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Abstract

To deal with ambiguities in partial multi-label learning
(PML), existing popular PML research attempts to perform
disambiguation by direct ground-truth label identification.
However, these approaches can be easily misled by noisy
false-positive labels in the iteration of updating the model
parameter and the latent ground-truth label variables. When
labeling information is ambiguous, we should depend more
on underlying structure of data, such as label and feature
correlations, to perform disambiguation for partially labeled
data. Moreover, large margin nearest neighbour (LMNN) is
a popular strategy that considers data structure in classifica-
tion. However, due to the ambiguity of labeling information
in PML, traditional LMNN cannot be used to solve the PML
problem directly. In addition, embedding is an effective tech-
nology to decrease the noise information of data. Inspried by
LMNN and embedding technology, we propose a novel PML
paradigm called Partial Multi-label Learning via Large Mar-
gin Nearest Neighbour Embeddings (PML-LMNNE), which
aims to conduct disambiguation by projecting labels and fea-
tures into a lower-dimension embedding space and reorganize
the underlying structure by LMNN in the embedding space
simultaneously. An efficient algorithm is designed to imple-
ment the proposed method and the convergence rate of the al-
gorithm is analyzed. Moreover, we present a theoretical anal-
ysis of the generalization error bound for the proposed PML-
LMNNE, which shows that the generalization error converges
to the sum of two times the Bayes error over the labels when
the number of instances goes to infinity. Comprehensive ex-
periments on artificial and real-world datasets demonstrate
the superiorities of the proposed PML-LMNNE.

Introduction
Partial multi-label learning (PML) (Xie and Huang 2018)
is a weakly supervised learning problem (Goldberg et al.
2010), (Vasisht et al. 2014), where each instance is associ-
ated with a set of candidate labels, but only a part of them
are the ground-truth labels while others are false positive la-
bels. In recent years, many real-world applications are aris-
ing as partially labeled data are much easier and less costly
to obtain and the demand for identifying ground-truth la-
bels from partially labeled data is growing. For example, in
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Figure 1: An example of crowdsourcing image annotation
for PML. The candidate label set is {cloud, tree, bird, grass,
dog, river, people, building}, but only labels with a red dot
are the ground-truth labels.

crowdsourcing image annotation, a web image might be an-
notated online by a potential unreliable annotator with many
specific labels, such as, cloud, tree, bird, grass, river, dog,
people and building as shown in Fig. 1, but only the labels
with red dots are the ground-truth labels.

PML aims to train a classifier from partially labeled data
so as to predict the ground-truth labels for an unseen in-
stance automatically. The main challenge is how to deal with
the ambiguities caused by false positive labels in candidate
label set. One straightforward way is to simply treat all can-
didate labels equally as the ground-truth labels, and then
solve the PML problem by off-the-shelf multi-label clas-
sification methods (Liu 2019), (Boutell et al. 2004). How-
ever, these methods can be easily misled by the noisy false-
positive labels in the candidate set, and fail to generalize well
in testing. As a result, the state-of-the-art PML methods at-
tempt to perform disambiguation by identifying the ground-
truth labels directly from candidate label set, which becomes
a popular and effective disambiguation strategy. However,
this kind of approaches can also be misled by the noisy false-
positive labels in the iteration of updating the model parame-
ter and latent variables of ground-truth labels. When labeling
information is ambiguous in the partially labeled data, we
should depend more on the underlying data structure, such
as the label and feature inter-dependencies, to perform dis-
ambiguation. Xie and Huang (2018) proposed PML-lc and
PML-fp to implement disambiguation by either consider-

The Thirty-Sixth AAAI Conference on Artificial Intelligence (AAAI-22)

6729



ing label correlations or feature correlations instead of both.
Sun et al. (2019) developed PML-LRS which considers both
the feature and label correlations, but only in the projection
of feature matrix rather than the projection of both feature
and label matrix. Besides, these methods have no theoretical
analysis to guarantee the assumptions. Motivated by this, we
would like to develop a method which considers the feature
and label correlations in the projection of both feature and
label matrix, as well as theoretical guarantee.

