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Abstract

Conditional Density Estimation (CDE) has wide-reaching ap-
plicability to various real-world problems, such as spatial
density estimation and environmental modelling. CDE esti-
mates the probability density of a random variable rather than
a single value and can thus model uncertainty and inverse
problems. This task is inherently more complex than regres-
sion, and many algorithms suffer from overfitting, particu-
larly when modelled with few labelled data points. For appli-
cations where unlabelled data is abundant but labelled data
is scarce, we propose Wasserstein Laplacian Regularisation,
a semi-supervised learning framework that allows CDE algo-
rithms to leverage these unlabelled data. The framework min-
imises an objective function which ensures that the learned
model is smooth along the manifold of the underlying data,
as measured by Wasserstein distance. When applying our
framework to Mixture Density Networks, the resulting semi-
supervised algorithm can achieve similar performance to a
supervised model with up to three times as many labelled
data points on baseline datasets. We additionally apply our
technique to the problem of remote sensing for chlorophyll-a
estimation in inland waters.

Introduction
Conditional Density Estimation (CDE) is the task of esti-
mating the probability density p(y|x) of a random contin-
uous variable y given an input x, as opposed to regression
where we estimate a single value f(y|x). Approaches to
CDE include Mixture Density Networks (MDNs) (Bishop
1994), discretised histograms (Van Oord, Kalchbrenner, and
Kavukcuoglu 2016), Normalising Flows (NFs) (Trippe and
Turner 2018) and the Uncountable Mixture of Asymmetric
Laplacians (UMAL) model (Brando et al. 2019). By produc-
ing a probability density around a response variable, CDE al-
lows practitioners to make informed decisions relating to the
range of predicted outcomes. Another benefit of CDE is the
ability to model inverse problems. Inverse problems estimate
the causal agents that lead to an observed state in a response
variable (Bishop 2006) and are often ill-posed as they do not
have a unique solution for a given observation. By gener-
ating a probability density, CDE is able to model this non-
uniqueness, as shown in Figure 1. However, CDE is inher-
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Figure 1: CDE model learns ill-posed relationship between
x and y in 1D synthetic Gaussians dataset, by estimating
distributions of y conditioned on x.

ently a more complex task than regression and many CDE
techniques suffer from overfitting and require large datasets.

Many applications lack labelled data, thus it is desirable to
use methods that exploit unlabelled data to improve learning
(Levatić et al. 2020). Semi-Supervised Learning (SSL) ap-
proaches make assumptions about the relationship between
the underlying data distribution and the output variable to
gain information from unlabelled data (Luo et al. 2017; Li,
Zha, and Zhou 2017). We hypothesise that by leveraging un-
labelled data, we can use regularisation to reduce overfitting
and improve the performance of CDE algorithms.

Currently, some deep generative models for conditional
distributions (Mirza and Osindero 2014; Sohn, Lee, and Yan
2015) use unlabelled data to improve performance (Shu,
Bui, and Ghavamzadeh 2017). However, these models re-
quire structured outputs and are unable to model univari-
ate or low-dimensional outputs, which is restrictive to real-
world applicability. Additionally, these models cannot esti-
mate tractable densities, which makes them less informative.
Other related work includes Huang (2021), who used nor-
malising flows to estimate conditional densities of missing
features and perform imputation and classification simulta-
neously in a SSL setting. Khan and Sugiyama (2012) ex-
tended Least Squares CDE to learn from unlabelled data,
however this approach does not have the expressive power
of deep learning CDE techniques (Sugiyama et al. 2010).

To bridge this gap, our research aims to leverage unla-
belled data to improve performance of CDE techniques. In-
tuition of our approach can be gained by looking to the
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smoothness assumption of SSL, which uses unlabelled data
to smooth models under the assumption that if two points
x1, x2 in a high-density region are close then their cor-
responding outputs f(y|x1), f(y|x2) should also be close.
This idea is extensively used in regression settings, but intu-
itively can equivalently be applied to CDE by ensuring that
the output probability densities p(y|x1), p(y|x2) are similar.

Our proposed Wasserstein Laplacian Regularisation
(WLR) framework adds an unsupervised objective function
during training of supervised CDE algorithms to ensure that
they learn a smooth function. The WLR objective function
works by penalising difference in output probability densi-
ties of similar training points. Difference in output densities
is measured by Wasserstein distance. We demonstrate the ef-
fectiveness of our framework by implementing it in MDNs.

