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Abstract

Many well-established anomaly detection methods use the
distance of a sample to those in its local neighbourhood: so-
called ‘local outlier methods’, such as LOF and DBSCAN.
They are popular for their simple principles and strong perfor-
mance on unstructured, feature-based data that is common-
place in many practical applications. However, they cannot
learn to adapt for a particular set of data due to their lack of
trainable parameters. In this paper, we begin by unifying local
outlier methods by showing that they are particular cases of
the more general message passing framework used in graph
neural networks. This allows us to introduce learnability into
local outlier methods, in the form of a neural network, for
greater flexibility and expressivity: specifically, we propose
LUNAR, a novel, graph neural network-based anomaly de-
tection method. LUNAR learns to use information from the
nearest neighbours of each node in a trainable way to find
anomalies. We show that our method performs significantly
better than existing local outlier methods, as well as state-of-
the-art deep baselines. We also show that the performance of
our method is much more robust to different settings of the
local neighbourhood size.

Introduction
Unsupervised anomaly detection is the task of detecting
anomalies within a set of data without relying on ground
truth labels of known anomalies. It is an extremely impor-
tant task in a wide range of practical applications and has
therefore received a great amount of research interest. As
anomalies tend to be much rarer than normal data, labelled
anomalies are difficult to obtain in the quantity needed to
adequately train supervised techniques.

Many well-established unsupervised methods detect
anomalies by measuring the distance of a point to its nearest
neighbouring points: so-called local outlier methods, such
as LOF and DBSCAN. These methods are very popular in
practice due to their straightforward principles and assump-
tions, as well as their interpretable outputs. In our exper-
iments, we also find that their performance also holds up
favourably against more recent, deep learning-based meth-
ods. The latter have to fully embed knowledge about nor-
mal and abnormal regions of the data space in their network
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parameters. They are mostly designed for highly structured,
high-dimensional data such as images, but their performance
often struggles for the less structured, feature-based data that
is commonly used in many applications. As such, local out-
lier methods remain the default choice is many areas.

A range of local outlier methods have been developed,
each with its own unique formulation and properties. How-
ever, many of them also share common characteristics with
each other. In this paper, our first contribution is to unify lo-
cal outlier methods under a simple, general framework based
on the message passing scheme used in graph neural net-
works (GNN). We demonstrate that many popular methods,
such as KNN, LOF and DBSCAN, can be seen as particu-
lar cases of this more general message passing framework.

Despite their popularity, local outlier methods lack the
capacity to learn to optimise for or adapt to a particu-
lar set of data, e.g. through trainable parameters. Further-
more, in an unsupervised setting, there is no straightfor-
ward way to find optimal hyper-parameter settings, such as
the number of nearest neighbours, which is extremely im-
portant and greatly affects performance. In this paper, we
also propose a novel method named LUNAR (Learnable
Unified Neighbourhood-based Anomaly Ranking), which is
based on the same message passing framework for local out-
lier methods but addresses their shortcomings by enabling
learnability via graph neural networks.

In summary, we make the following contributions:

• We show that many popular local outlier methods, such
as KNN, LOF and DBSCAN, can be unified under a
single framework based on graph neural networks.

• We use this framework to develop a novel, GNN-based
anomaly detection method (LUNAR) which is more
flexible and adaptive to a given set of data than local out-
lier methods due to its trainable parameters.

• We show that our method gives better performance1 than
popular classical methods, including local outlier meth-
ods, as well as state-of-the-art deep learning-based meth-
ods in anomaly detection. We also show that its perfor-
mance is much more robust to different settings of the
local neighbourhood size than local outlier methods.

1Code available at https://github.com/agoodge/LUNAR
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Related Work
Neighbourhood-based Anomaly Detection Besides no-
table examples like OC-SVM (Schölkopf et al. 2001)
and IFOREST (Liu, Ting, and Zhou 2008), most classical
anomaly detection methods directly measure the distance of
a point to its nearest neighbours to detect anomalies, which
we call ‘local outlier methods’. They rely on the assump-
tion that anomalies are in sparse regions of the data space,
far away from highly dense clusters of normal points. Points
that are close to their neighbours are more likely to be nor-
mal themselves, whilst points far from their neighbours are
more likely to be anomalies.

