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Abstract
Catastrophic forgetting is a key obstacle to continual learning.
One of the state-of-the-art approaches is orthogonal projection.
The idea of this approach is to learn each task by updating the
network parameters or weights only in the direction orthogonal
to the subspace spanned by all previous task inputs. This
ensures no interference with tasks that have been learned. The
system OWM that uses the idea performs very well against
other state-of-the-art systems. In this paper, we first discuss
an issue that we discovered in the mathematical derivation of
this approach and then propose a novel method, called AOP
(Adaptive Orthogonal Projection), to resolve it, which results
in significant accuracy gains in empirical evaluations in both
the batch and online continual learning settings without saving
any previous training data as in replay-based methods.

Introduction
Many techniques have been proposed to solve the problem
of catastrophic forgetting (CF) in continual learning (CL),
which aims to incrementally learn a sequence of tasks (Chen
and Liu 2018). Each task i consists of ki (≥ 1) classes to be
learned. Once a task is learned, its training data is often no
longer accessible. CF means that in learning a new task, the
parameters learned for previous tasks need to be modified,
which may cause significant accuracy drop for the previous
tasks (McCloskey and Cohen 1989). A literature survey will
be given in the next section.

This paper focuses on a particular setting of CL, class
incremental learning (Class-IL). In Class-IL, the system in-
crementally learns more and more classes from a sequence
of tasks. At the test time, the learned model can classify a
test case to any class without the task-id provided. Another
main paradigm of CL is task incremental learning (Task-IL),
where a model is constructed for each task in training. In
testing, the task id is supplied for each test case so that the
model for the task can be applied to classify the test case.

This paper further focuses on the recent orthogonal projec-
tion approach to Class-IL in the OWM system (Zeng et al.
2019). OWM works as follows: In learning each task, the
network parameters are updated only in the direction orthog-
onal to the subspace spanned by inputs of all previous tasks.
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This ensures no interference with the parameters learned for
previous tasks and thus will cause no CF for previous tasks.

OWM performs very well compared to other state-of-the-
art approaches. It does especially well in the scenario where
each task consists of a single class. In most CL papers, each
task consists of multiple classes to be learned. However, learn-
ing one class (which is equivalent to one class per task) in-
crementally perhaps occurs most frequently in applications
because in an application whenever a new object/class ap-
pears, one would want to learn it immediately to make the
system up to date rather than waiting for many objects (or
classes) to appear and then learn them together. For example,
in the chatbot context, when a new skill is identified and data
prepared, the company naturally would want the chatbot to
learn the new skill immediately so that the new service can be
provided to the users without waiting and accumulating a few
of skills and learn them together. For us humans, whenever
we encounter a new object, we learn to recognize it right
away and we never wait to see a number of new objects to
appear and then learn to recognize them together. Learning
tasks with one class per task is also the most difficult CL
scenario as it has the maximum number of tasks. It is well
known that when the number of tasks increases, CF becomes
more severe, which results in lower classification accuracy.
We should also note that incrementally learning one class at
a time (or one class per task) is the most general case of CL
because incrementally learning n classes as a task together
can be reduced to learning n classes one by one incremen-
tally. Needless to say that both OWM and our method can
learn with any number of classes per task.

This paper identifies an issue in the mathematical deriva-
tion of the OWM method, which deals with CF by storing an
orthogonal projector computed based on the training inputs
of old tasks to ensure that the weight updates in learning
each new task occur only in the direction orthogonal to the
subspace representing the inputs of all old tasks. In order
to deal with the matrix invertibility problem, it introduces a
small constant α in computing the projector. However, α is
irrelevant to the inputs of the old tasks, which gives an inac-
curate estimation of the old task input space and causes weak
performance. OWM treats α as a hyperparameter, which we
will show it is inappropriate. We then propose an Adaptive
Orthogonal Projection (AOP) method to resolve this prob-
lem of OWM, which computes an α value for each training
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batch based on some holistic consideration of all old task
data and the current batch. With this issue fixed, the CL accu-
racy results improve significantly. Experimental evaluation
shows that AOP not only outperforms the original OWM but
also other existing state-of-the-art baselines markedly in both
batch and online CL settings. To the best of our knowledge,
it is the first gradient orthogonal method for online CL.

Note that both OWM and AOP do not save any training
examples or build data generators. AOP is thus more general
and applicable to settings where the training data is no longer
accessible after learning. The inaccessibility of the old data
could be due to unrecorded legacy data, proprietary data, and
data privacy, e.g., in federated learning (Zhang et al. 2020).

