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Abstract

Tremendous progress has been made in sequential process-
ing with the recent advances in recurrent neural networks.
However, recurrent architectures face the challenge of ex-
ploding/vanishing gradients during training, and require sig-
nificant computational resources to execute back-propagation
through time. Moreover, large models are typically needed for
executing complex sequential tasks. To address these chal-
lenges, we propose a novel neuron model that has cosine ac-
tivation with a time varying component for sequential pro-
cessing. The proposed neuron provides an efficient building
block for projecting sequential inputs into spectral domain,
which helps to retain long-term dependencies with mini-
mal extra model parameters and computation. A new type
of recurrent network architecture, named Oscillatory Fourier
Neural Network, based on the proposed neuron is presented
and applied to various types of sequential tasks. We demon-
strate that recurrent neural network with the proposed neuron
model is mathematically equivalent to a simplified form of
discrete Fourier transform applied onto periodical activation.
In particular, the computationally intensive back-propagation
through time in training is eliminated, leading to faster train-
ing while achieving the state of the art inference accuracy
in a diverse group of sequential tasks. For instance, applying
the proposed model to sentiment analysis on IMDB review
dataset reaches 89.4% test accuracy within 5 epochs, accom-
panied by over 35x reduction in the model size compared to
LSTM. The proposed novel RNN architecture is well poised
for intelligent sequential processing in resource constrained
hardware.

Introduction
Recently, artificial neural networks, especially various types
of recurrent neural networks (RNN) have demonstrated sig-
nificant success in sequential processing tasks such as natu-
ral language processing (NLP)(Yin et al. 2017). However,
complex sequential processing tasks desires increasingly
large RNN models, and the training of RNNs encounters
the notorious challenge of exploding or vanishing gradients
when information across long time need to be preserved
and processed. In particular, back-propagation through time
(BPTT) applied on weight matrices associated with hid-
den states such as Whh need to unroll gradient calculations
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throughout large number of time steps. BPTT is not only
prone to exponentially decaying or growing of the propa-
gated values but also consuming significant computation re-
sources over the recurrent steps. Although mitigating archi-
tectures, such as long-short term memory (LSTM) and gated
recurrent units (GRU) have been proposed, these modified
RNN models typically contain more training parameters,
consumes longer time to train, and may still suffer the loss of
gradients in presence of very long input sequences. On the
other hand, it has been observed that extracting and under-
standing meaningful patterns at different time scales can be
important for sequential processing tasks such as text sen-
timent analysis or body activity recognition. For instances,
patterns in movie reviews could emerge at the word level,
sentence/clause level, and paragraph level that altogether de-
termine the outcome of the final sentiment of a review. In
order to learn the features at various scales from sequential
data, incorporating spectral analysis such as Fourier Trans-
form in RNNs have received growing attention (Lee-Thorp
et al. 2021), (Tamkin, Jurafsky, and Goodman 2020). Typ-
ically, the input of temporal series can be fed into certain
type of spectral processing such as Fourier transform, where
frequency-domain outcome can be obtained and further an-
alyzed by the subsequent neural network blocks.

In this work, we propose a new type of neuron with time
varying cosine activation (termed TV-Cosine neuron), and
construct an RNN architecture, named oscillatory Fourier
neural network (O-FNN), for efficient learning for sequen-
tial tasks. Intuitively, the proposed neuron model projects
sequential input data into a phase of oscillating neuron, in
contrast to conventional neurons such as ReLU or tanh that
modulate the magnitude of activation depending on the in-
put. Moreover, each neuron in the proposed architecture is a
cosine activation applied onto a superposition of input signal
and time dependent rotating term of certain frequency. The
hidden state vector of the O-FNN accumulates the outcome
of cosine activation across all time steps before being fed
into the final layer of the network. Following this approach,
no backpropagation through time is needed during the back-
ward pass of training, and both forward and backward pass
can process the sequential data in a fully parallel manner.
We will show that after accumulating the cosine activation
through time, the hidden states will equivalently represent a
modified discrete Fourier transform of sine and cosine neu-
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ral activation. The major contribution is summarized as fol-
lows:

• We propose a new type of neuron with time varying
cosine activation for sequential processing. We demon-
strate that RNN with such time-varying activation is
mathematically equivalent to a simplified form of dis-
crete Fourier transform. Due to the usage of cosine ac-
tivation, the transform of data into frequency domain
is more computationally efficient compared to applying
Fourier transform on ReLU or sigmoidal neurons.