KNN (Angiulli and Pizzuti 2002) uses the distance to the
kth nearest neighbour as the anomaly score. Alternatively,
DBSCAN (Ester et al. 1996), which simultaneously learns
to to cluster normal data while also detecting outliers, uses
the number of points within a pre-defined distance.

Local Outlier Factor (LOF) (Breunig et al. 2000) mea-
sures distances to define a density measure and compares
this density to neighbouring points. Various extensions and
variants of have been developed, including but not lim-
ited to: Local Outlier Probabilities (LOOP) (Kriegel et al.
2009a), Connectivity-based (COF) (Tang et al. 2002), Lo-
cal Correlation Integral (LOCI) (Papadimitriou et al. 2003),
Influenced Outlierness (INFLO) (Jin et al. 2006), and Sub-
space Outlier Detection (SOD) (Kriegel et al. 2009b).

These methods suffer from a lack of learnability: they
do not use the information in the training set to optimise
model parameters for better anomaly scoring. Instead, they
are based on pre-defined heuristics and hyper-parameters.
These settings strongly influence performance, yet the opti-
mal settings are very difficult to validate before deployment
without access to labelled anomalies.

Deep Learning-based Anomaly Detection Deep mod-
els have improved state-of-the-art performance in anomaly
detection for highly structured, high dimensional data es-
pecially. Autoencoders are particularly popular, with the
reconstruction error acting as the anomaly score. Normal
samples are assumed to be reconstructed with lower error
than anomalies. They have been used with fully-connected
(Sakurada and Yairi 2014), convolutional (Zhao et al. 2017)
or recurrent (Malhotra et al. 2015) layers for different data
applications. Variational (An 2015), denoising (Feng and
Han 2015) and adversarial (Vu et al. 2019) autoencoders
have also been used. The reconstruction errors from each
encoder-decoder layer pair are fused together in (Kim et al.
2019). The autoencoder latent encodings are optimised di-
rectly in (Goodge et al. 2020) to improve robustness against
adversarial perturbations.

Others use deep models as feature extractors for a sec-
ondary anomaly-detecting module, such as KNN (Bergman,
Cohen, and Hoshen 2020), KDE (Nicolau, McDermott
et al. 2016), DBSCAN (Amarbayasgalan, Jargalsaikhan,
and Ryu 2018) or autoregressive models (Abati et al. 2019).
Zong et al. (2018) simultaneously train an autoencoder for
feature extraction with a Gaussian mixture model in the la-
tent space for anomaly detection. Ruff et al. (2018) learn a
normality-encoding hypersphere in the latent space and the

anomaly score is the distance from the centre. Generative ad-
versarial networks use the ability of the generator to gener-
ate an unseen sample to indicate its anomalousness (Schlegl
et al. 2017; Zenati et al. 2018).

There has been some interest in GNNs for anomaly de-
tection in graph data, such as sensor networks (Deng and
Hooi 2021; Cai et al. 2020; Zheng et al. 2019). Our method
also uses GNNs, though it is distinct from these works as it
is designed for unstructured, feature-based data rather than
graphs.

Background
Local Outlier Methods
‘Local outlier methods’ refers to those methods which di-
rectly use the distance of a point to its k nearest neighbours
to determine its anomalousness. We now detail KNN and
LOF.

KNN The anomaly score of a point xi is its distance to its
kth nearest neighbour:

KNN(xi) = dist(xi,x
(k)
i ) (1)

where x(k)
i is the kth nearest neighbour of xi. Euclidean dis-

tance is most common, though any distance measure could
be used depending on its suitability to the data type.

