefore often be known before the episode is completed.
Since this is the only term which involves πb, it induces a
modular policy, in which πb is trained on a simpler problem.

The NIE excludes certain trivial definitions of Z. For in-
stance, if Z = Y in the DOORKEY example, the first term
would be maximal. However, in this case, πa and πb would
be trained on the same target, and so the second term should
be zero. On the other hand, if Z is trained to match states
visited by πb, which are incidental to the reward, it will not
result in a high NIE, due to the first term.

Optimizing the NIE involves two challenges unfamiliar
from traditional reinforcement learning: (i) The first term in-
volves expectations conditional on Z. (ii) The NIE is opti-
mized both with respect to Z and to πb.

We overcome these by combining two ideas. First, we ex-
press the conditional terms using suitable generalizations of
Bellman’s equation. Secondly, since we optimize policies
based on data collected from other policies, we use V -trace
estimates of the relevant quantities (Espeholt et al. 2018).

Bellman Updates
The value function satisfies the Bellman equation vπ(s) =
E [Rt+1 + γvπ(St+1) | St = s]. On comparison with the
terms in eq. (4), we see that the NIE involves conditional
expectations. While we could attempt to simply divide the
observations according to Z and train two value functions,
this method would not provide a way to learn Z itself. To do
so, we consider an alternative recursive relationship between
the conditional expressions.

For times t /∈ {0, . . . , T} we define Zt = 0. This allows
us to introduce the variables

Z∞
t = max{Zt, Zt+1, . . . , } (5)

which are true, provided Zt′ = 1 occurs at a time step fol-
lowing t. Note that Z = Z∞

0 .
Analogous to vt, we define the value functions:

v∞t (st) = P (Z∞
t = 1|St = st, Zt−1 = 0), (6)

vzt (st) = E[Gt|St = st, Z
∞
t = z, Zt−1 = 0]. (7)
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Note that the expressions are conditional on Zt−1 = 0. The
first denotes that the event Z = 1 will happen in the future
given it has not occurred yet, and the second the expected
return, given that Z has not happened yet, and either will
not z = 0, or will z = 1 occur in the future. Note that
vz0(s0) = E [G0|Z = z, s0] and v∞0 (s0) = P (Z = 1|s0)
corresponds to the terms in eq. (4). The value functions sat-
isfy the recursions (see appendix):

v∞t (st) = Φ(st) + Φ̄(st)E
[
v∞t+1(St+1)|st

]
, (8a)

v1t (st) =
V (st)Φ(st)

V ∞
t (st)

(8b)

+
1−Φ(st)
V ∞
t (st)

E
[
v∞t+1(St+1)

(
Rt+1 + γv1t+1(St+1)

)
| st
]
,

v0t (st) =
1− Φ(st)

1−v∞t (st)
(8c)

×E[ (1−v∞t+1(St+1))(Rt+1 + γv0t+1(St+1)) | st].

The new recursions have the same structure as Bellman’s
equation, but contain mutually dependent terms. If v∞t and
vt were exactly estimated, the iterative policy evaluation
methods corresponding to eqs. (8b) and (8c) would easily
be found to be contractions with constant γ, but the updates
also converge when vz , v∞ and v are all bootstrapped. A
proof can be found in the appendix.

Theorem 1 (Convergence, informal) Assuming γ < 1 and
0 < Φ < 1, all states/actions are visited infinitely often, and
vπ, v

∞
π , vzπ in eq. (8) are all replaced by randomly initial-

ized bootstrap estimates. Then, (i) the operators eqs. (8b)
and (8c) converge at a geometric rate to the true values vzπ ,
and (ii) the corresponding online method obtained by re-
placing the expectations with sample estimates, converges to
the true values, provided the learning rates satisfy Robbins-
Monro conditions.

Off-Policy Learning Using V -Trace Estimators
The overall approach is to learn neural approximations of
v∞, v and vz , as defined in eq. (8). This is most easily done
by observing that the Bellman-like recursions in eq. (8) all
have the form:

vt(st) = Eµ [Ht(st, Sn+1) +Gt(st, St+1)vt+1(St+1))|st]
(9)

where actions are generated using a behavioral policy µ. Ex-
panding the right-hand side n times, allows us to define the
n-step return (Espeholt et al. 2018):

vt(st) = E

[
t+n−1∑
i=t

Hi

i−1∏
ℓ=t

Gℓ + vt+n(St+n)
t+n−1∏
ℓ=t

Gℓ

∣∣∣∣∣sk
]
,

(10)

which reduces to eq. (9) if n = 1. Supposing the current
target policy is π, experience is collected from the behavior
policy µ, and then eq. (10) can be used as an estimate of the
return, corresponding to π, by using importance sampling.
To reduce variance, we use a V -trace type estimator, inspired