Moreover, large margin nearest neighbour (LMNN)
(Domeniconi, Gunopulos, and Peng 2005), (Weinberger,
Blitzer, and Saul 2005) is a popular strategy in classification
of supervised learning, which takes instance and class corre-
lations into consideration. The main idea is to learn a metric
by constraining that k-nearest neighbours are classified to
the same class and instances from different classes are seper-
ated by a large margin. However, due to the ambiguity of
labeling information in partial multi-label learning (PML),
it is difficult to precisely identify whether two instances be-
long to the same class. Thus, traditional LMNN cannot be
used to solve the PML problem directly. Moreover, embed-
ding (Adosoglou, Lombardo, and Pardalos 2021) is an ef-
fective technology to deal with noisy data, which can be im-
plemented by the projection matrix. Inspried by LMNN and
embedding technology, we propose a novel PML paradigm
called Partial Multi-label Learning via Large Margin Near-
est Neighbour Embeddings (PML-LMNNE) in this paper.

The main contribution of this paper is summarized as fol-
lows:
• We propose a new insight into partial multi-label learning

(PML) from LMNN and embedding perspective.
• We develop a novel method called Partial Multi-label

Learning via Large Margin Nearest Neighbour Embed-
dings (PML-LMNNE), which aims to perform disam-
biguation by projecting labels and features into a lower-
dimension embedding space and reorganize the underly-
ing structure by LMNN in the embedding space simulta-
neously.

• We design an efficient algorithm to implement the pro-
posed method. In addition, convergence rate of the algo-
rithm is analyzed in this paper.

• Moreover, we present a theoretical analysis of the gen-
eralization error bound for the proposed PML-LMNNE.
The results show that the generalization error converges
to the sum of two times the Bayes error over the labels
when the number of instances n goes to infinity.

• To thoroughly evaluate the effectiveness of the proposed
method, we conduct extensive experiments on four syn-
thetic datasets as well as six real-world PML datasets of
different scales, which demonstrate the superior perfor-
mance of the proposed method.

Related Work
Partial multi-label learning (PML) (Xie and Huang 2018)
differs from partial label learning (Zhang, Zhou, and Liu
2016; Gong, Yuan, and Bao 2021a,b; Xu, Lv, and Geng
2019; Gong et al. 2021; Zhou, He, and Gu 2017) and multi-
label learning (Zhang and Zhou 2007; Liu and Tsang 2017;

Liu, Tsang, and Müller 2017; Liu et al. 2019). In PML, each
instance is associated with a set of candidate labels, but only
part of them are the ground-truth labels while others are
false positive labels. The state-of-the art research attempts
to perform disambiguation by ground-truth label identifica-
tion methods. Fang and Zhang (2019) propose PARTICLE
to extract credible labels with high confidence via propaga-
tion matrix and use the identified labels to train multi-label
classifiers. Wang et al. (2019) propose DRAMA to get the
reliable labels with high confidence by employing the fea-
ture manifold, and then use the identified labels to train the
multi-label clssifier. Moreover, Xie and Huang (2018) pro-
pose PML-lc and PML-fp to optimize the label ranking con-
fidence matrix in training classifiers which considers the la-
bel correlations and the feature prototype respectively. Yu
et al. (2018) develop fPML to optimize the label confidentce
matrix by considering feature and label correlations. Sun
et al. (2019) propose PML-LRS to get label ranking which
utilizes the low-rank and sparse decomposition to train clas-
sifiers while considering the feature and label interdepen-
dencies, the whole process of which is conducted within one
projection of feature matrix and decomposes the label matrix
into a ground-truth label matrix and an irrelevant label ma-
trix, where the feature mapping matrix and the ground-truth
label matrix are constrained to be low rank while the irrel-
evant label matrix is constrained to be sparse. Li, Lyu, and
Feng (2020) develop MUSER to train classifiers by decreas-
ing the feature noise and label redundancy via mapping with
orthogonality constraint and graph Laplacian regularization,
which considers the feature correlation and label correlation
simultaneously. Xu, Liu, and Geng (2020) propose PML-LD
to learn from partial multi-label examples via label enhance-
ment, which attempts to recover the label distributionsby ex-
ploiting the topological information from the feature space
and label correlations from the label space, and then induces
a predictive model by fitting the recovered label distribu-
tions. Recently, Xie, Sun, and Huang (2021) develop PML-
MD, which tries to disambiguate alternatively with a meta-
learning strategy. Specifically, multi-label classifier utilizing
the supervised information according to the label quality is
trained by minimizing a confidence-weighted ranking loss,
and the confidence for each candidate label is adaptively es-
timated with its performance on a small validation set.