Related Work
As OWM has been discussed, this section focuses on other
CL methods for dealing with CF. One popular approach is
using regularization to ensure the learned knowledge from
old tasks is minimally affected in learning a new task. EWC
is a representative of the approach (Kirkpatrick et al. 2017).
Many other papers use related approaches (Zenke, Poole,
and Ganguli 2017; Fernando et al. 2017; Aljundi et al. 2017;
Ritter, Botev, and Barber 2018; Xu and Zhu 2018; Kemker
and Kanan 2018; Parisi et al. 2018; Ahn et al. 2019; Hu
et al. 2021; Dhar et al. 2019; Adel, Zhao, and Turner 2020).
Knowledge distillation, which is a kind of regularization, has
also been commonly used (Li and Hoiem 2017; Wu et al.
2019; Castro et al. 2018; Belouadah and Popescu 2019; Liu
et al. 2020; Lee et al. 2019; Tao et al. 2020).

Another popular approach is the replay approach, which
memorizes a small number of training examples of every task
and uses them in training the new task to keep the param-
eters of the previous tasks minimally changed. Many sys-
tems employ this approach, e.g., iCaRL (Rebuffi et al. 2017),
GEM (Lopez-Paz and Ranzato 2017), A-GEM (Chaudhry
et al. 2019), RPSnet (Rajasegaran et al. 2019) and others
(Rusu et al. 2016; Wu et al. 2019; Rolnick et al. 2019b;
de Masson d’Autume et al. 2019; Hou et al. 2019). Instead of
saving training examples, pseudo replay approaches learn a
data generator to generate pseudo samples of previous tasks
to be used in training the new task to ensure the previously
learned knowledge is up to date. Related work includes (Shin
et al. 2017; Wu et al. 2018; Kamra, Gupta, and Liu 2017;
Seff et al. 2017; Hu et al. 2019; Ostapenko et al. 2019; Hayes
et al. 2019; von Oswald et al. 2020).

Apart from the above popular methods, there are also oth-
ers. For example, Progressive Networks deals with CF by
building independent models and making connections among
them (Rusu et al. 2016). HAT (Serrà et al. 2018) and CAT (Ke,
Liu, and Huang 2020) learn hard attentions for each task to
block each previous task’s parameters from being updated.
BNS uses reinforcement learning (Qin et al. 2021). OGD
saves previous tasks’ gradients (Farajtabar et al. 2020).

Several works have performed knowledge transfer across
tasks (Ke, Liu, and Huang 2020; Ke et al. 2021; Schwarz et al.
2018; Fernando et al. 2017; Rusu et al. 2016). Early tech-
niques under lifelong learning mainly perform knowledge
transfer but do not tackle CF (Chen and Liu 2014; Ruvolo
and Eaton 2013; Benavides-Prado, Koh, and Riddle 2020).

The proposed AOP differs from all the above approaches
as it is based on orthogonal projection and stores no previous
data. Chaudhry et al. (2020) proposed an orthogonal method
by learning different tasks in different orthogonal subspace.
Saha, Garg, and Roy (2021) proposed an orthogonal method
by taking new task’s gradient steps in the orthogonal direction
to the gradient subspaces deemed important for the past tasks.
But these are Task-IL methods. AOP is for Class-IL.

In computer vision, several researchers used the term in-
cremental learning to mean Class-IL as they learn like any
other Class-IL method with multiple classes per task (Wu
et al. 2019; Castro et al. 2018; Liu et al. 2020; Lee et al.
2019; Belouadah and Popescu 2019, 2020). Some traditional
methods also exist for learning one class at a time. They typ-
ically save some randomly selected exemplars or the mean
of each class. In testing, a distance function over the nearest
exemplar/class mean is used for classification (Rebuffi et al.
2017; Lee et al. 2018; Javed and Shafait 2018; Bendale and
Boult 2015). AOP does not use any of these approaches.

Recently, online continual learning (online CL) has been
studied by many researchers. However, online CL meth-
ods mainly use the replay strategy. For example, the MIR
method (Aljundi et al. 2019a) is a replay-based method for
online CL. Its main idea is to enable the model to focus on the
replay buffer samples that have larger losses. GSS (Aljundi
et al. 2019b) is another replay method. It uses the gradient
information to diversify the data stored in the replay buffer.
ASER (Shim et al. 2020) is also a replay-based method. It
has a new replay buffer update/retrieve strategy that is in-
spired by the Shapley value theory. Again, AOP is different
as it is based on orthogonal projection and it does not save
any previous data.

Problem with OWM
OWM deals with CF in learning each new task by using an
orthogonal projector to make the parameter updates occur
only in the direction orthogonal to the space representing the
inputs of all previous tasks. OWM treats the input training
data A of all previous tasks as the previous input space. It
computes the orthogonal projector P = I−A(ATA)−1AT ,
where I is the identity matrix and P ∈ Rd×d with d being
the dimension of the input sample or example. P is used
in learning the new task to project the parameter updates in
the direction orthogonal to the space of all training inputs
of the previous tasks, i.e., ∆W = κP∆WBP , where κ is
the learning rate and ∆WBP is the parameter adjustment
calculated by backpropagation. This ensures that the new task
learning will not interfere with the previous tasks and thus
will not cause CF. Since the CL setting does not allow mem-
orizing all the previous data A, in OWM P is incrementally
computed (see below).