Algorithm 1: Causal learner

1: Initialize policy networks πa and πb (and corresponding
critic networks)

2: Initialize networks v, v0, v1, v∞ to estimate vπ , vzπ , and
V ∞
π

3: Initialize causal variable network Φ
4: repeat
5: Collect experience from πa and add to replay buffer
6: Sample experience from replay buffer τ
7: Train πa (and critic) using AC2
8: Calculate reward signal for πb from τ using eq. (14)

and train πb (and critic)
9: Train v, vz , v∞ using n-step V -trace estimates

eq. (11a), computed using eq. (13), using definitions
of Ht and Gt implied by eq. (8) and experience τ

10: Train parameters in causal variable network Φ by
maximizing eq. (4), where each term has been re-
placed by the respective V -trace estimate computed
using eqs. (8) and (11a)

11: until forever

by Espeholt et al. (2018):

Vt(st) = v(st) +
t+n−1∑
i=t

(
i−1∏
ℓ=t

cℓGℓ

)
δi (11a)

δi = ρi [Hi(si, si+1) +Giv(Si+1)− v(Si)] (11b)

where cℓ and ρk are truncated importance sampling weights:

ρt = min

{
ρ̄,

π(at|st)
µ(at|st)

}
, ct = min

{
c̄,
π(at|st)
µ(at|st)

}
,

and ρ̄ ≥ c̄ are parameters of the method. In the on-policy
case, where µ = π, the V -trace estimate eq. (11a) reduces
to
∑t+n−1

i=t Hi

∏i−1
ℓ=t Gℓ+vt+n

∏t+n−1
ℓ=t Gℓ, and is therefore

a direct estimate of eq. (9). In the general case, the method
provides a biased estimate, when ρ̄, c̄ < ∞, but analogous
to Espeholt et al. (2018), the stationary value function can
be analytically related to the true value function. The result
is summarized as: (see the appendix for further details)

Theorem 2 (V -trace convergence, informal) Assume that
experience is generated by a behavior policy µ, that γ < 1,
0 < Φ < 1, all states/actions are visited infinitely often,
and that vπ, v∞π , vzπ in eq. (8) are all replaced by randomly
initialized bootstrap estimates. Then, if we apply eq. (11a)
iteratively 2 on the bootstrap estimate of V z

V z(s)←α V z(s) +
∞∑
t=0

t−1∏
ℓ=0

cℓG
z
ℓδℓ, (12)

where Hz
ℓ and Gz

ℓ are computed using V -trace estimates of
vπ and v∞π , it implies that V z converges to a biased estimate
of vzπ , and if ρ̄, c̄→∞, then V z → vzπ .

To practically compute the V -trace estimates, we start
from T and proceed to t:

Vt = vt + δt +Gtct(Vt+1 − vt+1). (13)
2x←α y is equivalent to x = x(1− α) + αy
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Combined Method
The policy πb in eq. (3) is trained in an episodic environ-
ment to maximize Z. Since the variable Z is multiplicative
over individual time steps, we train πb by decomposing the
multiplicative cost using a stick-breaking construction:

rbt+1 = Φ(st)
t−1∏
k=0

(1− Φ(sk)), (14)

which satisfies
∑∞

t=0 rt+1 = P (Z = 1|τ). Training on this
reward signal means that the policy πb will attempt to max-
imize the term P (Z = 1|πb) − P (Z = 1|πa) in eq. (4).
We can therefore train both πa and πb with an actor-critic
method, using their respective reward signals, whereby the
critics estimate of the return are trained against the V -trace
estimate, as computed using eq. (13).

To maximize the NIE with respect to Φ, we introduce
networks v, vz and v∞, to approximate vπ , v∞π and vzπ .
These are trained using ordinary gradient descent against
their V -trace targets, computed by eq. (13). The same V -
trace estimates can be used to re-write the NIE in eq. (4), to
an expression which directly depends on Φ, and can there-
fore be trained using stochastic gradient descent. For in-
stance, E[Y |Z = 1,Π = a, s0] = v1πa

(s0) is equivalent
to V z=1

t (s0), computed using eq. (13), and the definitions
of Ht and Gt implied by eq. (8b), and E [Z = 1|Π = a] can
be replaced by V ∞

0 , computed using eq. (8a). The pseudo-
code of the method can be found in algorithm 1. Note that to
prevent premature convergence, and speed up convergence
when both factors in the NIE are small, we train on a sur-
rogate cost function which includes entropy terms for Φ, πa

and πb. Full details can be found in the appendix.