Many CDE applications could potentially benefit from
leveraging unlabelled data including rainfall-runoff mod-
elling (Klotz et al. 2021), forest fire risk assessment (Bis-
quert et al. 2012), spatial density modelling (Trippe and
Turner 2018) and remote sensing chlorophyll-a (Pahlevan
et al. 2020). As a case study we use remote sensing of
chlorophyll-a. Specifically, using multispectral data from
satellites to estimate the concentration of chlorophyll-a pig-
ment in inland waters, for monitoring of harmful algal
blooms. Ground truth measurements require a manual sam-
ple collection and lab analysis, which is expensive. While
these labelled data are limited, the unlabelled satellite data
is abundant. Learning the relationship between multispec-
tral data and chlorophyll-a concentration is difficult. A spe-
cific multispectral signal could be produced by different con-
centrations of chlorophyll-a, depending on the other water
constituents. This is thus an ill-posed problem, and the cur-
rent state-of-the-art approach in this field uses CDE to over-
come this (Pahlevan et al. 2020). CDE is beneficial because
a probability density estimation of chlorophyll-a pigments
and is more informative than a single value to practitioners
for risk assessment. Current approaches to remote sensing
chlorophyll-a do not make use of the unlabelled data.

Our contributions are three-fold. (1) We introduce the first
semi-supervised technique for conditional density estima-
tion with deep learning, by proposing a framework which
allows conditional density estimation algorithms to leverage
unlabelled data during training. (2) We apply our framework
to MDNs, and show that the resulting semi-supervised algo-
rithm with fewer labelled data points performs equally to a
supervised algorithm with more labelled data points in terms
of Negative Log Likelihood. (3) We demonstrate the utility
of our technique in a real-world context with a case study on
remote-sensing chlorophyll-a.

The remainder of the paper is structured as follows. Sec-
tion establishes preliminary concepts. In Section , we pro-
pose our semi-supervised CDE framework. Section covers
experimental results. Section concludes the paper.

Preliminaries
SSL and Laplacian Regularisation
The task of SSL can be described as the learning of a func-
tion f : X 7→ Y using a training set of l labelled examples

{(xi, yi)}li=1 and u unlabelled examples {(xi)}l+ui=l+1 with
data points x ∈ X and labels y ∈ Y .

Laplacian Regularisation is a semi-supervised regularisa-
tion framework which smooths a function by minimising the
gradient of the function along a manifold (Belkin, Niyogi,
and Sindhwani 2006). This is often formulated as an objec-
tive function which minimises the difference in function out-
puts given similar inputs:

min
f

l+u∑
i=1

l+u∑
j=1

wijLp(f(xi), f(xj)) (1)

where f(.) is the function being smoothed, Lp is a loss func-
tion such as L2, and wij is a pairwise weight defined by a
graph Laplacian. Here w causes nearby points to be more
greatly penalised for a difference in output, and is gener-
ally calculated by a kNN matrix and a kernel function, the
most common of which is the Gaussian Radial Basis Func-
tion (RBF):

wij = aijK
d
RBF (xi,xj) = aijexp

(
−|xi − xj |d

2σd

)
(2)

where aij = 1 if points xi and xj are neighbours under
kNN, and 0 otherwise.

CDE and Mixture Density Networks
Performance of CDE is generally measured by the mean
Negative Log Likelihood (NLL) of the model’s estimated
Probability Density Function (PDF) f(.) given the real data
y. Thus, NLL is directly correlated to the likelihood of test
data on our model. Henceforth, when talking about perfor-
mance of CDE models, we refer to NLL.

NLL(f(.), y) = − ln(f(y)) (3)

MDNs are a type of feedforward neural network which
outputs a vector of parameters that define a mixture distribu-
tion as an estimate, rather than a single value prediction, in
order to perform CDE (Bishop 1994). In this paper, the out-
put of MDN models will parameterise a Gaussian mixture
PDF. One such mixture PDF fi(.) has c components and
parameters {µij , σij , πij}cj=1, which are defined by MDN
model g(.) with parameters θ given input xi:

fi(.) = p(y|xi) =
c∑
j=1

πijN (y|µij , σij)

{µij , σij , πij}cj=1 = g(xi|θ)
(4)

MDNs are trained by gradient descent with NLL as ob-
jective function:

min
θ

1

l

l∑
i=1

NLL(fi(.), yi) (5)

Wasserstein Distance
Given two distributions f1 and f2, 1-Wasserstein distance is
defined as:

W1(f1, f2) = inf
γ∈Π(f1,f2)

E(x,y)∼γ [‖x− y‖] (6)
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where Π(f1, f2) is the set of all joint distributions of γ(x, y)
whose marginals are respectively f1, f2. Intuitively, the 1-
Wasserstein distance, known as the Earth Mover’s Distance,
can be described as the amount of “earth” that must be trans-
ported to transform f1 into f2.

Methodology
Laplacian Regularisation improves model performance by
penalising the difference in model outputs given similar in-
puts. This framework relies on two fundamental assump-
tions of semi-supervised learning: the smoothness assump-
tion that two similar inputs should produce a similar output,
and the manifold assumption that the underlying data lie ap-
proximately on a manifold of lower dimension than the in-
put space. Our work begins with the observation that these
assumptions are also sensible for the task of CDE, where
we are estimating a probability density. In the context of
chlorophyll-a estimation, this smoothness would mean that
two multispectral inputs of similar colour would estimate
similar chlorophyll-a concentration probability densities.