Inaccurate Estimation of Input Space in OWM
An accurate orthogonal projector is the key for OWM to
overcome CF. However, to avoid the matrix invertibility prob-
lem, OWM adds a small constant α to the original equa-
tion P = I − A(ATA)−1AT . So the projector becomes
P′ = I − A(αI + ATA)−1AT . OWM treats α as a hy-
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perparameter. We argue that this is problematic for accurate
construction of the projector P.

We note that ATA is a positive semi-definite matrix,
which means that there exists an orthogonal matrix U ∈
Rd×d such that:

UATAUT =



δ1 0 0 ... 0 0 0
0 δ2 0 ... 0 0 0
0 0 δ3 ... 0 0 0
0 0 0 ... 0 0 0

...
0 0 0 ... 0 0 0
0 0 0 ... 0 0 0


(1)

Due to the lack of eigenvalues, the last few rows of the above
matrix may be all zeros, which causes the invertibility prob-
lem. If a small constant α is added to solve this problem,
Eqn. 1 becomes,

U(ATA + αI)UT =



δ1 + α 0 0 ... 0 0 0
0 δ2 + α 0 ... 0 0 0
0 0 δ3 + α ... 0 0 0
0 0 0 ... 0 0 0

...
0 0 0 ... α 0 0
0 0 0 ... 0 α 0
0 0 0 ... 0 0 α


(2)

This means that we get an approximation of the input space
X of the past tasks with an extra space S that is constructed
by the constant α with an orthogonal basis. What we need is
a value that is relevant to or contains the information about
the previous tasks’ input space, which can give better perfor-
mances.Adding a fixed value that is irrelevant to the input
space or represents something only local (e.g., a special eigen-
value) cannot solve this problem but leads to a worse perfor-
mance. And OWM uses the RLS(Recursive least squares)
algorithm to incrementally compute or update the projector
P′ during training as it cannot memorize the input data A of
all tasks in the CL setting.

Let Wl be the lth layer’s weights/parameters of the model,
where l ∈ {0, 1, 2, ..., L} and L is the total number of layers
of the model. For each batch i (= 1, 2, 3, ..., nj) in the jth
task, OWM updates Pl ∈ Rd×d for weight Wl, which is
noted as Pl(i, j) and is calculated iteratively,

Pl(i, j) = Pl(i− 1, j) −Ql(i, j)xl−1(i, j)TPl(i− 1, j)

Ql(i, j) = Pl(i− 1, j)xl−1(i, j)/[α+ xl−1(i, j)TPl(i− 1, j)

xl−1(i, j)]

Pl(0, 0) = I

Pl(0, j) = Pl(nj−1, j − 1)
(3)

where xl−1(i, j) is the output of the (l-1)th layer in response
to the mean of inputs in the ith batch of the jth task, nj−1 is
the number of batches in the (j − 1)th task.

As OWM uses an iterative method to calculate the orthog-
onal projector, it differs from the traditional matrix computa-
tion, which adds α only once to avoid the inversion problem.
In OWM, the extra space S induced by α is added to the
history of input spaces in each iteration, which leads to a
large deviation from the correct direction.

In summary, OWM uses a constant α unrelated to the
input space to solve the matrix-invertibility problem, but that
results in a rather inaccurate estimation of the previous task
input space and consequently a poorer projector P′, which
causes poor performances.

Proposed Solution
According to Woodbury matrix identity, we have:

P′ =I−A(αI + ATA)−1AT

=I−A(I + α−1A
T
A)−1ATα−1

=α(

n∑
i=1

xix
T
i + αI)−1

(4)

where xi ∈ Rd×1 is the ith input vector of A =
[x1,x2, ...,xn] ∈ Rn×d where d is the dimension of the
input vector, n is the number of all previous input vectors.
P′ is equivalent to the inversion of the approximate correla-
tion matrix Φ′(n) =

∑n
i=1 xix

T
i + αI. The original corre-

lation matrix of the inputs A = [x1,x2, ...,xn] ∈ Rn×d is
Φ(n)= AAT =

∑n
i=1 xix

T
i .