When the labeling information is ambiguous in PML, we
should depend more on the underlying structure of data to
perform disambiguation for the partially labeled data. Large
margin nearest neighbour (LMNN), is a popular strategy of
classification in supervised learning, which takes instance
and class inter-relationships into consideration. Moreover,
embedding is an effective technology to deal with noisy
data, which can be implemented by projection matrix. In-
spried by LMNN and embedding technology, we propose
a novel PML paradigm called Partial Multi-label Learning
via Large Margin Nearest Neighbour Embeddings (PML-
LMNNE).

The Proposed Method
In this section, we propose a novel paradiagm called Partial
Multi-label Learning via Large Margin Nearest Neighbour
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Embeddings (PML-LMNNE).
Let {(xi, Yi)}ni=1 be the PML training dataset of n train-

ing examples, where xi ⊆ Rp×1 is the i-th instance of p
dimensions (features); Yi ⊆ Rq×1 is the candidate label set
of q dimensions corresponding to xi; Let X ∈ Rn×p be the
input matrix and Y ∈ {0, 1}n×q be the output matrix.

Inspried by LMNN and embedding technology, we con-
duct disambiguation by projecting labels and features into
a lower-dimension embedding space, while reorganizing the
underlying data structure by constraining that features of an
instance are close to its own labels in the embedding space
than the labels of its nearest neighbour. As a result, the pro-
jections are embedded into the LMNN framework, which
can be achieved by the following two steps.

As features and labels are of different dimensions, we first
need to project features into the label space by learning an
embedding matrix V ∈ Rp×q , and then features and labels
can be compared. The matrix V can be learned by optimiz-
ing the following formulation:

min
V ∈Rp×q

1

2
||V TXT − Y T ||2F (1)

where ‖ · ‖F represents the Frobenius norm and the super-
script T denotes the transpose of a vector or matrix.

In order to facilitate disambiguation as well as reorga-
nize the underlying structure, we continue to project the la-
bels as well as the projected features into a lower-dimension
embedding space by learning another embedding matrix
W ∈ Rq×d.

The projection matrixW can be learned by optimizing the
following formulation:

min
W∈Rq×d

1

2
||W ||2F +

C

n

n∑
i=1

ξ2i

s.t. ||WTV Txi −WT Ŷ ||22 − ||WTV Txi −WTYi||22
≥ ∆(Ŷ , Yi)− ξi, ξi ≥ 0, ∀i ∈ {1, · · · , n}

(2)

where C is a trade-off parameter. Ŷ is the label vector of
xi’s nearest neighbour. ∆(Ŷ , Yi) is the margin, defined as
||Ŷ − Yi||1 and || · ||1 is the l1 norm. ξi is the slack variable.

Here, we define a metric called embedding distance to
evaluate the correlation between features and labels in the
embedding space. The embedding distance between xi and
its label Yi can be denoted as the square of l2 norm, i.e.,
||WTV Txi −WTYi||22. Similarly, the embedding distance
between xi and its nearest neighbour’s label Ŷ is denoted as
||WTV Txi −WT Ŷ ||22.