To apply these ideas to CDE, we first need to define
the similarity of outputs, specifically a similarity of prob-
ability densities. We use Wasserstein distance as our mea-
sure of similarity, due to properties discussed in this section
which make it suitable for use as an objective function. Our
proposed framework for semi-supervised CDE, Wasserstein
Laplacian Regularisation, implements an unsupervised ob-
jective function during the training of CDE algorithms. This
objective function allows the model to learn a smooth func-
tion by penalising the Wasserstein distance between esti-
mated probability densities of similar inputs. WLR improves
performance for two reasons. Firstly, the regularisation pre-
vents overfitting, which is common in CDE approaches, par-
ticularly with few labelled data. Secondly, it ensures that
the function learnt by the model is a reasonable prediction
in regions without labelled data by effectively interpolat-
ing predictions of labelled data points to nearby unlabelled
data. This framework can be applied to any CDE algorithm
which is trained via an optimisation framework. To show
its utility, we apply WLR to Mixture Density Networks. We
selected MDNs as the basis of our framework instead of
non-parametric CDE algorithms such as NFs, UMAL or dis-
cretised histograms, as they achieved the best performance
in supervised experiments with few labelled data points.
Our resulting semi-supervised algorithm, Wasserstein MDN
(WMDN), minimise the WLR objective function as well as
NLL during training by gradient descent, as shown in Fig-
ure 2.

 g(x|θi+1) Stochastic Gradient
Descent Gradient Descent

Negative Log 
Likelihood 
Calculation

Wasserstein
Laplacian

Regularisation

 g(x|θi) 

xl, xu(xl, yl)

 g(x|θi+2) 

Figure 2: Training process of WMDN g(.) with weights θ
over one epoch, with NLL and WLR objective functions.

Wasserstein Distance as an Objective Function
Unlike most statistical distances, Wasserstein distance cap-
tures not just the difference in magnitude between distri-
butions but the metric space or “ground distance” between
them. Based on the objective function, this property results
in informative gradients even when the distributions are not
overlapping (Arjovsky, Chintala, and Bottou 2017). Wasser-
stein is also symmetric (W(f1, f2) =W(f2, f1)), is always
finite, and is continuous given a continuous change in inputs
(Arjovsky, Chintala, and Bottou 2017). Finally, when used to
interpolate between distributions, Wasserstein distance has
the advantage of generating sensible barycentres which pre-
serve distribution spread (Solomon et al. 2014). Given these
properties, Wasserstein distance is a suitable objective func-
tion for our regularisation framework:

min
f

l+u∑
i=1

l+u∑
j=1

wijWq
p(fi(.), fj(.)) (7)

where Wp(.) is the univariate p-Wasserstein distance,
fi(.), fj(.) are PDFs parameterised by f(xi), f(xj) respec-
tively as in Equation 4, w is a weight defined in Equation 2,
and q is a power parameter analogous to Lp loss. Intuitively,
this term will be smaller if the function f is smoother; the
term will be zero if the model estimates the same probability
density for any input.

Wasserstein Distance Computation
Although Wasserstein distance has advantageous properties
for an objective function, it is both expensive to compute and
not suitable for gradient backpropagation. In our framework,
we approximate the 1-Wasserstein distance by discretising
fi(.), fj(.) at b linearly spaced values with interval s (Sakai
2018):

y = {yn|yn = y0 + ns, n = 0, 1, . . . , b− 1}

W1(fi(.), fj(.)) ≈ s
b∑

n=0

|Fi(yn)− Fj(yn)|
(8)

where Fi(.) is the discretised Cumulative Density Function
(CDF) of the discretised PDF fi(.):

Fi(yn) = s
n∑
k=0

fi(yk) (9)

where the s term normalises the CDF such that
∑
Fi ≈ 1.

Normalisation could also be achieved by dividing Fi by its
sum, but we observe experimentally that this results in gradi-
ents which are unstable with small changes to fi. As b→∞,
the error in Equation 8 approaches zero. This form is not ex-
act and restricts us to W1. However, it is computationally
simpler and usable for backpropagation. Combining Equa-
tions 7, 8 and 9, the WLR objective function is:

min
f

l+u∑
i=1

l+u∑
j=1

wij

(
s2

b∑
n=0

∣∣∣∣∣
n∑
k=0

fi(yk)− fj(yn)

∣∣∣∣∣
)q

(10)

The theoretical runtime of this objective function is
O(nkb2), where n = l + u is the number of training data
points, and k parameterises kNN in Equation 2.

6748



Algorithm 1: WMDN training scheme
Input: Xl, Yl, Xv, Yv, Xu

Parameter: η, q, d, b, λu, k
Output: trained MDN g(.)