We propose a more holistic approximation of Φ(n) from
the statistics perspective to reduce the poor influence of α,
which is also inspired by the technique to approximate the
correlation matrix Φ(n) used in tracking the performance
of RLS algorithm in non-stationary environments (Haykin
2008). According to Eleftheriou’s proof in 1986 (Eleftheriou
and Falconer 1986), we can give an approximation equa-
tion Φ(n) =

∑n
i=1 λE(xix

T
i ) + Φ̃(n), where Φ̃(n) is a

Hermitian perturbation matrix whose individual entries are
represented by zero-mean random variables that are statisti-
cally independent of the input vector xi and λ is a weighting
factor. When n is large and λ is close to unity, we may view
Φ(n) as a quasi-deterministic matrix in the sense that for
large n we have:

E[‖Φ̃(n)‖2]� E[‖Φ(n)‖2] (5)

where ‖·‖ denotes matrix norm. Under this condition and note
that we assume λ is 1, we may go one step further by ignoring
the perturbation matrix Φ̃(n), and thereby approximate the
correlation matrix Φ(n) as

Φ(n) ≈
n∑
i=1

E(xix
T
i ) for large n and λ = 1 (6)

We can calculate E(xix
T
i ) based on the expectation rule,

E(xix
T
i ) = E(xi)(E(xi))

T + Cov(xi) (7)

where Cov(xi) is the variance of xi. Let us assume that
variable Xj ∈ Rd×1 represents the training data of task j
and d is the input dimension. OWM uses the mean of all
inputs in one batch as the estimation of the expectation of the
variable Xj , and then uses this estimation as the input vector
to update the projector. In the end, it gets the projector P′ =

(
∑N
j=1

∑nj

i=1 xji (x
j
i )
T + αI)−1, where N is the number of

tasks learned so far, nj is the number of batches in task j, xji
is the mean of all inputs in the ith batch of task j.
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We propose to update the value of α for each batch in
training for a task j according to some holistic information
of the task. The goal is to replace the coarse estimation of the
input space of the jth task, which is

∑nj

i=1 xji (x
j
i )
T + α

N I in
OWM, to a more accurate matrix. We can replace the input
signal correlation matrix xji (x

j
i )
T by its expectation, and use

the expectation rule to calculate its value. But that would also
have the matrix-invertibility problem. We propose to replace
the value of scalar α by the average of the whole expectation
estimation of the current batch, i.e.,

αji = average(E(xji (x
j
i )
T ))

=
‖E(xji (x

j
i )
T )‖1,1

d2

(8)

where the operation average(Y ) is to get the average value of
all entries in matrix Y and d is the dimension of the matrix
E(xji (x

j
i )
T ).

The final proposed method for computing the orthogo-
nal projector is by calculating P and α successively, which

gives us P∗ = (
∑N
j=1

∑nj

i=1(xji (x
j
i )
T +

αj
i

n I))−1 from
Eqn. 10 below. When the number of trained batches is small,

xji (x
j
i )
T +

αj
i

n I ≈ xji (x
j
i )
T + αji I is a more accurate esti-

mation of the input space than the method in the original
OWM because we estimate the representation of input space
from the correlation matrix xji (x

j
i )
T and the statistical prop-

erties of the input vectors. For the proposed correlation matrix

Φ∗(n) =
∑N
j=1

∑nj

i=1(xji (x
j
i )
T +

αj
i

n I and the original cor-

relation matrix Φ(n) =
∑N
j=1

∑nj

i=1(xji (x
j
i )
T , we have the

following proposition:
Proposition 1: For any matrix norm ‖ · ‖, we have:

‖Φ∗(n)−Φ(n)‖ ≤ ‖T (Φ(n))‖ (9)

where T (Φ(n)) is a diagonal matrix whose single diagonal
element value is the mean of the sum of singular values for
all input xji (x

j
i )
T . The proof is given in Appendix 1.

The new method can be integrated with the RLS algorithm
and the rule of expectation to solve the matrix-invertibility
problem and to achieve better performances empirically. That
is, we change the update rule of Pl ∈ Rd×d for weights Wl,
which are the weights of layer l. When we get the inputs of
the ith batch in task j, we update Pl(i, j) as follows (please
note the notation change due to the use of layer number l):

Pl(i, j) =Pl(i− 1, j) −Ql(i, j)xl−1(i, j)TPl(i− 1, j)

Ql(i, j) =Pl(i− 1, j)xl−1(i, j)/[αj
i + xl−1(i, j)TPl(i− 1, j)

xl−1(i, j)]

αj
i =average(E(xl−1(i, j)(xl−1(i, j))T ))

=average(E(xl−1(i, j))E(xl−1(i, j))T +

Cov(xl−1)(i, j))

≈average(xl−1(i, j)(xl−1)(i, j)T + Cov(xl−1(i, j)))

Pl(0, 0) =I

Pl(0, j) =Pl(nj−1, j − 1)
(10)

where xl−1(i, j) is the output of the (l-1)th layer in response
to the average of inputs in the ith batch of task j, average(.)

gets the average value of all entries in a matrix, and nj−1 is
the number of batches in task j − 1.