LOF The Local Outlier Factor instead uses the ‘reachabil-
ity distance’, which is defined for xi from xj as:

reachk(xi,xj) = max{k-dist(xj), dist(xi,xj)} (2)

where k-dist(xj) is equal to dist(xj ,x
(k)
j ). This is used to

calculate the ‘local reachability density‘ of a point:

lrdk(A) :=


∑

j∈Ni

reachk(xi,xj)

|Ni|


−1

(3)

where Ni is the set of k nearest neighbours of xi. Finally,
this density measure is compared with that of neighbouring
points to determine the local outlier factor:

LOF(xi) =

∑
j∈Ni

lrdk(xj)

|Ni| · lrdk(xi)
. (4)

Graph Neural Networks
Graph neural networks (GNN) operate on a graph G(V,E),
in which a node, i ∈ V , is connected to an adjacent node,
j ∈ V , via an edge (j, i) ∈ E. Edges can be undirected,
in which case information flows in both directions between
adjacent nodes. Alternatively, if the edges are directed, then
information only flows from the source node to target node,
i.e. from j to i along the edge (j, i). Nodes and edges can,
but need not, have feature vectors, denoted by xi and ej,i for
node i and edge (j, i) respectively.

GNNs have become increasingly popular in a range of
graph-related applications, such as social networks (Fan
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et al. 2019) and traffic networks (Cui et al. 2019). Of par-
ticular interest here is the node classification task, which
involves learning successive latent representations of nodes
through the network layers in order to predict the class la-
bel of each node. This relies on a message passing scheme,
made up of message, aggregation and update steps. The
message function (φ) determines the information to be sent
to the node in question from each neighbour. The aggrega-
tion function (�) summarises these incoming messages into
one message, for example by average or max-pooling. Fi-
nally, the update function (γ) uses this aggregated message
and the current representation of the node to compute its
subsequent representation. In summary, the kth layer of a
GNN calculates the hidden representation of a node via the
following (Gilmer et al. 2017):

h
(k)
Ni

= �
j∈Ni

φ(k)(h
(k−1)
i ,h

(k−1)
j , ej,i),

h
(k)
i = γ(k)(h

(k−1)
i ,h

(k)
Ni

). (5)

where h(0)i = xi and Ni is the set of adjacent nodes to i.
h
(k)
Ni

is the aggregation of the messages from its neighbours.

Problem Definition
We now define the unsupervised anomaly detection prob-
lem of interest in this paper. We assume to have m normal
training samples x(train)

1 , ...,x(train)
m ∈ Rd and n testing sam-

ples, x(test)
1 , ...,x(test)

n ∈ Rd, each of which may be normal
or anomalous. For a test sample x(test)

i , our algorithm should
output an anomaly score s(x(test)

i ) that is low (or high) if
x(test)
i is normal (or anomalous).
In local outlier methods, the fundamental question is:
How should the distances of a sample x(test)

i to its nearest
neighbours be used in computing its anomaly score?

In the following section, we show that many local outlier
methods can be seen as particular cases of the message pass-
ing framework used by GNNs.

Unifying Framework
Local outlier methods collect information from the nearest
neighbouring points to compute a statistic to indicate the
anomalousness of a given point. This process fits within the
GNN message passing framework outlined in (5). For ease
of understanding, we show this using the example of KNN
in particular.

Example: KNN
Recall that KNN computes the anomaly score based on the
distance to the kth nearest neighbour of a point.

In the context of message passing, each data sample cor-
responds to one node in a graph and node i is connected to
each of its k nearest neighbours, j ∈ Ni, via a directed edge
(j, i), with edge feature ej,i equal to the distance between
them (k-NN graph):

ej,i =

{
dist(xi,xj) if j ∈ Ni.