• We propose a new type of RNN architecture, O-FNN,
that is fully parallelizable in both forward and backward
passes. In particular, since the backward propagation is
not unrolled in time, the issue of exponential explosion
or decay of the gradient values across long range of
time steps with conventional activation functions is elim-
inated.

• We show that O-FNN architecture is capable of achiev-
ing better performance on a plethora of sequential pro-
cessing tasks with more compact models and high com-
putational efficiency in comparison with regular RNN/L-
STM. The characteristics of smaller memory footprint
and faster training make the O-FNN especially suitable
for deployment in resource-constrained hardware such as
IOT and battery-powered edge devices.

Related Work
While periodic activation functions have been proposed
as early as 1980s (Lapedes and Farber 1987; McCaughan
1997), learning with such periodic activation has received
limited attention from the research community (Sopena,
Romero, and Alquezar 1999; Wong, Leung, and Chang
2002). In (Sopena, Romero, and Alquezar 1999), the au-
thors show that with proper range of initial weight values, a
multi-layer perceptron using sinusoidal neurons in the form
of sin (WX + b) improves accuracy and trains faster com-
pared to its sigmoidal counterpart on some small datasets.
Recently, sinusoidal activation function in implicit neural
representations demonstrated improved capability of pro-
cessing complex spatial-temporal signals and their deriva-
tive (Sitzmann et al. 2020). Authors in (Ramachandran,
Zoph, and Le 2017) conduct network architecture search and
identify neuron with partial sinusoidal behavior as one of
the top candidates for activation functions for typical image
classification tasks. Note that training networks with peri-
odical activation may be challenging due to the possibility
of having numerous local minima in the landscape of loss
function (Sopena, Romero, and Alquezar 1999; Parascan-
dolo, Huttunen, and Virtanen 2017).

Regarding applying periodical activation in RNNs,
(Sopena and Alquezar 1994) reports improvement in learn-
ing when sine instead of sigmoid activation function is used
in the last fully connected layer of a simple RNN trained
for a next-character prediction task. The authors of (Paras-
candolo, Huttunen, and Virtanen 2017) also observe that the
periodical activation can be beneficial for training RNNs and
LSTMs on some algorithmic tasks, showing faster learn-
ing and possibly better accuracy. Moreover, oscillatory neu-

ron dynamics is exploited in implementing coupled oscilla-
tor recurrent neural networks in (Rusch and Mishra 2021),
demonstrating great potential of oscillating neurons for pro-
cessing complex sequential data.

Usage of periodical activation is related to Fourier trans-
forms which also involve extraction of information and fea-
tures in the frequency domains. In particular, Fourier trans-
forms, especially discrete Fourier Transforms (DFT), have
been adopted successfully for RNNs to execute sequential
processing (Koplon and Sontag 1997) or make predictions
(Zhang and Chan 2000). Fourier transforms are typically
done on input signals to facilitate the learning of spectral
features. More recently, the idea of leveraging Fourier trans-
forms for extracting spectral information is also explored
in Natural Language Processing (NLP) tasks. Authors in
(Zhang et al. 2018) proposes using Fourier basis to sum-
marize the statistics of hidden states through past time steps
in RNNs. (Tamkin, Jurafsky, and Goodman 2020) applies
spectral filters similar to DFT to the activations of individ-
ual neurons in BERT (Devlin et al. 2018) language model,
aiming for extracting information changing at different time
scales in texts.