1: Initialise MDN g(.) with parameters θ
2: l, u, v ← |Xl|, |Xu|, |Xv|
3: σ ← median({minx∈Xl∪Xu\xi

‖xi − x‖d|xi ∈ Xl ∪
Xu}) . Median 1NN distance

4: while true do
5: for (Xbatch, Ybatch) ⊆ (Xl, Yl) do
6: LNLL ← 1

|Xbatch|
∑
xi∈Xbatch

NLL(fi(.), yi)

7: θ ← θ − η δθ
δLNLL

. SGD
8: end for
9: wij ← aijexp

(
−‖xi−xj‖d

2σd

)
. aij from kNN

10: LW ← λu

(l+u)2

∑l+u
i=0

∑l+u
j=0 wijW

q
1 (fi(.), fj(.), b)

11: θ ← θ − η δθ
δLW

. GD
12: Lv ← 1

v

∑v
i=0NLL(fi(.), yi)

13: if Lv < Lpreviousv then
14: break . Stop if validation error increases
15: end if
16: end while

Algorithm 2:W1 function
Input: f1, f2, b . PDFs to compare, number of bins
Output:W1 . 1-Wasserstein distance

1: s← max(yl)−min(yl)
b−1 . Bin stepsize

2: y = {yn|yn = min(yl) + ns, n = 0, 1, . . . , b− 1}
3: F1 ← [

∑i
j=0 f1(yj) for i = 1, 2, . . . , b] . CDF

4: F2 ← [
∑i
j=0 f2(yj) for i = 1, 2, . . . , b]

5: W1 ← s2
∑b
i=0 |F1 − F2|

Wasserstein Mixture Density Networks
Here we describe our WMDN, which is identical to MDN,
except that it minimises the WLR objective function as well
as NLL during training:

min
θ

1

l

l∑
i=1

NLL(fi(.), yi)

+
γu

(l + u)2

l+u∑
i=1

l+u∑
j=1

wijWq
1 (fi(.), fj(.))

(11)

where θ are the parameters of the WMDN model g(.) we are
training, γu is the SSL weight coefficient and q is a power
parameter analogous to Lp loss. Figure 2 shows each epoch
of the WMDN training, the supervised loss term is applied
in batches, while the unsupervised loss term is applied to all
training data in a single batch. Maximising the number of
points used in the WLR objective will improve the smooth-
ness of the regularisation. The pseudocode for the WMDN is
provided in Algorithms 1 and 2; Lines 9 to 11 in Algorithm 1
describe the WLR framework.

Experimental Results
We evaluate the effectiveness of the WLR framework by
evaluating and comparing the performance of MDN and
our proposed WMDN. All experiments are implemented in
PyTorch (Paszke et al. 2019), running on a GeForce RTX
3080 GPU. A full list of algorithm parameters, datasets, and
source code are available online1. Regarding WMDN pa-
rameters, learning rate η and SSL weight coefficient λu were
tuned for each dataset, while other parameters were fixed
and selected as values that performed well across datasets
in typical validation/test set experimental setups. We used
a neural network architecture of three fully connected lay-
ers of 32 ReLU activated neurons to allow for sufficient
representation capacity to model datasets of various dimen-
sions. ReLU activation is not smooth but achieves near mini-
max rates for arbitrary smoothness regression functions with
a deep architecture (Schmidt-Hieber 2020). This represen-
tation space is unnecessarily large for lower-dimensional
datasets, so a validation set stopping criterion was used
to prevent overfitting. We used c = 5 Gaussian mixture
components as the output parameter vector of MDNs and
WMDNs, to allow for modelling of complex probability
densities while remaining relatively low dimensional. We
set d = 1 as L1 distance retains meaningfulness in high
dimensional space, and set q = 2, b = 20, k = 5 for all ex-
periments as default values. To tune η, MDNs were trained
on each dataset with η ∈ {10n|n = −5,−4.5, . . . ,−2}.
We selected ηbest as the η which produced the lowest aver-
age validation NLL. WMDNs were then trained with η =
ηbest, λu ∈ {10n|n = −2,−1.5, . . . , 2} to select λu. Ex-
periments were run with 50 seeds for each parameter com-
bination. A validation set of size 1,000 was used for early
stopping, and up to 10,000 data points were used for the test
set. Having a validation or test set larger than the labelled
training set is unrealistic but necessary to accurately com-
pare SSL model performance (Oliver et al. 2018).

CDE Experiments
To investigate the performance of our WLR framework in
a CDE setting, we perform experiments on on seven re-
gression datasets from the UCI repository (Dua and Graff
2017). Results are shown in Table 1. Results in all tables
are displayed as mean± se, and that any standard errors of
0 are due to rounding. The dimensionality of each dataset
is denoted d. For each dataset, we use 3,000 training data
points, of which 100, 300 or 1,000 are labelled. We com-
pare performance of WMDN against supervised deep learn-
ing CDE algorithms: MDN and the Uncountable Mixture
of Asymmetric Laplacians (UMAL) model (Brando et al.
2019). UMAL is a deep learning architecture for CDE, sim-
ilar to MDNs. However, UMAL avoids the of strong distri-
butional assumption of MDNs by outputting an uncountable
mixture of Laplacian distributions and is thus more flexible.