0 otherwise.
(6)

Step KNN LOF DBSCAN

ej,i dist(xi,xj) reach(xi,xj) dist(xi,xj)
φ(1) ej,i ej,i H(ε− ej,i)
�(1) max sum sum

γ(1) h
(1)
Ni

1/h
(1)
Ni

H(h
(1)
Ni
− minPts)

φ(2) - h
(1)
j /h

(1)
i h

(1)
j

�(2) - mean max

γ(2) - h
(2)
Ni

1− h
(2)
Ni

Table 1: Local outlier methods as they relate to the message
passing framework defined in (5). H refers to the Heaviside
function.

These edges are directed as j ∈ Ni 6=⇒ i ∈ Nj , so infor-
mation flows along edge (j, i) only from the source node j
to target node i. With this graph, we now show that KNN
can be explained in terms of the message, aggregation and
update functions in (5).

Message KNN collects the distances of a node to its near-
est neighbours:

φ(1) := ej,i. (7)

Aggregation It then outputs the maximum of these dis-
tances (i.e. max-pooling):

h
(1)
Ni

:= max
j∈Ni

φ(1) (8)

Update Finally, it outputs this aggregated message as the
anomaly score:

γ(1) := h
(1)
Ni

(9)

Proposition 1. KNN is a special case of the message pass-
ing scheme formulated in (5).

Proof. The KNN anomaly score can be calculated using
the message, aggregation and update functions formulated
above. By substituting these functions into their appropriate
counterparts in (5), we arrive at the following:

KNN(i) = max
j∈Ni

(ej,i), (10)

which is a special, one-layer case of the message passing
framework in (5).

A similar analysis can be applied to LOF and DBSCAN,
which are instead two-layer cases with two rounds of mes-
sage passing. For example, in LOF, the first layer calculates
the local reachability density as in (3) and the second layer
calculates the local outlier score as in (4). Table 1 formalizes
these connections, and an extended version with more local
outlier methods can be found in the supplement ary material
available online1.
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Figure 1: Contours of the scores assigned by LOF versus
LUNAR. Red indicates a high (anomalous) score and blue
indicates a low (normal) score. Points are marked by black
crosses and those with the top 15 highest assigned scores are
marked by red squares.

Motivation: The Importance of Learnability
Local outlier methods lack trainable parameters which en-
able them to optimise their performance for a given training
set. In this section, we show that this hinders their overall
accuracy. To do this, we compare the performance of LOF
against our novel methodology LUNAR, on a toy training
dataset of 1000 points sampled from four Gaussian distribu-
tions. As perfectly pure training sets are rare in practice, we
also generate 15 points from a uniform distribution within
the data bounds. These points are much rarer and sparser
than the others, so they should not significantly influence
the predicted normal regions.

In Figure 1, low scores (blue) indicate a predicted normal
region while high scores (red) indicate a predicted anoma-
lous region. The points with one of the top 15 anomaly
scores are indicated with red squares. We test the methods
with a small and large value for the hyperparameter dictat-
ing the number of nearest neighbours (k).

With low k, the LOF score is low around the four clus-
ters, but also low far away from these clusters with little or
no nearby training points. The central outlying region es-
pecially appears normal due to the strong influence of the
relative sparsity of the very few points in the area. Con-
versely, with large k, the LOF score is erroneously high for
the smaller cluster in the bottom-left corner. LOF fails to
recognise the clusters existence as it contains fewer points
than k, instead predicting all nearby points to be anoma-
lous. These issues are challenging as local outlier methods
lack the capacity to learn a more optimal scoring mechanism
from the data directly.

In comparison, the learnability of LUNAR enables it to
perform better and more robustly across k: the regions as-
signed with normal or anomalous scores are a much closer
fit to the training data, and the highest anomaly scores are

given to the sparse, central points more accurately. We now
describe its methodology in full.

LUNAR: Methodology
Overview Our methodology involves a one layer graph
neural network as per the message passing framework de-
scribed by (5). We represent a set of data as a graph, with a
node corresponding to each data sample and directed edges
connecting a target node to a set of source nodes, which
are the nearest neighbours of the samples. For a given tar-
get node, the network utilises information from its its near-
est neighbouring nodes to learn its anomaly score. It differs
from other GNN implementations for several reasons:

• We construct the k-NN graph of any feature-based, tabu-
lar dataset, rather than being restricted to graph datasets.
• We use a node’s distances to its k nearest neighbours as

input, which is more generalizable than using its feature
vector.
• We use a learnable message aggregation function,

whereas most GNNs use a fixed aggregation approach.