Experiments
We test the value function recursions in eq. (8) on a simple
Markov reward process dubbed TWOSTAGE corresponding
to an idealized version of the DOORKEY environment. In
TWOSTAGE, the states are divided into two sets SA and SB .
The initial state is always in SA, and the environment can
either transition within sets (SA → SA, SB → SB) with a
fixed probability, or from set SA to SB , with a fixed proba-
bility. From SB , there is a chance to terminate successfully
with a reward of +1, and from all states there is a chance to
terminate unsuccessfully with a reward of 0.

The transition from states in SA to SB , creates a bottle-
neck distinguishing successful and unsuccessful episodes,
much like unlocking the door in the DOORKEY environ-
ment. The transition probabilities are chosen such that
p(R = 1|s ∈ SB) = p(s ∈ SB |s ∈ SA) = 2

3 and
p(R = 1|s ∈ SA) = 4

9 , see the appendix for further de-
tails.

Tabular Learning
As a first example, we will consider simple estimation of the
conditional expectations, using the Bellman recursions. We
condition on whether the state enters SB at a later time, i.e.
E[Y |st ∈ SB for some t > 0, S0 = s0], which is equivalent
to v1(s0), since we define Φ(s) = 1SB

(s). In this case, the

Bellman updates from eq. (8)) for a transition St = s to
St+1 = s′, Rt+1 = r are

V (s)←
α

r + γV (s′)

V ∞(s)←
α

Φ(s) + (1− Φ(s))V ∞(s′) (15)

V 1(s)←
α

V (s)Φ(s)+(1−Φ(s))V ∞(st)
(
r+γV 1(s′)

)
V ∞(s)

As anticipated by theorem 1, iterating these updates, the
value functions converge to their analytically expected val-
ues, as can be seen in figs. 3a and 3b, in which we plot v1 and
v∞. The dashed lines represent the true (analytical) values,
and the different colored lines represent the different states.
In the case of v1, the expectation estimated is the probabil-
ity of successful completion, given that we begin in any state
and at some point enter SB ; in other words, the information
we condition on is something which only occurs at a later
point in the episode, from the perspective of an observation
s ∈ SA, and therefore the correct estimation of this prob-
ability is not simply a matter of computing the return for a
state starting in SB .

Learning Φ Using V -Trace Estimation
The second example extends the TWOSTAGE example to
also learn the causal variable Φ using algorithm 1. Since the
environment is a MRP, we discard terms involving πb, and
the objective ∆Y therefore becomes:

E [Y |Z=1]−E [Y |Z=0]=Es0

[
V 1(s0)−V 0(s0)

]
. (16)

The expectation is unrolled, using the V -trace approxima-
tion, and directly optimized with respect to the parameters
(ws)s of Φ, using the parameterization Φ(s) = 1

1+exp(−ws)
.

The value function approximation is quickly learned (see
fig. 3c), showing convergence to the analytical values. The
quantities V ∞ and V z both depend on Φ, and will there-
fore only begin to converge after Φ begins to converge (see
fig. 3d). Since the conditional expectations V z depend on
V ∞, they will converge relatively slower, but both will even-
tually converge to their expected value when the learning
rate is annealed, see fig. 3e.

Causal Learning and the DOORKEY Environment
To apply algorithm 1 to the DOORKEY environment, we
first have to parameterize the states. The environment has
|A| = 5 actions, and we consider a fully-observed variant
of the environment. We choose the simplest possible encod-
ing, in which each tile, depending on its state, is one-hot
encoded as an 11-dimensional vector. This means that an
n×n environment is encoded as an n×n×11-dimensional
sparse tensor, and we include a single one-hot encoded fea-
ture to account for the player orientation. Further details can
be found in the appendix. Episode length is 60 steps.