Although NLL is the most natural way to evaluate CDE
performance, this metric is difficult to interpret. We addi-
tionally measure interpretable metrics by generating predic-

1https://github.com/OGraffeuille/Wasserstein-Laplacian-
Regularisation
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Negative Log Likelihood Interval Coverage (%) Interval Width
Data Labels MDN UMAL WMDN MDN WMDN MDN WMDN

Electric 100 -0.11 ± 0.05 -0.15 ± 0.19 -0.38 ± 0.04 85.2 ± 0.8 90.5 ± 0.5 0.47 ± 0.03 0.47 ± 0.01
(d = 6) 300 -0.84 ± 0.03 -0.79 ± 0.10 -0.86 ± 0.02 89.2 ± 0.5 94.0 ± 0.3 0.32 ± 0.01 0.38 ± 0.01

1000 -1.31 ± 0.02 -1.16 ± 0.06 -1.19 ± 0.02 90.9 ± 0.4 95.3 ± 0.3 0.26 ± 0.01 0.33 ± 0.01

Protein 100 1.33 ± 0.01 1.51 ± 0.26 1.30 ± 0.01 93.0 ± 0.4 93.8 ± 0.3 2.26 ± 0.03 2.32 ± 0.03
(d = 9) 300 1.14 ± 0.01 1.26 ± 0.04 1.12 ± 0.01 92.3 ± 0.2 93.0 ± 0.2 2.12 ± 0.01 2.18 ± 0.01

1000 0.98 ± 0.00 1.02 ± 0.02 0.98 ± 0.00 93.5 ± 0.1 93.5 ± 0.1 2.11 ± 0.01 2.13 ± 0.01

Air Quality 100 0.52 ± 0.02 0.50 ± 0.08 0.40 ± 0.02 90.1 ± 0.3 91.6 ± 0.2 1.95 ± 0.03 1.92 ± 0.03
(d = 12) 300 0.22 ± 0.01 0.21 ± 0.02 0.12 ± 0.01 91.4 ± 0.2 92.4 ± 0.2 1.66 ± 0.03 1.58 ± 0.02

1000 -0.05 ± 0.00 0.02 ± 0.02 -0.08 ± 0.00 93.2 ± 0.1 93.9 ± 0.1 1.50 ± 0.01 1.50 ± 0.01

Elevators 100 1.10 ± 0.01 1.42 ± 0.05 1.05 ± 0.01 89.5 ± 0.4 89.1 ± 0.4 0.61 ± 0.01 0.59 ± 0.01
(d = 18) 300 0.92 ± 0.01 0.99 ± 0.10 0.87 ± 0.01 91.3 ± 0.2 91.2 ± 0.2 0.58 ± 0.01 0.56 ± 0.01

1000 0.68 ± 0.01 0.64 ± 0.03 0.59 ± 0.01 91.9 ± 0.2 92.0 ± 0.1 0.45 ± 0.01 0.41 ± 0.01

Parkinsons 100 0.82 ± 0.03 3.05 ± 0.48 0.59 ± 0.03 83.9 ± 0.6 86.9 ± 0.4 12.09 ± 0.28 13.33 ± 0.27
(d = 20) 300 0.35 ± 0.01 0.53 ± 0.24 0.13 ± 0.01 88.6 ± 0.4 91.8 ± 0.2 10.70 ± 0.19 12.46 ± 0.32

1000 -0.03 ± 0.01 -0.09 ± 0.06 -0.27 ± 0.01 91.7 ± 0.2 94.3 ± 0.1 9.63 ± 0.12 8.92 ± 0.12

Appliances 100 0.74 ± 0.01 1.02 ± 0.06 0.57 ± 0.01 90.5 ± 0.5 94.9 ± 0.3 274.39 ± 9.41 335.68 ± 8.07
(d = 27) 300 0.58 ± 0.01 0.76 ± 0.04 0.47 ± 0.01 92.3 ± 0.2 95.9 ± 0.2 320.10 ± 5.76 380.24 ± 5.29

1000 0.42 ± 0.01 0.52 ± 0.02 0.35 ± 0.01 93.5 ± 0.1 96.1 ± 0.1 378.58 ± 3.89 388.39 ± 4.17

Song Year 100 1.31 ± 0.01 2.05 ± 0.77 1.24 ± 0.01 91.5 ± 0.3 92.8 ± 0.2 32.27 ± 0.52 33.66 ± 0.35
(d = 90) 300 1.22 ± 0.01 2.40 ± 0.52 1.15 ± 0.00 93.1 ± 0.3 93.1 ± 0.2 35.09 ± 0.53 35.04 ± 0.29

1000 1.15 ± 0.00 2.16 ± 0.42 1.10 ± 0.00 94.2 ± 0.2 94.5 ± 0.1 37.09 ± 0.35 37.81 ± 0.20

Table 1: Conditional Density Estimation Experiments on UCI Datasets

tion intervals from the models’ output densities and com-
puting 1) the percentage of test points that fall within the
intervals (Interval Coverage) and 2) the average width of the
intervals (Interval Width) (Holmes, Gray, and Isbell 2007).
The interval metrics displayed are of 95% confidence.