Model Design
We now describe the methodology used in LUNAR in more
detail, starting with how the graph is formulated.

Nearest Neighbourhood Graph For a data sample xi, we
define a target node i and edge (j, i) connecting it to a source
node j for all j where xj is in the set of k nearest neighbours
to xi. The edge feature vector is equal to the Euclidean dis-
tance between the two points:

ej,i =

{
dist(xi,xj) if j ∈ Ni.

0 otherwise.
(11)

As training samples are all assumed to be normal, we only
search for nearest neighbours among training samples, so
that anomalies cannot influence the neighbourhood. With
this, we define the message, aggregation and update func-
tions in (5) as follows:

Message The message passed from source node j to target
node i along edge (j, i) is equal to the edge feature ej,i (i.e.
the distance between the points):

φ(1) := ej,i. (12)

Aggregation Rather than a fixed average or max-pooling,
we use a learnable aggregation, which is suitable for our set-
ting as we are dealing with node neighbourhoods of a fixed
size (k). Our message aggregation involves concatenating
them to give a k-dimensional vector, e(i), where each entry
represents the distance of xi to its corresponding neighbour:

e(i) := [e1,i, ..., ek,i] ∈ Rk. (13)
This vector is mapped to a single, scalar value represent-

ing the anomalousness of node i, through a neural network:

h
(1)
Ni

:= F(e(i),Θ), (14)
where Θ are the weights of the neural network F .
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Dataset #Size #Dim #Anomalies

HRSS 90515 20 10187
MI-F 24955 58 2050
MI-V 22905 58 3942

OPTDIGITS 5216 64 150
PENDIGITS 6870 16 156
SATELLITE 6435 36 399
SHUTTLE 49097 9 3511
THYROID 7200 21 534

Table 2: Statistics of the datasets used in experiments.

Update Finally, the update function outputs this learned,
aggregated message:

γ(1) := h
(1)
Ni
. (15)

We use a loss function which trains the GNN to output a
score of 0 for normal nodes and 1 for anomalous nodes. As
all training points are of the normal class, the network would
attain perfect training accuracy by outputting zero scores re-
gardless of the input. To avoid this trivial solution, we gen-
erate negative samples to act as artificial anomalies, train-
ing the model to output a score of 1 for the negative sam-
ple nodes. With this, we aim to learn a decision boundary
between normal samples and negative samples which gener-
alises to the true anomalies in the test set. In the next section,
we detail how negative samples are generated.

Negative Sampling
Negative samples have been used to introduce supervision
to unsupervised tasks, such as in contrastive learning (Chen
et al. 2020), as well as anomaly detection (Sipple 2020).
They need to be sufficiently distinguishable from normal
samples for the model to learn the decision boundary, but not
so dissimilar that the task is too easy and the learnt boundary
fails to discriminate normal samples from real anomalies.
With this in mind, we combine two methods of generating
negative samples, which are as follows:

Uniform The first method involves generating negative
samples from a uniform distribution:

x(negative) ∼ U(−ε, 1 + ε) ∈ Rd, (16)

where ε is a small, positive constant. For simplicity, we use
ε = 0.1 in all experiments. The training data is normalized
to the range [0, 1], so these samples cover the data bounds.
However, normal data occupies a much smaller subspace
within these bounds, so many of these negative samples
would be far from normal data and ineffective for learning
the decision boundary. We complements this by generating
an additional set of more ‘difficult‘ negative samples.