Since the environment encodes orientation, player posi-
tion and goal position separately, and since specific actions
must be used when picking up the key and opening the door,
the environment is surprisingly difficult to explore and gen-
eralize in. We train an agent using A2C (Mnih et al. 2016)
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Figure 3: (a-b) Trace plots of v1 and v∞ for the tabular TWOSTAGE environment obtained using eq. (10), with a given Φ. (c-f)
Estimates with neural function approximators for the value functions in the TWOSTAGE environment, while Φ is being learned.

with 1-hidden-layer fully connected neural networks, which
results in a completion rate of about 0.25 within the episode
limit. We also attempted to train an agent using the Option-
Critic framework (Bacon, Harb, and Precup 2017), a rele-
vant comparison to our method, but failed to learn options
which solved the environment better than chance.

After an initial training of πa, we train Φ and πb by maxi-
mizing the NIE, using algorithm 1. Training parameters can
be found in the supplementary material. To obtain a fair
evaluation on separate test data, we simulate the method on
200 random instances of the DOORKEY environment, and
use Monte-Carlo roll-outs of the policies πa and πb to es-
timate the quantities E [Z = 1 | Π = a], E [Z = 1 | Π = b].
This allows us to estimate the NIE on a separate test set.

To examine whether the obtained definition of Z is non-
trivial, we compare it against a natural alternative that learns
Z by maximizing the cross-entropy of Z and Y ,

−Eτ [Y (τ) logP (Z = z|τ)] . (17)

Since Y is binary, this corresponds to determining Φ as
the binary classifier which separates successful (Y = 1)
episodes from unsuccessful episodes (Y = 0), i.e. ensures
that the first factor of the NIE eq. (16) is large.

The results of both methods can be found in table 1 (re-
sults averaged over 10 restarts with different seeds). The
causal learner obtains a value of the NIE that is significantly
different from zero in all runs. While the absolute value is
small, this can be attributed to the NIE being a product of

two factors which are both small. Considering the first two
terms, we observe that the causal variable Z = 1 is a nec-
essary condition for completing the environment, while the
corresponding variable for the cross-entropy target can be
false, yet the agent is still able to successfully complete the
environment.

We also notice that the cross-entropy based learner out-
performs the causal target, in terms of obtaining a proper
separation between good versus bad trajectories, i.e. a higher
value of ∆Y . This is expected, since cross-entropy is an ef-
ficient cost-function for a binary classification problem.

However, the causal variable Z, which is learned by the
cross-entropy learner, does not present a suitable target for
the policy πb. Indeed, the variable Z becomes true at the
same rate under πa and πb (all policies are trained using the
same settings). This can be accounted for by recalling that
the environment is random, and that the variable Z learned
by the causal learner represents a relatively stable feature
of the environment (such as picking up the key, opening the
door, etc.), whereas the cross-entropy trained variable Z cor-
responds to a combination of features in the environment
which presents a less suitable optimization target.

To obtain insight in the causal variable we learn, we plot
P (Z = 1) both against the reward, and whether the door
was opened in this particular run (jitter added for easier vi-
sualization). The results can be found in fig. 4. As indicated,
the learned causal variable correlates well with whether the
door is opened or not, and not as well with the total reward.
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Method E[Y | Z = 1] E[Y | Z = 0] ∆Y Eπa
[Z] Eπb

[Z] NIE

Causal Learner 0.410(30) 0.000 0.410(30) 0.550(20) 0.790(20) 0.098(10)
Cross-entropy 0.560(80) 0.130(30) 0.430(100) 0.270(40) 0.270(30) 0.011(8)

Table 1: Performance of causal agent on the DOORKEY environment and standard deviation of the mean.

Method E[Y |Π = a] E[Y |Π = b]

Causal Learner 0.240(20) 0.300(30)
Cross-entropy 0.230(20) 0.240(10)

Table 2: Reward obtained in the DOORKEY environment.

In other words, the method is able to learn that the feature
of whether the agent has opened the door acts as a mediat-
ing cause in terms of completing the environment. This is a
natural result, considering this task is necessary in order for
the agent to complete the environment.

The fact that the causal variable corresponds to a mean-
ingful objective, is reinforced by examining the total reward
obtained from either following policy Π = a, or the joint
policy Π = b (see table 2). Although the difference is slight,
we observe a small increase in accumulated reward for the
joint policy.

Conclusion
Since all causal conclusion depends on assumptions that are
not testable in observational studies (Pearl et al. 2009), it is
natural to ask why we are justified in believing that a particu-
lar method finds a causal representation of the environment.

In work involving pre-defined variables, such justifica-
tion can be found either through external distributional as-
sumptions about the relationship between the structure of
the model and the data it generates (Spirtes et al. 2000), or
because the model belongs to a class of models of which
so many examples have been observed, that meta-learning
allows the structure to be identified (Dasgupta et al. 2019).