Performance of WLR Table 1 shows that WMDN out-
performs MDN on almost all datasets in terms of NLL. With
the Appliances and Song Year datasets, a WMDN with only
100 labelled data points performs equally to a MDN with
300 labelled data points. With the Electric and Parkinsons
datasets, a WMDN with only 100 labelled data points per-
forms as similarly to a MDN with 300 labelled data points
as to one with 100. For most datasets, WMDN outperforms
MDN by a similar amount with 100, 300 or 1,000 labelled
data points, indicating that the WLR framework is effective
with a range of number of labelled data points. However,
WLR does not improve performance of the Electric or Pro-
tein datasets with 300 or 1,000 labelled data points. One fac-
tor to consider is that these datasets are low dimensional (6D
and 9D respectively), hence the underlying data structure is
easier to capture with fewer labelled data points. When there
are sufficient labelled data points to capture the underlying
data structure, unlabelled data cannot improve performance
and our WLR framework only adds unnecessary regularisa-
tion. In terms of the interval metrics WMDN outperforms
MDN in terms of interval cover for almost all datasets, in-
dicating that WLR improved the generalisability of models,
but consequentially sometimes performed worse in terms of
interval width. UMAL had a higher NLL than MDNs and
WMDNs on average, and also higher variance between runs,

particularly with few labelled data points. Although the im-
proved flexibility of the UMAL model generally allows it
to outperform parametric alternatives in some applications
(Brando et al. 2019), it seems to perform worse when few
labelled data points are available. UMAL’s did not perform
as well on these datasets, thus we did not include their inter-
val metric results for this algorithm.

Influence of Data Dimensionality To investigate the ef-
fect of dimensionality on the Wasserstein Laplacian Reg-
ularisation framework, we generated a series of synthetic
datasets. Each dataset is a mixture of five equally weighted
multidimensional Gaussians with randomly generated pa-
rameters. Datasets of this form were generated in a range of
dimensions. The 1D Gaussians dataset is shown in Figure 1.
We then compared the performance of MDNs and WMDNs
on each dataset; results are shown in Figure 3a.

These results demonstrate two ideas. Firstly, for unla-
belled data to improve model performance, the underlying
data structure must be complex enough to not be completely
captured by the labelled data alone. WLR does not substan-
tially improve performance of low dimensional data as they
have a simpler underlying structure, particularly when the
model is given more labelled data points. This is consis-
tent with our earlier discussion on the Electric and Protein
datasets. Conversely, as the quality of a model produced by
a supervised algorithm on a dataset decreases, the gain of
performance from unlabelled data also decreases – this is
because the unlabelled data will effectively be smoothing an
incorrect model (Cozman, Cohen, and Cirelo 2003). Our re-
sults show that as the dimensionality of the data increases
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Figure 3: Improvement in performance from WLR versus varying parameters.

past an “optimal” dimensionality while the number of avail-
able labelled data points remains constant, the quality of a
supervised model decreases, and therefore the gain in per-
formance from unlabelled data decreases. Furthermore, the
“optimal” dimensionality is higher when more labelled data
points are available, as this allows the model to learn a higher
quality model in a higher dimensional space.

Influence of Unlabelled Data To investigate the effect
varying the quantity of unlabelled data on WLR, we com-
pare the performance of MDNs and WMDNs on datasets
with increasing unlabelled data points. Results are shown
in Figure 3b. As we increase the quantity of unlabelled
data, the gain in performance from the WLR framework in-
creases. This result is consistent with SSL theory (Cozman,
Cohen, and Cirelo 2003). An important result is that our
WLR framework improves performance with no unlabelled
data points. We believe that our framework may therefore be
useful be useful as a supervised regularisation framework.

Influence of Parameters The SSL weight coefficient γu
was tuned independently for each experiment. Figure 3c
shows the influence of this parameter on model perfor-
mance. A small γu value will cause little regularisation and
thus little improvement, while a large γu value will cause
WLR to over-regularise and decrease performance. Another
parameter of interest is the number of bins b used to approx-
imateW1 (Equation 8). As discussed in Section , a higher b
value increases accuracy of the approximation. Interestingly
however, during experiments, we observe that a smaller b ac-
tually generates larger gradients with respect to parameters
which define fi, and improves model performance. We rec-
ommend b ∈ [10, 20], values smaller than this will increase
the granularity of the distributions computed byW1 and will
thus decrease the ability of WLR to regularise.

Regression Experiments
CDE algorithms are not designed for regression as they op-
timise for likelihood rather than Lp loss. However, it can
sometimes be useful to use CDE models for regression by
reducing the estimated density to a single value such as
the mean or mode, for example to model inverse problems
(Pahlevan et al. 2020).