After the inputs of the ith batch in task j go through the net-
work, we calculate the projector and then update the weight
matrix of each layer by

Wl(i, j) =Wl(i− 1, j) − κ(i, j)∆WBP
l (i, j) if j = 1

Wl(i, j) =Wl(i− 1, j) − κ(i, j)Pl(nj−1, j − 1)∆WBP
l (i, j)

if j = 2, 3, ...

Pl(0, 0) =Il
(11)

where Wl(i−1, j) is the lth layer’s weights, ∆WBP
l (i, j) is

the weight modifications for weight Wl(i− 1, j) calculated
by the standard backpropagation (BP) method, κ(i, j) is the
learning rate, and Il is an identity matrix whose dimension is
the same as the dimension of the weight’s row.

Now let us examine the effect of multiplying the projection
matrix on the backward pass of the BP algorithm to see
why the new method works. After training task j, according
to the gradient descent algorithm, the lth fully-connected
(FC) layer’s weight matrix Wl is changed to Wl(nj , j) =
Wl(nj−1, j − 1) − κPl(nj−1, j − 1)∆WBP

l (j), where κ
is the learning rate and ∆WBP

l (j) represents the gradient
computed by BP during training. For a test sample x′, which
is from the j′th (j′ ≤ j) task’s test set or distribution, the
output of the (l − 1)th FC layer is x′l−1. According to the
gradient update rule in AOP, the output of the lth FC layer x′l
can be decomposed to:

x′l =(Wl(nj , j) − κPl(nj−1, j − 1)∆WBP
l (j))x′l−1

=(Wl(nj′ , j
′) −

j∑
i=j′+1

κPl(ni−1, i− 1)∆WBP
l (i))x′l−1

≈Wl(nj′ , J
′)x′l−1

(12)
where ni−1 is the number of batches in task i−1, ∆WBP

l (i)
is the gradient computed by BP during the training of the
ith task. We obtain the approximation equation in Eqn. 12
because any projector calculated after the training of j′th task
is approximately orthogonal to the input from the j′th task’s
distribution. Here we assume that Wl(nj′ , j

′) is the optimum
weight for classifying j′th task that we obtain when we train
the j′ task. So what we actually approximate is the optimal
model performance for classifying x′l which is achieved when
the training process of the j′th task is finished, and a new
task has not arrived yet. In this way, after training a task, the
model can maintain the task’s performance because the inner
product of the new task’s gradient update with samples from
previous tasks’ distribution is approximately zero.

In summary, according to Eqn. 10, each training batch has a
different α value (thus adaptive) computed with respect to the
current batch’s mean and variance. That not only solves the
invertible matrix problem but also provides a more accurate
estimation of the whole space, which in turn computes a
more accurate projector. According to Eqns. 11 and 12, we
can use the orthogonal projector in optimization to avoid CF.
OWM uses a fixed α value for the whole training process.
Experimental results show that the proposed AOP achieves
markedly better results than OWM and other baselines.
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Empirical Evaluation
This section first evaluates the proposed AOP and compares
it with OWM and several other baselines in the batch CL
setting. In this setting, when each task arrives, its full data
is available and training can be done in multiple epochs. It
then evaluates AOP in the online CL setting, which assumes
that the data from each task comes in a data stream and we
need to update the model once a small batch of data from the
stream is available. Effectively, the data for each task is only
trained for one epoch in online CL.

Experiment Datasets
Four image classification datasets are used in our experi-
ments: MNIST, EMNIST-47 (Cohen et al. 2017), CIFAR10
and CIFAR100 (Krizhevsky and Hinton 2009). For the set-
ting of multiple classes per task, we form tasks with k (k > 1)
classes in each task. If the number of remaining classes is
less than k, we use them to form a task. For the online CL
setting, we divide MNIST dataset into 5 disjoint tasks. Each
task has two unique classes. We do the same for the CIFAR10
dataset to create 5 different tasks. For the CIFAR100 dataset,
we divide it into 10 tasks. Each task has 10 different classes.

Baseline Systems
For batch CL, we use the following classic and latest class
incremental learning (Class-IL) baselines. (1) EWC (Kirk-
patrick et al. 2017) is a classic baseline. (2) LwF (Li and
Hoiem 2017) uses knowledge distillation to overcome forget-
ting. (3) IMM (Lee et al. 2017) combines the sequentially
trained independent models for different tasks to perform all
the tasks in the sequence. (4) PGMA (Hu et al. 2019) adapts
the model to fit different data by parameter generation. This is
also a pseudo-replay method. (5) RPSnet (Rajasegaran et al.
2019) chooses optimal paths for each new task. This is a
strong replay method that saves some training examples from
previous tasks in a repay buffer. We use the same buffer size
as in its original paper (which is 4000 slots). (6) OWM (Zeng
et al. 2019) is the original orthogonal projection system that
we try to improve. (7) HNET (von Oswald et al. 2020) is a
Class-IL method without memorizing old data but only the
embeddings of old tasks.