Proposed Approach
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Figure 1: (a) Time-Varying Cosine neuron with fully-
connected input layer. (b) One dimensional convolution
layer can also be used as input layer. (c) TV-Cosine neuron
is mathematically equivalent to projecting sine and cosine
activations respectively onto sinωit and cosωit channels of
discrete frequencies.

Time-Varying Cosine (TV-Cosine) Neuron for
Sequential Processing
We propose temporal artificial neuron named Time-Varying
Cosine (TV-Cosine) neuron. As shown in Fig.1(a), the pro-
posed neuron has a cosine activation, which has an input θ⟨t⟩i
obtained from a superposition of a fully connected layer’s
output ϕ⟨t⟩ and a time-varying phase modulating term ωit.
Mathematically, each TV-Cosine neuron is equivalent to a
sine neuron and a cosine neuron respectively, projected to a
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Figure 2: O-FNN forward propagation (full parallelism).

sine and a cosine oscillating functions, as shown in Fig.1(c).
Each TV-Cosine neuron has a specific oscillating frequency
ωi, where the subscript i indicates the frequency channel.
The frequencies for different channels ωi are hyper param-
eters of the proposed model. In sequential processing tasks,
the fully connected input layer in Fig.1(a) can also be re-
placed with one dimensional convolutional layer as shown
in Fig.1(b), in which, d consecutive input vectors are fed to
the TV-Cosine neuron at each time-step. We observed that
using 1D convolutional layer with a small slicing window
(d = 3) and small stride (s = 1) slightly improves the accu-
racy, at the cost of slightly increasing the number of weight
parameters.

Forward pass in O-FNN
We propose O-FNN architecture consisting of TV-Cosine
neurons for efficient learning of sequential tasks. A simple
example of O-FNN containing four TV-Cosine neurons with
distinctive channel frequencies is shown in Fig.2. The for-
ward flow of O-FNN is unrolled in time as shown along
the horizontal direction. Each channel traces and accumu-
lates outputs of one TV-Cosine neuron across all time-steps.
The final hidden states of all neurons are concatenated be-
fore further processing by a fully connected read-out layer.
As discussed earlier, each TV-Cosine neuron equivalently
projects activations of sine and cosine activations onto os-
cillating sine and cosine channels with various frequencies.
Hence, the forward flow of O-FNN in Fig.2 is mathemati-
cally equivalent to a special form of Discrete Fourier Trans-
form (DFT).

TV-Cosine neurons in O-FNN can be categorized into one
DC neuron and a few AC neurons depending on the neuron
input. For example, at each time-step t, an input phase ϕ⃗⟨t⟩

is computed as shown by Eq.1. Input to DC neuron equals
ϕ⃗⟨t⟩ subtracts a constant value 1

4π as shown by Eq.2. Inputs

to AC neurons equal ϕ⃗⟨t⟩ subtracts a time-driven phase mod-
ulating term ωit as shown by Eq.3. The angular velocity ωi

of different AC neurons are computed by Eq.4, in which f
is a hyper-parameter used to determine the running speed of
the clock in each AC neuron.

ϕ⃗⟨t⟩ = Wxx⃗
⟨t⟩ + b⃗x (t = 1, ..., N) (1)

θ⃗
⟨t⟩
0 = ϕ⃗⟨t⟩ − 1

4
π (t = 1, ..., N) (2)

θ⃗
⟨t⟩
i = ϕ⃗⟨t⟩ − ωit (t = 1, ..., N) (3)

ωi =
2iπf

N
(i = 1, 2, 3) (4)

The forward flow of O-FNN is a fully parallelizable archi-
tecture as shown in Fig.2. Concretely, neuronal activation of
all time steps can be computed in parallel if the whole input
sequence is already known. The process of forward propa-
gation can be explained as follows. First, all hidden states
are initialized to zero. Next, input at each time step can be
fed into the parallelizable architecture, and the cosine acti-
vation from each time step can be computed following Eq.1
- 4. Subsequently, the final states of DC and AC neurons in
O-FNN are computed by summing and averaging of cosine
neurons’ outputs over all time steps, following Eq.5(a) and
Eq.6(a). The summation for the AC-channel neurons out-
puts is equivalent to combining a sine neuron’s DST and co-
sine neuron’s DCT terms. Finally, the resulting hidden coef-
ficients are concatenated and fed to the final read-out layer
as shown by Eqs.7 and 8. Note that, by subtracting a con-
stant phase 1