In order to evaluate the effect of WLR on CDE al-
gorithms in a regression setting, we repeat the experi-

ments from Table 1, but use the distribution mean as
our estimate and measure performance with Root Mean
Squared Error (RMSE). Additionally, we compare per-
formance to two semi-supervised regression algorithms,
Co-Regularisation (CoREG), a co-training kNN algorithm
(Zhou and Li 2005), and and Mean Teacher (Tarvainen
and Valpola 2017), which we adapted for regression. Mean
Teacher is a semi-supervised consistency regularisation-
based algorithm which Oliver et al. (2018) found to perform
best in a fair evaluation of deep semi-supervised classifica-
tion algorithms. Results are shown in Table 2.

WLR improved MDN performance for most datasets. The
exceptions were the Electric and Protein datasets, consistent
with our CDE results. Our WLR framework can thus also
improve CDE performance in a regression setting. However,
Mean Teacher generally outperformed WMDN. This shows
that CDE algorithms are not the best performing approach
to modelling regression problems for most datasets.

Chlorophyll-a Estimation Case Study
We evaluated our framework on remote sensing chlorophyll-
a datasets; one “Simulated” and one “Real”. For each
dataset, the input data is in-situ multispectral reflectance
adapted to Sentinel-3 OLCI bands, and the target variable is
logged chlorophyll-a concentration (Pahlevan et al. 2020).
The Simulated chlorophyll-a dataset was generated by sim-
ulating the forward optical problem with random water con-
stituent concentrations. The optical model used is built off
(Dekker, Vos, and Peters 2002), but adapted to include
chlorophyll-a and a noise component. The Real dataset used
is described by Pahlevan et al. (2020). This dataset is the re-
sult of international collaboration, and includes 2,612 mea-
surements of chlorophyll-a concentrations and correspond-
ing hyperspectral data, and is not currently publicly avail-
able. Parameters used in these experiments are identical to
previous sections, with two exceptions: we use b = 10
bins to increase performance, and use a 2,000-300-312 for
a train-validation-test data split for the Real dataset. Results
are shown in Table 3.

In the CDE setting, WLR substantially improved MDN
performance for the Simulated dataset, and for the Real
dataset with fewer than 1,000 labelled data points. With both
datasets, a WMDN with only 100 labelled data points per-
forms as similarly to a MDN with 300 labelled data points
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Root Mean Squared Error
Data Labels MDN UMAL CoREG Mean Teacher WMDN

Electric 100 0.16 ± 0.01 1.24 ± 0.01 0.35 ± 0.00 0.13 ± 0.01 0.15 ± 0.01
(d = 6) 300 0.11 ± 0.00 1.27 ± 0.01 0.27 ± 0.00 0.08 ± 0.00 0.10 ± 0.00

1000 0.08 ± 0.00 1.32 ± 0.01 0.20 ± 0.00 0.07 ± 0.00 0.08 ± 0.00

Protein 100 0.71 ± 0.00 0.83 ± 0.01 0.74 ± 0.00 0.69 ± 0.00 0.71 ± 0.00
(d = 9) 300 0.68 ± 0.00 0.84 ± 0.00 0.70 ± 0.00 0.65 ± 0.00 0.68 ± 0.00

1000 0.65 ± 0.00 0.86 ± 0.00 0.63 ± 0.00 0.60 ± 0.00 0.65 ± 0.00

Air Quality 100 0.62 ± 0.01 1.83 ± 0.01 0.77 ± 0.01 0.56 ± 0.01 0.61 ± 0.01
(d = 12) 300 0.53 ± 0.00 1.89 ± 0.01 0.66 ± 0.01 0.49 ± 0.00 0.51 ± 0.00

1000 0.46 ± 0.00 1.91 ± 0.01 0.54 ± 0.00 0.45 ± 0.00 0.45 ± 0.00

Elevators 100 0.20 ± 0.00 0.29 ± 0.00 0.20 ± 0.00 0.14 ± 0.00 0.19 ± 0.00
(d = 18) 300 0.17 ± 0.00 0.29 ± 0.00 0.18 ± 0.00 0.11 ± 0.00 0.16 ± 0.00

1000 0.13 ± 0.00 0.30 ± 0.00 0.17 ± 0.00 0.09 ± 0.00 0.12 ± 0.00

Parkinsons 100 4.09 ± 0.08 11.08 ± 0.11 5.47 ± 0.04 3.55 ± 0.05 3.98 ± 0.09
(d = 20) 300 3.26 ± 0.04 11.54 ± 0.18 4.31 ± 0.02 2.74 ± 0.02 3.05 ± 0.04

1000 2.76 ± 0.02 12.50 ± 0.25 3.18 ± 0.01 1.95 ± 0.01 2.53 ± 0.02

Appliances 100 103.69 ± 0.16 110.75 ± 0.23 106.50 ± 1.20 99.75 ± 0.19 102.35 ± 0.15
(d = 27) 300 102.57 ± 0.11 110.92 ± 0.15 100.00 ± 0.30 97.07 ± 0.21 100.53 ± 0.12