Therefore, constraints in Eq. (2) guarantee that the em-
bedding distance between xi and its label Yi is smaller than
that of xi and its nearest neighour’s label Ŷ by at least
∆(Ŷ , Yi) − ξi, where ξi endows our model with more ro-
bustness. As a result, the underlying structure (i.e., correla-
tion) between features and labels is reorganized by the con-
straints, which is retained in W .

We define P = WWT to be a q × q symmetric posi-
tive semidefinite matrix S+

q ; define φ(xi, Yi) = V Txi − Yi.

Therefore, Eq. (2) can be transformed to the following for-
mulation:

min
P∈S+

q

1

2
trace(P ) +

C

n

n∑
i=1

ξ2i

s.t. φ(xi, Ŷ )TPφ(xi, Ŷ )− φ(xi, Yi)
TPφ(xi, Yi)

≥ ∆(Ŷ , Yi)− ξi, ξi ≥ 0, ∀i ∈ {1, · · · , n}
(3)

Moreover, Eq. (3) can be reformulated to the following
optimization problem,

min
P∈S+

q

1

2
trace(P ) +

C

n

n∑
i=1

L2
i

s.t. Li = max{0, max
Ŷ ∈N(i)

(∆(Ŷ , Yi)−((φ(xi, Ŷ )TPφ(xi, Ŷ )

− φ(xi, Yi)
TPφ(xi, Yi)))}

(4)

where Li is the hinge loss.
In addition, define g(P ) = 1

2 trace(P ) and f(P ) =
C
n

∑n
i=1 L

2
i , thus, Eq. (4) can be rewritten as:

min
P∈S+

q

F (P ), F (P ) = f(P ) + g(P ) (5)

where F (P ) is the objective function.

Optimization
As f is convex smooth and∇f is Lipschitz continuous with
respect to some positive scalar Lf , we consider to optimize
the quadratic approximation of F (P ) in Eq. (5).

For any Z ∈ S+
q , we denote the quadratic approximation

at Z as F̂λ(P,Z). Then, we have the following formulation:

F̂λ(P,Z) = f(Z)+ < ∇f(Z), P − Z >

+
λ

2
‖P − Z‖2F + g(P )

=
λ

2
‖P − (Z − 1

λ
∇f(Z))‖2F + g(P )

+ f(Z)− 1

2λ
‖∇f(Z)‖2F

(6)

where λ is a positive constant. To minimize F̂λ(P,Z) in Eq.
(6) with respect to P , it is reduced to solve the following
optimization problem:

min
P∈S+

q

λ

2
||P −G||2F + g(P ) (7)

where G = Z − 1
λ∇f(Z).

To solve Eq. (7), we take the derivative of the objective
function with respect to P in Eq. (7): λ(P −G) + 1

2I = 0,
then P = G − 1

2λI . We take the singular value decompo-
sition (SVD) of G as G = UGUT , and P = UGUT −
1
2λUU

T , then P = U(G − 1
2λI)UT . We replace the neg-

ative entries in G − 1
2λI with zeros. Finally, we obtain the
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Algorithm 1: PML-LMNNE Algorithm
Input: Let η ∈ (0, 1) be a given constant.
Output: Get the optimal solution to Eq. (7).

1: Set Z1 = P1 = P0 ∈ S+
q , α1 = α0 = 1 and λ0 = Lf .

2: for t = 1, 2, . . . , do
3: Set λ̂0 = ηλt−1
4: for i = 0, 1, 2, . . . , do
5: Set Gt = Zt − 1

λ̂i
∇f(Zt), compute Sλ̂i

(Gt) from
the SVD of Gt.