4π in Eq.2 (and multiplying a coefficient of
√
2),

we manage to obtain a unified formal expression of hidden
states of both DC and AC channels.

h⃗
⟨N⟩
0 =

√
2

N

(
h⃗
⟨0⟩
0 +

N∑
t=1

cos θ⃗
⟨t⟩
0

)
(5a)

=
1

N

N∑
t=1

(
sin ϕ⃗⟨t⟩ + cos ϕ⃗⟨t⟩

)
(5b)

h⃗
⟨N⟩
i =

1

N

(
h⃗
⟨0⟩
i +

N∑
t=1

cos θ⃗
⟨t⟩
i

)
(6a)

=
1

N

N∑
t=1

[
sin ϕ⃗⟨t⟩ sin(ωit) + cos ϕ⃗⟨t⟩ cos(ωit)

]
(6b)

(in which i = 1, 2, 3 for AC channels)

h⃗
⟨N⟩
cat = concate

[
h⃗
⟨N⟩
0 ; h⃗

⟨N⟩
1 ; h⃗

⟨N⟩
2 ; h⃗

⟨N⟩
3

]
(7)

(concatenate along dimension 1)

y⃗ = Wyh⃗
⟨N⟩
cat + b⃗y (8)

The compact model size and high computational effi-
ciency stem from the fact that O-FNN does not require the
square matrix Whh and the associated matrix multiplication
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operations h⃗⟨t⟩ = Whh

[
h⃗⟨t−1⟩ + f(Wxx⃗

⟨t⟩ + b⃗x)
]

that oc-
cur at every time-step in regular RNNs. The superior ac-
curacy of O-FNN can be attributed to operating in the fre-
quency domain. The DC and low frequency AC channels
efficiently capture long time dependencies from sequential
data, whereas the high frequency AC channels provide short-
term memory. Compared to approaches that perform spec-
trum analysis on raw input data or ReLU/Sigmoid neurons,
our approach eliminates multiplication operations required
to perform the transformation from time to frequency do-
main. For example, we can perform a regular DFT on neuron
with activation function f (ReLU or Sigmoid). However, as
described by Eqs.9 (a) and (b), at least one multiplication
is required at each time-step to complete the transforma-
tion. On the other hand, only addition operations are used
in our approach to perform the special form of DFT in Fig.2
using TV-Cosine neurons and O-FNN architecture in Fig.2.
The required cosine computation can be implemented using
a look-up table. The required extra memory space O(N) (N
is sequence length) is negligible compared to the trainable
parameters.

h⃗
⟨N⟩
i =

1

N

N∑
t=1

[
f
(
ϕ⃗⟨t⟩

)
sin(ωit) + f

(
ϕ⃗⟨t⟩

)
cos(ωit)

]
(9a)

=

√
2

N

N∑
t=1

[
f
(
ϕ⃗⟨t⟩

)
cos
(
ωit−

π

4

)]
(9b)

(in which i = 1, 2, 3 for AC channels)

The number of AC neurons (channels) used in O-FNN is
a hyper-parameter. According to our simulation results, us-
ing only two to three AC neurons are sufficient to obtain the
SOTA accuracies across various datasets we tested. Increas-
ing the number of AC neurons beyond four causes accuracy
degradation due to over-fitting. As can be seen in the re-
sult section, O-FNN requires far fewer neurons and smaller
memory footprint while achieving superior accuracy than to-
day’s SOTA models.