For online CL, we consider the following baselines. (8)
ER (Rolnick et al. 2019a), (9) MIR (Aljundi et al. 2019a),
(10) GSS (Aljundi et al. 2019b), and (11) ASER (Shim
et al. 2020). We also add two new online CL baselines:
(12) AGEM (Chaudhry et al. 2019) is a gradient-based
replay method that constrains the parameter updates by
calculating the average gradient of the replay buffer data.
(13) GDumb (Prabhu, Torr, and Dokania 2020) is a replay
method using a greedy sampler to update the memory.

Note that most Class-IL methods can work with one or
more classes per task. For one class per task, we create the
classification heads for all classes upfront, one per task. To
learn a new class/task, the system simply makes sure its
training data go to the corresponding head of the class and
not to any other head. LwF cannot learn with one class per
task as it incrementally adds a new head for a new task with
its own cross-entropy loss, which does not work for one class.

We changed it to one cross-entropy for all classes like other
baselines assuming the system knows the total number of
classes to learn. For all baselines, we use the open source
code1 released by their authors except EWC as the original
code was not released. We use a popular third party code.2

Evaluation Setting: Following the existing CL evaluation,
for each dataset, after all tasks are learned, we test using the
test sets of all tasks and report the average accuracy over
5 random runs. The tasks and their sequence are created
following the order of the classes in the original data.

Training Details
Architecture: Since AOP aims to improve OWM (Zeng et al.
2019), it uses the same architecture as OWM. For MNIST,
EMNIST and all experiments that use pre-trained features, a
two-layer MLP and a single output unit are employed. Since
LwF grows the network with the increase of tasks, given a
sequence ofN tasks, assuming the size of the hidden layer for
the non-growth methods is m, we set the hidden size of LwF
for each task as m/N . After learning all tasks, the parameter
size of all methods will be of the same magnitude. We fix
m/N to 100. For CIFAR10 and CIFAR100 from scratch. The
same model as OWM (Zeng et al. 2019) is used, i.e., a CNN
model with 3 convolutional layers.

For online CL experiments, we use the same MLP archi-
tecture mentioned above for AOP and online baselines on
MNIST. For CIFAR10 and CIFAR100, we use the same MLP
architecture with pre-trained experiments. We also test on-
line CL without a pre-trained feature extractor and provide
the results in Appendix 2, which show that our method still
outperforms baselines without the pre-trained model.

Training: To provide a fair comparison among CL methods,
we train all the networks using the SGD optimizer (momen-
tum=0.9) for both batch CL and online CL. For MNIST based
experiments, we set 20 epochs per task. We use 100 epochs
for EMNIST, CIFAR10 and CIFAR100. For online CL, we
use one epoch to simulate the stream data setting.

Hyper-parameters: We set the batch-size as 64 for all meth-
ods in batch CL and set the batch-size as 10 for all methods
in online CL. For replay-based online CL baselines, we set
their buffer batch size (data sampled from the replay buffer)
as 10 as well following existing work (Aljundi et al. 2019a).
The proposed AOP method does not need to save any data.

1 The code of AOP : https://github.com/gydpku/Official-pytorch-
implementation-of-AOP-AAAI-2022-.
The code of LWF: https://github.com/ngailapdi/LWF.

The code of IMM: https://github.com/btjhjeon/IMM_tensorflow.
The code of PGMA: https://github.com/morning-dews/PGMA_
tensorflow.
The code for RPSnet: https://github.com/brjathu/RPSnet.
The code for OWM: https://github.com/beijixiong3510/OWM.
The code for iCaRL: https://github.com/srebuffi/iCaRL.
The code for HNET: https://github.com/chrhenning/hypercl.
The code for ER/MIR: https://github.com/optimass/Maximally_
Interfered_Retrieval.
The code for ASER/AGEM/GDumb: https://github.com/RaptorMai/
online-continual-learning.

2https://github.com/moskomule/ewc.pytorch
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Dataset w/o PreT EWC LwF IMM PGMA RPSnet OWM AOP
MNIST (10 tasks) no 9.9 19.9 29.2 71.4 40.3 94.5 ±0.1 95.1 ±0.1

EMNIST-47 (47 tasks) no 2.1 4.6 18.7 10.1 10.1 77.5 ±0.2 79.4 ±0.1
CIFAR10 (10 tasks) no 10.0 10.0 10.2 20.1 16.3 44.3 ±0.1 58.5 ±0.2

CIFAR100 (100 tasks) no 1.0 2.1 1.2 1.8 2.9 7.7±0.2 15.9 ±0.1
CIFAR10 (10 tasks) yes 10.2 19.4 51.2 56.2 55.5 83.0±0.2 86.0 ±0.1

CIFAR100 (100 tasks) yes 2.9 6.3 12.6 12.4 4.1 63.2 ±0.1 64.0 ±0.1

Table 1: Batch CL accuracy for one class per task of AOP and all baselines (average over 5 runs). Column “w/o PreT” denotes
with/without using the shared pre-trained feature extractor for AOP and all baselines. HNET is not included as it does not work
with one class per task.