In contrast, our work assumes a specific causal diagram
which, along with the definition of Z and Y , ensures that
Z is imbued with a natural interpretation as the mediating
causal factor of the causal pathway from X to Y .

A more fundamental question is why a parsimonious
model of causal knowledge, such as the SMOKING/CANCER
example, is preferable to a detailed causal model of patient
history. Indeed, if we adopt the view that a model should
best fit the MDP (i.e. a generative view), it is difficult to see
why parsimony would be preferred.

Although we do not claim to have a definite answer, our
approach differentiates situations in which it can find causal
knowledge from those in which it cannot, without referenc-
ing a generative/best fit criteria. Specifically, for a variable
Z to be identified, it must be so relative to a policy πa, as
something the agent could potentially do, and is associated
with a high reward (E[Y |Z = 1] > E[Y |Z = 0]), but it
might not do it under its baseline behavior πa. As a conse-
quence, the policy πa must be sub-optimal in order for the

Figure 4: Scatter plot of P (Z = 1) and (left) chance of un-
locking the door, and (right) chance of successfully reaching
the goal state. The causal variable Z appears to correspond
to opening the door.

agent to determine a causal model.
At a glance, this may seem like a flaw in the method, but

the idea that causation is ill-defined when one has a pre-
cise description of the physical world is old (Russell 1913),
and closely matches our common sense: When a child learns
to ride a bicycle, a potential causal explanation for a fall,
such as steering too far from the center of the lane (Z = 0)
and hitting the curb (Y = 0), is only relevant in case the
child could have taken better actions to keep near the center
of the lane (Z = 1). To put this in a different way, if the
agent knows enough about the environment to have an op-
timal policy, a coarse-grained causal model cannot offer the
agent any benefits because there are no policy decisions to
improve.

This example hopefully clarifies a point made during re-
view, namely how a choice of policy, Π = πa or Π = πb

can act as a cause: The policy itself is not a cause, but rather
the binary variable which denotes which policy is followed
is treated as a cause.

We have argued that the NIE offers a novel way to define
coarse-grained causal knowledge. In identifying a causal
variable, our method learns a policy to manipulate it, and
the variables are learned directly from experience without re-
quiring specification of a generative process. We have shown
the conditional expectations involved can be estimated using
an n-step temporal difference methods, and that the method
has convergence properties comparable to TD learning (but
with worse constants). We found that the method was able
to learn a causal variable which was both sensible and rele-
vant for solving a task, and did so better than a natural (non-
causal) alternative method. An independent experiment on a
test-set indicated the causal representation is associated with
an increased NIE, and that the causal representation is rele-
vant for the task in that it resulted in a performance increase.