Backward pass in O-FNN
The back-propagation of O-FNN is shown in Fig.3. During
forward propagation, the input sequence x⃗⟨1⟩, ..., x⃗⟨N⟩, the
concatenated final hidden states h⃗⟨N⟩

cat ∈ R4n×1, and the in-
puts θ⃗⟨t⟩i to all TV-Cosine neurons at all time-steps have been
cached and will be used in back-propagation. Gradient w.r.t.
output ∂L

∂y⃗ ∈ Rd×1 first propagates through the fully con-
nected read-out layer and the parameters in this layer can
be updated using Formulas 10 and 11, where η is learn-
ing rate. Next as shown in Formula 12, the weight matrix
Wy ∈ Rd×4n of the read-out layer is decomposed into four
sub-matrices Wy[i] ∈ Rd×n, where (i = 0, ..., 3). Gradients
w.r.t each one of the backward channels can be computed
as
[
Wy[i]

]T ∂L
∂y⃗ as shown in Fig.3. No BPTT is used in O-

FNN because all gradients w.r.t. input bias and weights at all
time-steps and channels can be computed in a fully paral-
lel fashion as shown by Eqs.13 and 14, respectively. Finally,
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Figure 3: O-FNN backward propagation (full parallelism).

the parameters of input layer are updated using the averaged
gradients across all time-steps and channels as indicated by
15 and 16.

b⃗y ← b⃗y + η
∂L

∂y⃗
(10)

Wy ←Wy + η
∂L

∂y⃗

[
h⃗
⟨N⟩
cat

]T
(11)

concate
[
Wy[0];Wy[1];Wy[2];Wy[3]

]
←Wy (12)

(concatenate along dimension 1)

[
∂L

∂b⃗x

]⟨t⟩
i

= − sin θ⃗
⟨t⟩
i .∗

([
Wy[i]

]T ∂L

∂y⃗

)
(13)

(in which .∗ is element-wise multiplication)

[
∂L

∂Wx

]⟨t⟩
i

=

[
∂L

∂b⃗x

]⟨t⟩
i

[
x⃗⟨t⟩
]T

(14)

b⃗x ← b⃗x +
η

4N

3∑
i=0

N∑
t=1

[
∂L

∂b⃗x

]⟨t⟩
i

(15)

Wx ←Wx +
η

4N

3∑
i=0

N∑
t=1

[
∂L

∂Wx

]⟨t⟩
i

(16)

By eliminating hidden state weight matrix Whh and the
time consuming BPTT in the backward pass, training O-
FNN can be faster with considerable improvement in en-
ergy efficiency. Moreover, the occurrence of exploding and
vanishing gradients due to multiplicative errors across nu-
merous time steps is also prevented in absence of BPTT.
Unlike GRUs/LSTMs, which employ extra states and gates
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to retain memory for long-term dependencies, O-FNN re-
sorts to transforming the input sequences to the frequency
domain, and focuses on training the network based on the
spectral information. Since O-FNN is designed to accumu-
late equal contribution from all time-steps, the updates of
parameters is determined by the averaged gradients, leading
to an equivalent ”mini-batch” effect during training. Such
equivalent ”mini-batch gradient descent” based training in
O-FNN might be able to explain the fast convergence with
O-FNN compared to other SOTA sequential models, as is
demonstrated in the Results and Discussion Section.

Results and Discussion
We will discuss the tuning of hyper-parameters for optimiz-
ing the network architecture. Specifically we investigate the
impact of the base frequency f and the total number of chan-
nels (#chs) on the model’s learning capability. Then we will
present the results of applying the proposed O-FNN to a di-
verse group of learning tasks. We conducted experiments on
an NVIDIA GeForce GTX 1080 GPU. We perform hyper-
parameters tuning based on a grid search. The best perform-
ing results is based on the highest mean values of validation
accuracy averaged over 10 random initialization of trainable
parameters. We used an exponential decaying learning with
an initial learning rate 1e-3 for all the experiments. For the
IMDB task, an exponential decaying factor 0.3 is used, and
0.7 is used for other tasks.