Dataset w/o PreT EWC LwF IMM PGMA RPSnet OWM AOP
MNIST (5 tasks) no 18.8 52.5 67.5 81.7 96.2 91.6 ±0.1 94.4 ±0.2

EMNIST-47 (24 tasks) no 4.2 17.2 20.5 21.8 32.9 71.7 ±0.1 74.8 ±0.1
CIFAR10 (5 tasks) no 10.2 12.2 32.4 40.5 32.9 52.8 ±0.1 58.3 ±0.2
CIFAR10 (5 tasks) yes 31.8 57.6 77.3 74.3 85.4 83.4±0.2 85.9 ±0.3

CIFAR100 (50 tasks) yes 3.7 23.3 26.5 17.5 25.3 57.7 ±0.1 61.6 ±0.1

Table 2: Batch CL acccuracy for 2 classes per task in batch CL using a pre-trained feature extractor (average over 5 runs).

Method MNIST CIFAR10 CIFAR100
(Number of tasks) (5 tasks) 5 tasks (10 tasks)

w/o PreT no yes yes
B B=0.1k B=0.5k B=1k B=0.2k B=0.5k B=1k B=1k B=2k B=5k

AGEM 56.9 57.7 61.6 28.1 24.1 24.6 10.7 10.8 10.6
GSS 70.4 80.7 87.5 47.5 63.9 74.2 40.5 47.3 51.6
ER 78.7 85.3 90.3 63.1 74.5 81.2 40.9 48.0 52.9

MIR 79.0 88.3 91.3 68.0 74.7 81.0 40.7 49.2 55.5
ASER 61.6 71.0 82.1 53.9 68.9 77.4 41.5 42.8 50.8

GDumb 81.2 91.0 94.5 77.8 81.2 83.5 47.6 52.9 57.8
OWM 78.8±0.1 78.8±0.1 78.8±0.1 82.1±0.2 82.1±0.2 82.1±0.2 48.5±0.1 48.5±0.1 48.5±0.1
AOP 95.0±0.1 95.0±0.1 95.0±0.1 85.8±0.1 85.8±0.1 85.8±0.1 58.0±0.2 58.0±0.2 58.0±0.2

Table 3: Online CL accuracy results (average over 5 runs) on MNIST, CIFAR10 and CIFAR100 datasets with different replay or
memory buffer sizes B.

Method EMNIST-47 CIFAR100
(Number of tasks) (10 tasks) (20 tasks)

w/o PreT no yes
PGMA 17.8 29.6
RPSnet 74.8 51.4
OWM 68.0± 0.1 61.5± 0.1
AOP 76.9± 0.1 66.1± 0.2

Table 4: Accuracy for 5 classes per task in batch CL using pre-
trained features for AOP and 3 top baselines using EMNIST-
47 and CIFAR100 as they have a large number of classes

For batch CL, we tune the learning rate by using 10% of
randomly selected training examples of each dataset as the
validation set. After that, we use the tuned learning rate to
train the system over the whole training set. Grid search is

used in tuning. The tuning range for the learning rate is from
0 to 1 with step 0.01. The learning rates for different data are
as follows: 0.5 for MNIST, 0.2 for EMNIST-47, CIFAR10
(without pre-training) and CIFAR100 (without pre-training).
For experiments that use pre-trained features in batch CL, we
set the learning rate to 0.35 for the one class per task setting,
and 0.04 for the multi-class per task setting. For all online CL
experiments, the learning rates of AOP for different datasets
are as follows: 0.03 for MNIST, 0.02 for CIFAR100 and
CIFAR10. Other hyper-parameters are given in Appendix 3.

Results for One Class Per Task in Batch CL
We show the experiment results with or without the pre-
trained feature extractor in learning with one per task here.
The reason for showing the results with pre-trained features
is that they produce significantly better results. Pre-trained
feature extractors or language models have been instrumental
for the advances in natural language processing (NLP) (De-
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vlin et al. 2019). This paradigm is also being embraced in
computer vision (Studer et al. 2019; Misra and Maaten 2020).

Without using a pre-trained feature extractor: The first
block of results in Table 1 gives the accuracy results of the
four datasets without pre-training.

We observe that learning a large number of classes one
by one is very challenging for most methods, i.e., EWC,
LwF, IMM, PGMA and RPSnet. Results in this setting are
not reported in their papers, but about all class incremental
learning methods can naturally learn with one class per task.
OWM is the strongest baseline, but AOP outperforms it on
all datasets. AOP gets a 14.2% improvement on CIFAR10,
and 8.18% improvement on CIFAR100.