1000 100.35 ± 0.11 111.24 ± 0.11 96.30 ± 0.20 93.72 ± 0.24 98.17 ± 0.16

Song Year 100 11.14 ± 0.02 16.53 ± 5.38 11.16 ± 0.05 10.91 ± 0.05 11.09 ± 0.02
(d = 90) 300 10.99 ± 0.02 16.88 ± 5.76 10.93 ± 0.02 10.63 ± 0.03 10.94 ± 0.01

1000 10.77 ± 0.02 16.06 ± 4.95 10.68 ± 0.02 10.21 ± 0.02 10.73 ± 0.01

Table 2: Regression Experiments on UCI Datasets

Negative Log Likelihood Root Mean Squared Error
Data Labels MDN UMAL WMDN MDN Mean Teacher WMDN

Simulated 100 0.86 ± 0.01 1.04 ± 0.02 0.79 ± 0.01 1.12 ± 0.00 1.11 ± 0.01 1.12 ± 0.01
(d = 12) 300 0.71 ± 0.01 0.88 ± 0.04 0.69 ± 0.00 1.07 ± 0.00 1.04 ± 0.00 1.07 ± 0.00

1000 0.64 ± 0.00 0.68 ± 0.01 0.63 ± 0.00 1.03 ± 0.00 1.00 ± 0.00 1.03 ± 0.00

Real 100 0.86 ± 0.02 1.42 ± 0.05 0.68 ± 0.01 0.67 ± 0.01 0.68 ± 0.02 0.65 ± 0.01
(d = 16) 300 0.53 ± 0.01 0.67 ± 0.06 0.48 ± 0.01 0.58 ± 0.01 0.63 ± 0.02 0.56 ± 0.00

1000 0.22 ± 0.01 0.26 ± 0.02 0.22 ± 0.01 0.49 ± 0.00 0.58 ± 0.01 0.47 ± 0.00

Table 3: Conditional Density Estimation and Regression Experiments on Chlorophyll-a Remote Sensing Datasets

as to one with only 100. In the regression setting, both MDN
algorithms outperformed Mean Teacher for the Real dataset,
showing that when modelling inverse problems with regres-
sion, CDE algorithms can outperform regression algorithms.
Furthermore, WMDN outperformed MDN in this setting.

In practice, chlorophyll-a models are regional and are
trained on local datasets which contain at most a few hun-
dred data points (Syariz et al. 2020; Maier and Keller 2019;
Allan et al. 2011). Our results show that for datasets of this
size, our framework could allow practitioners to improve es-
timation performance by as much as if they were to gather
substantially more labelled data points.

Conclusions
We proposed Wasserstein Laplacian Regularisation, a
framework that allows for semi-supervised learning of Con-
ditional Density Estimation problems. The framework ap-
plies a secondary objective function during training of CDE

algorithms to ensure that they learn a smooth function along
the manifold of underlying data.

We observed that in applications with limited labelled
data and abundant unlabelled data, this framework allows
CDE algorithms to leverage unlabelled data to substantially
improve model performance in terms of NLL. For two of our
seven test datasets we find that our framework allows semi-
supervised models to achieve equal performance to a super-
vised model with three times as many labelled data points.
Furthermore, we find that in some cases, our framework can
improve model performance in a supervised setting when no
unlabelled data points is available. We also perform a case
study on the application of chlorophyll-a, and find that our
framework may substantially improve performance of mod-
els used in this field.

Future work could explore alternative approaches to semi-
supervised CDE, including applying the WLR framework
to different CDE algorithms, or using other SSL techniques
such as consistency regularisation.
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D. 2020. Semi-supervised regression trees with application
to QSAR modelling. Expert Systems with Applications, 158:
113569.
Li, Y.-F.; Zha, H.-W.; and Zhou, Z.-H. 2017. Learning safe
prediction for semi-supervised regression. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 31.
Luo, M.; Zhang, L.; Nie, F.; Chang, X.; Qian, B.; and
Zheng, Q. 2017. Adaptive semi-supervised learning with
discriminative least squares regression. In Proceedings of
the 26th International Joint Conference on Artificial Intelli-
gence, 2421–2427.
Maier, P. M.; and Keller, S. 2019. Application of differ-
ent simulated spectral data and machine learning to estimate
the chlorophyll a concentration of several inland waters. In
2019 10th Workshop on Hyperspectral Imaging and Signal
Processing: Evolution in Remote Sensing (WHISPERS), 1–
5. IEEE.
Mirza, M.; and Osindero, S. 2014. Conditional generative
adversarial nets. arXiv preprint arXiv:1411.1784.
Oliver, A.; Odena, A.; Raffel, C.; Cubuk, E. D.; and Good-
fellow, I. J. 2018. Realistic Evaluation of Deep Semi-
Supervised Learning Algorithms. In Proceedings of the
32nd International Conference on Neural Information Pro-
cessing Systems, NIPS’18, 3239—-3250. Red Hook, NY,
USA: Curran Associates Inc.
Pahlevan, N.; Smith, B.; Schalles, J.; Binding, C.; Cao, Z.;
Ma, R.; Alikas, K.; Kangro, K.; Gurlin, D.; Hà, N.; et al.
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