Hyper-parameters Tuning and Understanding
We start with optimizing hyper-parameters for the IMDB
sentiment classification task. IMDB dataset contains 50K
movie reviews from IMDB users. The sentiments of the re-
views written by IMDB users are labeled as either positive
(”1”) or negative (”0”) (Maas et al. 2011). The binary senti-
ment classification task is to differentiate a user review being
positive or negative. The 50K dataset is split evenly for train-
ing and testing (25K for each). As for word embedding, we
apply the pretrained 50d Glove to vectorize the vocabulary
(Brochier, Guille, and Velcin 2019). As is shown in Fig.4(a),
adding AC channels of various base frequency f improves
the learning performance compared to the case of using DC
channel only, corroborating the importance of capturing AC
features for learning the long sequences of texts. For IMDB
dataset, it is found that base frequency of f around 1.0 works
well. Increasing f above 2.0 hurts the performance, possibly
due to the loss of low-frequency information which is criti-
cal for learning long-time dependencies. It is also observed
that increasing the total number of channels from 3 to 5 fur-
ther improve the test accuracy with a more stabilized learn-
ing curve versus number of epochs. Fig.4(b) summarizes
the results of hyper-parameter tuning for IMDB dataset. The
high efficiency of the Time-Varying Cosine neuron is clearly
demonstrated, as only 3-5 channels are sufficient to extract a
rich set of features in the time-domain. Adding more chan-
nels (above 5) shows no benefit while increasing the model
size.

In addition to text classifications, we also evaluate the
tuning of hyper-parameters for the task of image classifica-
tion. We look into digit classification on permuted sequential

MNIST dataset (psMNIST). The psMNIST is a modification
of sequential MNIST (Le, Jaitly, and Hinton 2015) (sM-
NIST), where a fixed permutation is applied to the stream
of individual pixels based on MNIST digits (Lecun et al.
1998). The psMNIST provides sequences of pixels with a
sequence length T = 784, which is a few times longer than
the sequence length of IMDB reviews (averaged at about
250 words). As is shown in Fig.4(d), we observe improve-
ment of performance as AC channels are added into the net-
work, similarly to the observation from the IMDB experi-
ment. Moreover, it is found that higher base frequency is de-
sirable to cope with the increased sequence length in psM-
NIST. As is further discussed in the following, the choice
of optimized base frequency is dependent on the character-
istics of dataset such as the sequence length and the ratio
of pattern length to total sequence length. As is summarized
in Fig.4(e), the best performance occurs when number of
channels equals 3 with the base AC frequency f=2.0. The
observed degradation of test accuracy for number of chan-
nels higher than 3 is due to overfitting, as a large number of
neurons are connected to process single-pixel sequences.

Results on Various Datasets
We apply the O-FNN to various sequential learning tasks,
with hyper-parameters optimized for each dataset and task.
In addition to IMDB and permuted sequential MNIST as
discussed above, we further apply the O-FNN model to pro-
cess noise padded CIFAR-10 (Chang et al. 2019) and hu-
man activity recognition (HAR-2) datasets (Anguita et al.
2012)(Kusupati et al. 2018). The results of O-FNN on the
four datasets are summarized in Table 1. For each task, we
compare the O-FNN with a few baseline models such as var-
ious types of LSTM ((Pandey 2020)) and GRU ((Dey and
Salem 2017)) as well as some recent results from the liter-
ature (such as coRNN(Rusch and Mishra 2021)) for com-
parison. As is shown in Fig.4(c) and Fig.4(f), the proposed
O-FNN reaches the highest test accuracy with faster con-
vergence on both IMDB and sMNIST benchmark experi-
ments. For IMDB, we focus the comparison with models
that have a relatively small number (128) of hidden units.
We observe that O-FNN achieves significantly higher accu-
racy with 32× fewer neurons, 35× fewer parameters and
being 10× faster in training. As for the psMNIST bench-
mark, our proposed model reaches higher than 93% test ac-
curacy within 3 epochs, outperforming both LSTM (van der
Westhuizen and Lasenby 2018) (Helfrich, Willmott, and Ye
2018) and GRU (Hafner et al. 2017) (Chang et al. 2017). The
proposed O-FNN reaches the state of the art performance at
sMNIST, while outperforming all single-layer RNN archi-
tectures at processing the challenging permuted sMNIST.