Subspace Perturbation In the second method, we gener-
ate negative samples by adding Gaussian noise to normal
samples in a subset of their feature dimensions:

z ∼ N (0, I) ∈ Rd,

x(negative)
i = x(train)

i + M ◦ εz. (17)

where ε is a small, positive constant and M ∈ Rd is a vector
of binary random variables. Each element in M has prob-
ability p of being one (and 1 − p of being zero), which
determines the feature dimensions to be perturbed. We use
p = 0.3 in all experiments.

Computational Runtime In the supplementary material,
we show the runtimes of LUNAR versus other methods in
experiments. We see that LUNAR is faster than the other
deep methods tested (e.g. 33.71 seconds for LUNAR versus
55.92 seconds for DAGMM on the HRSS dataset). LUNAR
avoids directly training on high-dimensional feature data in
its input, instead using distances between points, which ex-
plains the faster training time.

Limitations A limitation of LUNAR, as with all local
outlier methods, is in finding the k nearest neighbours.
This is mostly an issue in very high-dimensional spaces,
such as with image data, where distance measures become
less meaningful (Beyer et al. 1999). Adapting LUNAR for
higher dimensionality is left for future work at present.

Theoretical Properties An additional benefit of our uni-
fied approach is that we can use it to characterize theoretical
properties of almost all local outlier methods in our frame-
work (including LUNAR, KNN, LOF, and DBSCAN) in
a unified way. One simple but important property of algo-
rithms is their symmetries under transformations, which are
very relevant to understanding their inductive biases, or the
assumptions they use to generalize to unseen data.

Let s(x; {x(train)
i }mi=1) be the anomaly score of any lo-

cal outlier method evaluated at x given training data
{x(train)

i }mi=1.

Proposition 2 (Transformation Equivariance). Given any
distance-preserving transformation f , the score s is trans-
formation equivariant; that is,

s(x; {x(train)
i }mi=1) = s(f(x); {f(x

(train)
i )}mi=1) (18)

For example, s is equivariant to rotations, translations and
reflections.

Proof. As shown in Table 1, all these methods compute dis-
tances dist(xi,xj) or reach(xi,xj) as input, and do not use
the input features xi in any other way. Applying f to the
training and test data does not change the (reachability) dis-
tances between them, thus also preserving the score s.

Experiments
We now conduct experiments with real datasets to answer
the following research questions:
RQ1 (Accuracy): Does LUNAR outperform existing
baselines in detecting true anomalies?
RQ2 (Robustness): Is LUNAR more robust to changes
in the neighbourhood size, k, than existing local outlier
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Dataset IFOREST OC-SVM LOF KNN AE VAE DAGMM SO-GAAL DN2 LUNAR

HRSS 59.61 61.03 60.13 62.09 61.16 63.30 55.93 45.90 60.20 92.17**
MI-F 84.24 78.65 63.07 78.08 71.53 78.63 81.45 32.07 77.26 84.37
MI-V 84.28 74.56 79.14 82.71 82.42 75.96 78.19 55.34 62.54 96.73**

OPTDIGITS 79.34 59.84 99.53 96.57 97.46 86.71 75.56 74.35 34.98 99.76
PENDIGITS 96.70 94.08 98.18 98.42 96.42 94.76 95.98 94.65 85.30 99.81**
SATELLITE 80.10 64.64 84.25 86.07 81.48 66.09 78.22 84.16 75.37 85.35
SHUTTLE 99.64 98.29 99.80 99.56 99.26 98.33 99.51 99.38 96.97 99.97**
THYROID 76.30 52.81 68.67 63.01 64.34 51.54 70.91 60.13 58.09 85.44**

Table 3: AUC Score for each method on each dataset. Best scores are highlighted in bold. Average scores marked by ** are
greater than the next best performing method with significance level p < 0.01, according to the t-test. More significance test
results are found in the supplementary material.

methods?
RQ3 (Ablation Study): How do variations in our method-
ology affected its performance?

Datasets
Each dataset used in our experiments is publicly available
and consists of a normal (0) class and anomaly (1) class.
Table 2 summarises them and their key statistics.