6: if F (Sλ̂i
(Gt)) ≤ F̂λ̂i

(Sλ̂i
(Gt), Zt), then

7: Set λt = λ̂i, Sλt(Gt) = Sλ̂i
(Gt)), stop;

8: else
9: Set λ̂i+1 = min{ 1η λ̂i, Lf};

10: end if
11: end for
12: Set Pt+1 = Sλt

(Gt)

13: Compute αt+1 =
1+
√

1+4(αt)2

2 . Let t = t+ 1

14: Set Zt+1 = Pt + αt−1
αt+1

(Pt − Pt−1)

15: Quit if F (Pt)−F (Pt+1)
F (Pt)

≤ ε where ε is a moderately
small tolerance.

16: end for

symmetric positive semidefinite matrix solution of Eq. (7),
denoted by Sλ(G).

Assume ∇f is Lf -Lipschitz and continuous on S+
q , then

f(P ) ≤ f(Z)+ < ∇f(Z), P−Z > +
Lf

2 ‖P−Z‖
2
F . Given

this, we can get f(P )+g(P ) ≤ f(Z)+ < ∇f(Z), P−Z >

+
Lf

2 ‖P−Z‖
2
F+g(P ), i.e., F (P ) ≤ f(Z)+ < ∇f(Z), P−

Z > +
Lf

2 ‖P − Z‖2F + g(P ). Comparing this inequality
with Eq. (6), we can find that, for any λ ≥ Lf , F (P ) ≤
F̂λ(P,Z). Similarly, we can get

F (Sλ(G)) ≤ F̂λ(Sλ(G), Z) (8)

Implementation
We design a novel algorithm called PML-LMNNE Algo-
rithm to solve the optimization problem of Eq. (7). The com-
plete procedures are shown in Algorithm 1. We initialize the
regularization parameter C and estimate the Lipschitz con-
stant to be Lf = 0.01nC.

We first do some initializations (Step 1). In the whole
loop (Step 2 – Step 16), the linesearch-like acceleration
strategy is incorporated to update λ at iteration t by set-
ting λt = λ̂i and the small loop will continue to update
λ̂i by λ̂i+1 = min{ 1η λ̂i, Lf} until the inequality condi-

tion is met (i.e. F (Sλ̂i
(Gt)) ≤ F̂λ̂i

(Sλ̂i
(Gt), Zt)) (Step 4

– 11). Compute the symmetric positive semidefinite matrix
solution Sλ(G) at round t and assign it to P as the value
at (t + 1)-th iteration (Step 12). We set the updating rule

for parameter α by αt+1 =
1+
√

1+4(αt)2

2 (Step 13). After
that, we set the rule to update Z at t-th iteration based on

Zt = Pt + αt−1−1
αt

(Pt − Pt−1) (Step 14). The optimiza-
tion problem in Eq. (4) is convex with no constraint, and
the optimal solution can be achieved when ∇F (P ) = 0,
but it is usually very time-consuming to achieve the optimal
solution. In practice, we seek for an ε-optimal solution in-
stead and set the stopping condition to be F (Pt)−F (Pt+1)

F (Pt)
≤ ε

where ε is a small tolerance value and we set it to 10−3 in
practice (Step 15).

After W is figured out from P , we make prediction based
on kNN in the embedding space. Specifically, We first com-
pute the embedding distances between a testing instance
xt and all the training instances xi (i = 1, · · · , n) by
||(WTV Txt−WTV Txi)||22 and then find the nearest neigh-
bour in the embedding space. After that, the nearest neigh-
bour’s labels in the embedding space are endowed to the test-
ing instance.

Convergence Analysis
The convergence rate of Algorithm 1 is guaranteed in the
following Theorem 1. Before deriving our results, we first
present the following lemmas.

Lemma 1. Since inequality (8) is satisfied for λ ≥ Lf ,
where Lf is the Lipschitz constant of ∇f , it follows from
Step 6 – 9 of Algorithm 1 that λt ≤ 1

ηLf . Overall, Lf ≤
λt ≤ 1

ηLf .