The noise padded CIFAR-10 experiment poses great chal-
lenges for models to learn temporal dependence over the
large number of time steps, due to the fact that the padded
input sequences contain Gaussian noise in 968 out of 1000
time steps while only 32 time steps contain the serialized
CIFAR10 images (Krizhevsky and Hinton 2009). From Ta-
ble 1, we observe that O-FNN outperforms other RNN ar-
chitectures on this benchmark, while requiring only 65k pa-
rameters. We found that a higher base frequency (f=8.0) is
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Figure 4: (a) O-FNN performance vs training epochs on IMDB dataset (b) Hyper-parameters tuning on IMDB dataset (c) Test
accuracy comparison on IMDB dataset (d) O-FNN performance vs training epochs on psMNIST dataset (e) Hyper-parameters
tuning on psMNIST dataset (f) Test accuracy comparison on psMNIST dataset.

Task Model Test accuracy(%) # Units # Params # Epochs

IMDB sentiment analysis

LSTM (Campos et al. 2018) 86.8 128 220k∗ -
GRU (Dey and Salem 2017) 84.8 128 99k 100

ReLUGRU (Dey and Salem 2017) 85.2 128 99k 100
coRNN (Rusch and Mishra 2021) 87.4 128 46k 100

O-FNN [This Work] 89.4 24 6k 5
compact O-FNN [This Work] 88.6 4 1k 5

sMNIST / permuted sMNIST

LSTM (Helfrich, Willmott, and Ye 2018) 98.9 / 92.9 256 270k -
GRU (Chang et al. 2017) 99.1 / 94.1 256 200k -

Dilated GRU (Chang et al. 2017) 99.2 / 94.6 256 20k -
coRNN (Rusch and Mishra 2021) 99.4 / 97.3 256 134k 100

O-FNN [This Work] 99.3 / 98.3 48 / 160 11k / 29k 54 / 86

Noise padded CIFAR-10

LSTM (Kag, Zhang, and Saligrama 2020) 11.6 128 64k -
Incremental RNN (Kag, Zhang, and Saligrama 2020) 54.5 128 11.5k -

Lipshitz RNN (Erichson et al. 2020) 59 256 134k 100
coRNN (Rusch and Mishra 2021) 59 128 46k 120

O-FNN [This Work] 60.1 128 65k 39

HAR-2

LSTM (Kag, Zhang, and Saligrama 2020) 93.7 64 16k -
GRU (Kag, Zhang, and Saligrama 2020) 93.6 75 16k -
FastGRNN-LSQ (Kusupati et al. 2018) 95.6 80 7.5k† 300

coRNN (Rusch and Mishra 2021) 97.2 64 9k 250
O-FNN [This Work] 96.3 64 3k 57

compact O-FNN [This Work] 94.7 16 0.8k 77

Table 1: O-FNN in comparison with references on multiple benchmark data sets. (Numbers marked with ∗ and † are obtained
from (Rusch and Mishra 2021) and (Kag, Zhang, and Saligrama 2020) respectively).

Models mean standard deviation
IMDB (24 units) 88.85% 0.49%
sMNIST (48 units) 99.01% 0.15%
psMNIST (160 units) 97.73% 0.68%
Noise pdded CIFAR-10 (128 units) 59.22% 0.98%
HAR-2 (64 units) 95.87% 0.57%

Table 2: Mean and standard deviation of O-FNN perfor-
mance for experiments based on 10 re-trainings using ran-
dom initialization of the trainable parameters.