Using pre-trained feature extractors: We now apply pre-
trained feature extractors to AOP and all baselines. We pre-
train a WRN-28 model to extract features with size 640
(Zagoruyko and Komodakis 2016) using ImageNet after
removing classes from ImageNet that are similar to those
classes in CIFAR10 or CIFAR100. After removal, we are
left with 750 ImageNet classes. Note that no pre-trained fea-
ture extractors for MNIST and EMNIST-47 are needed as a
simple model already produces very good results.

The second block in Table 1 gives the accuracy results for
learning with one class per task for CIFAR10 or CIFAR100.
We observe an improvement in accuracy for both datasets
across the board. The improvements for OWM and AOP are
huge, up to 50% for AOP and even more for OWM. However,
AOP still performs better than OWM. Note again that when
pre-trained feature extractor is used, it is used in AOP and
also in all baselines.

Results for Two/Five Classes Per Task in Batch CL
The results for two classes per task are given in Table 2 except
HNET. HNET achieves 95.02 on MNIST which we could
reproduce and is already not better than our AOP (95.12)
but better than most baselines. However, its accuracy drops
quickly with more tasks. It gets only 25.42 on EMNIST-47,
much worse than AOP (80.97) with 24 tasks. Its CIFAR10
(51.02) and CIFAR100 (3.22, 50 tasks) results are also very
poor. We did a lot of tuning on the authors’ code, but could
not get better results. From Table 2, we can see that on the
datasets with a smaller number of tasks, i.e., MNIST, CI-
FAR10 and EMNIST, RPSnet is the strongest baseline, but
for datasets with a large number of tasks, RPSnet does poorly
although it is a replay method. OWM is still the strongest
baseline overall. AOP outperforms all baselines except RP-
Snet for MNIST.

Five classes per task: We use EMNIST-47 and CIFAR100
to test 5 classes per task as they have a large number of
classes to form many tasks. We see from Table 4 that AOP
outperforms all 3 top-performing baselines markedly.

Comparing with the Nearest-Mean Approach
To be more complete, we also compare with a well-
known traditional method of class incremental learn-
ing based on nearest-mean, iCaRL (Rebuffi et al. 2017).
iCaRL finds the nearest prototype over the mean of

Metric AOP OWM AGEM ER MIR ASER GDumb GSS
training time/s 24 24 35 40 60 95 100 840

Table 5: Online CL training time of AOP and baselines on
CIFAR10. All systems use the pre-trained feature extractor.

the saved exemplars per class for classification. With
pre-trained features, it achieves 82.56/69.23/40.35/43.29
and 92.70/74.87/68.28/45.75 in accuracy for one class
per task learning and two classes per task learning
on MNIST/EMNIST-47/CIFAR10/CIFAR100 respectively,
but the results of AOP are 95.12/79.42/85.95/64.02 and
94.38/74.81/85.53/61.55 respectively. AOP does not save
any information about old classes and outperforms iCaRL
considerably.

Results for Online CL
Table 3 gives the accuracy results of online CL experiments.
From Table 3, we can observe that our method AOP strongly
outperforms the online CL baselines in all experiments. When
the replay or memory buffer size is small, the baselines except
OWM (which does not save old data) have very poor results.
But our method AOP still maintain a high accuracy as it does
not need to store any replay buffer data. It thus has a great
advantage when privacy is a concern. The forgetting rate
results are given in Appendix 4, which shows that AOP’s
forgetting rate is only slightly higher than OWM, but OWM’s
accuracy is substantially lower than AOP (see Table 3).

Training efficiency: About training time, which is impor-
tant for online CL, from Table 5, we can observe that AOP
together with OWN are the fastest methods among all meth-
ods. Memory-based methods first need to store some training
examples from the previous and the current task. Then they
train the samples from the memory buffer to overcome for-
getting. So their training time becomes longer. AOP does not
increase the training time from that of OWM. But its accu-
racy is markedly better than that of OWM. AOP is the first
gradient orthogonal method that achieves the state-of-the-art
performance in online CL.

Conclusion
In this work, we discovered a critical weakness in the deriva-
tion of the recent orthogonal projection approach used in
OWM for dealing with catastrophic forgetting in continual
learning and proposed a technique to resolve it. With this
issue fixed, the classification accuracy improves. Extensive
experiments showed that the proposed method AOP outper-
forms not only the original OWM, but also other state-of-
the-art baselines markedly including even those using replay
methods in both batch CL and online CL settings. AOP does
not memorize any previous data or build data generators for
generating pseudo training data. Orthogonal projection is a
highly promising method for overcome catastrophic forget-
ting in continual learning. Our current technique only deals
with one issue. We believe there is still a great deal of room
for improvement. Our future work will focus on further im-
proving this method.
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