6916



References
Alwin, D. F.; and Hauser, R. M. 1975. The decomposition
of effects in path analysis. American sociological review,
37–47.
Amirinezhad, A.; Salehkaleybar, S.; and Hashemi, M. 2020.
Active Learning of Causal Structures with Deep Reinforce-
ment Learning. arXiv preprint arXiv:2009.03009.
Bacon, P.-L.; Harb, J.; and Precup, D. 2017. The option-
critic architecture. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 31.
Besserve, M.; Mehrjou, A.; Sun, R.; and Schölkopf, B.
2020. Counterfactuals uncover the modular structure of deep
generative models. In Eighth International Conference on
Learning Representations (ICLR 2020).
Camacho, A.; Icarte, R. T.; Klassen, T. Q.; Valenzano, R. A.;
and McIlraith, S. A. 2019. LTL and Beyond: Formal Lan-
guages for Reward Function Specification in Reinforcement
Learning. In IJCAI, volume 19, 6065–6073.
Dasgupta, I.; Wang, J.; Chiappa, S.; Mitrovic, J.; Ortega,
P.; Raposo, D.; Hughes, E.; Battaglia, P.; Botvinick, M.;
and Kurth-Nelson, Z. 2019. Causal reasoning from meta-
reinforcement learning. arXiv preprint arXiv:1901.08162.
Davis, R.; Shrobe, H.; and Szolovits, P. 1993. What is a
knowledge representation? AI magazine, 14(1): 17–17.
Deisenroth, M.; and Rasmussen, C. E. 2011. PILCO: A
model-based and data-efficient approach to policy search.
In Proceedings of the 28th International Conference on ma-
chine learning (ICML-11), 465–472. Citeseer.
Espeholt, L.; Soyer, H.; Munos, R.; Simonyan, K.; Mnih, V.;
Ward, T.; Doron, Y.; Firoiu, V.; Harley, T.; Dunning, I.; et al.
2018. Impala: Scalable distributed deep-rl with importance
weighted actor-learner architectures. In International Con-
ference on Machine Learning, 1407–1416. PMLR.
Icarte, R. T.; Klassen, T.; Valenzano, R.; and McIlraith, S.
2018. Using reward machines for high-level task specifi-
cation and decomposition in reinforcement learning. In In-
ternational Conference on Machine Learning, 2107–2116.
PMLR.
Lake, B. M.; Salakhutdinov, R.; and Tenenbaum, J. B. 2015.
Human-level concept learning through probabilistic pro-
gram induction. Science, 350(6266): 1332–1338.
Levine, S.; Finn, C.; Darrell, T.; and Abbeel, P. 2016. End-
to-End Training of Deep Visuomotor Policies. J. Mach.
Learn. Res., 17(1): 1334–1373.
Lopez-Paz, D.; Nishihara, R.; Chintala, S.; Scholkopf, B.;
and Bottou, L. 2017. Discovering causal signals in images.
In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 6979–6987.
Mnih, V.; Badia, A. P.; Mirza, M.; Graves, A.; Lillicrap, T.;
Harley, T.; Silver, D.; and Kavukcuoglu, K. 2016. Asyn-
chronous methods for deep reinforcement learning. In In-
ternational conference on machine learning, 1928–1937.
PMLR.
Nabi, R.; Kanki, P.; and Shpitser, I. 2018. Estimation of Per-
sonalized Effects Associated With Causal Pathways. Uncer-
tainty in artificial intelligence: proceedings of the... confer-

ence. Conference on Uncertainty in Artificial Intelligence,
2018.
Pearl, J. 2001. Direct and indirect effects. In Proceedings of
the Seventeenth conference on Uncertainty in artificial intel-
ligence, 411–420.
Pearl, J. 2009. Causality: Models, Reasoning and Infer-
ence. USA: Cambridge University Press, 2nd edition. ISBN
052189560X.
Pearl, J. 2012. The mediation formula: A guide to the assess-
ment of causal pathways in nonlinear models. Wiley Online
Library.
Pearl, J.; and Mackenzie, D. 2018. The book of why: the new
science of cause and effect. Basic Books.
Pearl, J.; et al. 2009. Causal inference in statistics: An
overview. Statistics surveys, 3: 96–146.
Peters, J.; Janzing, D.; and Schölkopf, B. 2017. Elements of
Causal Inference - Foundations and Learning Algorithms.
Adaptive Computation and Machine Learning Series. Cam-
bridge, MA, USA: The MIT Press.
Russell, B. 1913. On the Notion of Cause’, reprinted in Mys-
ticism and Logic and Other Essays. George Allen & Unwin.
Schölkopf, B. 2019. Causality for machine learning. arXiv
preprint arXiv:1911.10500.
Shrestha, A.; and Mahmood, A. 2019. Review of deep learn-
ing algorithms and architectures. IEEE Access, 7: 53040–
53065.
Spirtes, P.; Glymour, C. N.; Scheines, R.; and Heckerman,
D. 2000. Causation, prediction, and search. MIT press.
Tenenbaum, J. B.; Kemp, C.; Griffiths, T. L.; and Goodman,
N. D. 2011. How to Grow a Mind: Statistics, Structure, and
Abstraction. Science, 331(6022): 1279–1285.
Wang, L.; Yang, Z.; and Wang, Z. 2020. Provably Efficient
Causal Reinforcement Learning with Confounded Observa-
tional Data. ArXiv, abs/2006.12311.
Zhang, A.; Lipton, Z. C.; Pineda, L.; Azizzadenesheli, K.;
Anandkumar, A.; Itti, L.; Pineau, J.; and Furlanello, T. 2019.
Learning causal state representations of partially observable
environments. arXiv preprint arXiv:1906.10437.
Zhang, J.; and Bareinboim, E. 2018. Fairness in decision-
making—the causal explanation formula. In Proceedings of
the... AAAI Conference on Artificial Intelligence.
Zhang, K.; Gong, M.; and Schölkopf, B. 2015. Multi-Source
Domain Adaptation: A Causal View. In AAAI, volume 1,
3150–3157.

6917