needed for the model to learn informative features in pres-
ence of highly concentrated input data over a small frac-
tion of total sequence (i.e. only first 32 actual image in-
put from 1000 total steps). The intuition is that high fre-
quency channels are more capable of extracting localized
pattern formed by input from adjacent time steps, while low
frequency channels tend to get an averaged effect from in-
put over large numbers of steps. To this effect, it is chal-
lenging for low frequency channels to learn meaningful fea-
tures since noises take a dominating proportion in those long
sequences. Our study demonstrates that tuning the hyper-
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Figure 5: Summary of test accuracy versus number of parameters of O-FNN in comparison with recent references. Reference
points are collected from (Arjovsky, Shah, and Bengio 2016), (Dey and Salem 2017),(Chang et al. 2017) (Campos et al.
2018),(Helfrich, Willmott, and Ye 2018), (Kusupati et al. 2018),(Lezcano Casado 2019),(Chang et al. 2019),(Kag, Zhang,
and Saligrama 2020), (Erichson et al. 2020), and (Rusch and Mishra 2021).

parameter f can provide a powerful knob for accommodat-
ing the imbalanced distribution of input information among
noise padding in long sequences.

As for the HAR-2 dataset, we can see that O-FNN can
reach close to SOTA accuracy with fewer parameters com-
pared to most of the references. Morevoer, we observe that
even the compact version of O-FNN remain to perform
at about 95% test accuracy with less than 1K parameters.
Therefore, the compact O-FNN model can be well poised
for applications in edge applications and IOT devices.

Figure 5 summarizes the accuracy and number of param-
eters of the proposed O-FNN model in comparison with re-
cent references. In plots of model test accuracy vs model
size, a trade-off is typically found when the accuracy of
a model increases with number of parameters. Therefore,
intrinsic gain in the capability of a model will be demon-
strated if the position of the model in this plot can shift
up vertically. Specifically, we observe that O-FNN is over-
all on the top/left side of most references across all four
datasets.The overall high accuracy across various tasks can
be attributed to the capability of learning features at vari-
ous time scales through different frequency channels. Based
on the trade-off plots, O-FNN is significantly more efficient
than all the references at IMDB sentiment analysis task. As
for permuted sMNIST and noise-padded CIFAR10, O-FNN
outperforms the most recent references, while the separa-
tion is smaller. On HAR-2, both O-FNN and the recently
proposed coRNN perform well, suggesting a good potential
of utilizing neurons with oscillatory dynamics in processing
temporal signals. The compact size of O-FNN is partially at-
tributed to the absence of the Whh matrix in regular RNNs,
as well as the fact that our simplified Discrete Fourier Trans-
form requires only a few frequency channels each associated
with one Time-Varying Cosine neuron. The observation of

fast convergence in training across various tasks can be at-
tributed to O-FNN’s fully parallelizable architecture, which
makes the error back-propagation more direct than regular
RNNs that requires recursive computations through time.

Conclusion

A novel RNN architecture (O-FNN) based on a Time-
Varying Cosine neuron model is proposed for sequential
processing. Compared to conventional Fourier transform on
raw input data and ReLU/sigmoidal activations, the pro-
posed architecture provides a computationally efficient ap-
proach to extracting frequency-domain information from se-
quential data. Moreover, the O-FNN by design have full par-
allelism in both forward and backward passes, leading to
significant simplification in training while eliminating the is-
sue of exploding/vanishing gradients encountered by RNNs.
In contrast with GRU/LSTM models, which require vari-
ous types of gates and additional memory/cell states to re-
tain long-term memory, our proposed architecture has ex-
tremely compact model size, while achieving the retention
of information over long sequences through the learning of
frequency-domain feature. We show that O-FNN is capa-
ble of handling long time dependencies with significantly
smaller model size and lower computational cost, while re-
taining superior accuracy, faster convergence, and better er-
ror resiliency than the State-of-The-Art across various types
of sequential tasks. Future avenues of work could extend the
current O-FNN to address many-to-many tasks such as ma-
chine translation, or image captioning. Leveraging the po-
tential of fast training and having compact models, O-FNN
can also be further explored to process complex tasks such
as video analysis.
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