As we focus on the unsupervised case, in which the train-
ing set only consists of samples labelled as normal (all la-
belled anomalies are in the test set). We use Area-Under-
Curve (AUC) to measure performance. The relative propor-
tion of anomalies in the test set does not affect the scoring
of any individual point, so we can choose to randomly sub-
sample normal points to achieve a 50:50 normal:anomaly
ratio in the test set. Of the remaining normal samples, they
are split 85:15 into a training set and validation set. We ran-
domly generate both ‘Uniform’ and ‘Subspace Perturbation’
negative samples for the training and validation sets sepa-
rately to avoid leaking information. We use a 1:1 ratio of
negative:normal samples in both sets for all experiments.

Training Procedure
The neural network, F in (14), consists of four fully con-
nected hidden layers all of size 256. All layers used tanh ac-
tivation except for the sigmoid function at the output layer.
We used mean squared error as the loss function and Adam
(Kingma and Ba 2014) for optimization with a learning rate
of 0.001 and weight decay of 0.1.

We trained the model for 200 epochs and used the model
parameters with the best validation score as the final model.
It was implemented using PyTorch Geometric on Windows
OS and a Nvidia GeForce RTX 2080 Ti GPU.

Baselines
We use the PyOD library (Zhao, Nasrullah, and Li 2019)
implementations of IFOREST, OC-SVM, LOF, KNN, and
the GAN-based SO-GAAL (Liu et al. 2019). We also im-
plement a deep autoencoder (AE) and VAE built in Pytorch,
and DAGMM as in (Zong et al. 2018) with publicly avail-
able codes. Finally, DN2 (Bergman, Cohen, and Hoshen
2020), which performs KNN with latent features learnt from

a deep, pre-trained feature extractor. As we are interested in
tabular data rather than image data, unlike the original pa-
per, we use an autoencoder (the same model as in AE) for
feature extraction.

RQ1 (Accuracy):
Table 3 shows the AUC score (multiplied by 100) of each
method for each dataset. We use AUC as it does not rely on a
user-defined score threshold to predict normal or anomalous
labels. The scores shown are the average over five repeated
trials with different random seeds. For the methods that use
it, all results are with k = 100 as the number of neighbours
unless stated otherwise.

We see that LUNAR gives the best performance on all
datasets except SATELLITE, for which KNN is slightly
better. For the HRSS, MI-V and THYROID datasets in par-
ticular, our method performs substantially better than the
baselines: between 10 and 30 percentage points better than
the second best method. Our scores marked by ** are sig-
nificantly better than the second best performing method for
each dataset with significance value p < 0.01 according to
the t-test.

RQ2 (Robustness to Neighbourhood Size):
LOF, KNN and DN2 also use the k nearest neighbours of
a point to determine its anomalousness. In Table 4, we show
the performance of these methods for various k. We see that
these methods depend greatly on the value of k. For exam-
ple, their score decreases by 26, 24 and 25 percentage points
respectively for HRSS as k increases from 2 to 200. In stark
contrast, LUNAR only drops in performance by 3 points in
the same range. LUNAR gives the best performance in the
vast majority of datasets and k settings. Our method not only
performs better, but maintains stronger performance for dif-
ferent settings of k. This is because it is able to learn to use
the information from all k neighbours effectively, whereas
the other methods lose information from most neighbours,
as decided by a pre-set aggregation rule.

RQ3 (Ablation Study):
Table 5 shows the performance with Subspace Perturbation
(SP) and Uniform (U) negative samples individually. SP
negative samples give better performance than U samples
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k LOF KNN DN2 LUNAR LOF KNN DN2 LUNAR LOF KNN DN2 LUNAR

HRSS MI-F MI-V

2 82.08 86.25 85.28 93.88 90.43 77.84 91.13 81.50 94.31 94.58 86.76 96.06
10 67.98 65.53 62.40 92.67 86.41 73.46 85.58 82.39 92.60 88.53 77.92 96.09
50 61.66 62.71 60.46 92.21 67.17 71.69 78.66 83.58 78.61 83.29 64.96 96.38

100 60.13 62.09 60.20 92.17 63.07 78.08 77.26 84.37 79.14 82.71 62.54 96.73
150 57.22 61.81 60.14 91.61 60.60 80.79 76.33 82.82 80.73 82.86 61.77 96.53
200 55.59 61.86 60.22 90.09 70.89 82.85 75.93 84.47 81.75 82.65 61.67 96.30

Avg. 64.11 67.10 64.79 92.11 73.10 77.45 80.82 83.19 84.52 85.77 69.27 96.35
OPTDIGITS PENDIGITS SATELLITE

2 99.58 99.91 50.90 99.91 99.37 99.84 81.08 99.84 85.05 87.72 80.16 87.80
10 99.92 99.63 45.84 99.79 99.67 99.77 80.74 99.82 85.38 86.77 79.43 87.83
50 99.72 98.41 39.23 99.81 98.79 98.79 81.83 99.80 83.44 86.07 76.52 87.58

100 99.53 96.57 34.98 99.76 98.18 98.42 85.30 99.81 84.25 86.07 75.37 85.35
150 99.11 94.85 33.10 99.73 97.58 98.07 86.39 99.76 84.86 85.85 74.48 83.95
200 98.63 93.13 32.14 99.78 97.19 97.52 85.49 99.71 85.21 85.46 73.39 84.70

Avg. 99.41 97.09 39.37 99.79 98.46 98.74 83.47 99.79 84.69 86.32 76.55 86.08

k LOF KNN DN2 LUNAR LOF KNN DN2 LUNAR

SHUTTLE THYROID

2 99.64 99.98 98.94 99.98 83.70 80.28 64.09 83.38
10 99.91 99.93 98.22 99.95 83.69 73.87 62.71 84.24
50 99.74 99.68 97.19 99.97 74.41 66.49 59.88 86.01

100 99.80 99.56 96.97 99.97 68.67 63.01 58.09 85.44
150 99.80 99.43 96.68 99.95 67.20 62.26 56.86 86.08
200 99.69 99.32 96.45 99.97 66.58 61.24 56.26 86.67

Avg. 99.76 99.65 97.41 99.96 74.04 67.86 59.65 85.31

Table 4: AUC Score of LOF, KNN, DN2 and LUNAR for different values of k and the Avg. over all k. Best performance for
each is highlighted in bold.

Negative sampling scheme
Dataset SP U Mixed

HRSS 93.32 66.34 92.17
MI-F 84.17 57.76 84.37
MI-V 96.64 67.99 96.73

OPTDIGITS 93.81 99.86 99.76
PENDIGITS 99.78 99.82 99.81
SATELLITE 85.37 85.12 85.35
SHUTTLE 99.96 99.54 99.97
THYROID 85.99 45.42 85.44

Table 5: AUC scores for different negative sample types.

except for the OPTDIGITS dataset, in which SP samples
alone gives poor performance for small values of k. Overall,
mixing both types gives the best performance in most cases.

Further ablation studies relating to the neural network size
and depth can be found in the supplementary material. Over-
all, we find that deeper and wider networks for message ag-
gregation give the best performance.

Conclusion
We have studied local outlier methods, some of the most
well-established and popular anomaly detection methods in
practice, which use the distance of data samples to their
nearest neighbours to detect anomalies. We provided a uni-
fying framework which shows that many local outlier meth-
ods seen as particular cases of the message passing scheme
used in graph neural networks.

We then proposed LUNAR, which is based on this shared
framework but is also able to learn and adapt to different
sets of data by using a graph neural network. We show that
our method significantly outperforms the baselines, includ-
ing other deep learning-based methods, on a wide variety of
datasets. Our method also maintains its strong performance
for different neighbourhood sizes much better than other lo-
cal outlier methods, as it is unique in its ability to learn from
all incoming information from the neighbours.
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