Lemma 2. Let Z ∈ S+
q and λ > 0 be such that

F (Sλ(G)) ≤ F̂λ(Sλ(G), Z) where G = Z−1

λ
∇f(Z)

Then for any X ∈ S+
q ,

F (X)−F (Sλ(G))≥ λ
2
‖Sλ(G)−Z‖2+λ〈Z−X,Sλ(G)−Z〉

Proof. The proof of this lemma can be found in the supple-
mentary material.

Lemma 3. The sequence {Pt} generated via Algorithm 1
satisfies for every t ≥ 1,

2

λt
α2
t vt −

2

λt+1
α2
t+1vt+1 ≥ ‖ut+1‖2F − ‖ut‖2F

where vt = F (Pt)−F (P ∗), ut = αtPt−(αt−1)Pt−1−P ∗

and αt+1 =
1+
√

1+4(αt−1)2

2 .

Proof. The proof of this lemma can be found in the supple-
mentary material.

Lemma 4. Let {at, bt} be positive sequences of reals satis-
fying at − at+1 ≥ bt+1 − bt ∀t ≥ 1, with a1 + b1 ≤ c,
c ≥ 0. Then, ak ≤ c for all t ≥ 1.

Lemma 5. The positive sequence αt generated in Algorithm

1 via αt+1 =
1+
√

1+4(αt)2

2 with α1 = 1 satisfies αt ≥
(t+ 1)/2 for all t ≥ 1.
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Theorem 1. Let {Pt} be the sequences generated by
Algorithm 1 and Lf be the Lipschitz constant of ∇f , then
for any t ≥ 1, we have

F (Pt)− F (P ∗) ≤ 2Lf‖P0 − P ∗‖2F
η(t+ 1)2

(9)

where P ∗ = arg minP F (P ).

Proof. The proof of this theorem can be found in the sup-
plementary material.

Generalization Error Bound
This section analyzes the generalization error bound of the
proposed PML-LMNNE.

Assume S = {(xi,Yi)}ni=1 is drawn i.i.d from distribu-
tion D, where xi ⊆ Rp denotes the p-dimension vector of
i-th instance, and Yi ⊆ {0, 1}q denotes the ground-truth la-
bel vector of q dimensions.

Let hSj (x) represent the j-th predicted label of an in-
put x using our model trained from S; let yj represent the
true value of j-th label. The overall performance of PML-
LMNNE can be measured in terms of generalization error,
which is denoted as the expected loss on a new example
(x,Y) drawn from the distribution D:

E(

q∑
j=1

`(yj , h
S
j (x))) (10)

where `(yj , hSj (x)) represents the loss function. We further
define the loss function as the following form for analysis.

`(yj , h
S
j (x)) = P (yj 6= hSj (x)) (11)

We define the following function for the j-th label

f jz (x) = P (yj = z|x), z ∈ {0, 1} (12)

Then, the Bayes optimal classifier b∗ for j-th label can be
defined as

b∗j (x) = arg max
z∈{0,1}

f jz (x) (13)

Before deriving our results, we first present some important
definitions.
Definition 1 (Covering Numbers, (Shawe-Taylor et al.
1998)). Let (X , d) be a metric space, A be a subset of X
and ε > 0. Another subset B of X is an ε-cover for A, if for
every a ∈ A, there exists b ∈ B such that d(a, b) < ε. The
ε-covering number of A, N(ε,A, d) is the minimal cardinal-
ity of an ε-cover for A (if there is no such finite cover then it
is defined as∞).
Definition 2 (Doubling Dimension, (Krauthgamer and Lee
2004)). The doubling dimension of a metric space (X , d)
denoted by ddim(X ) is the minimum value ρ such that ev-
ery set in X can be covered by 2ρ sets of half the diameter.
The diameter of a set A ⊆ X is sup{d(x, y) : x, y ∈ A}.
Define the closed ball of radius r about x in A ⊆ X to be
BA(x, r) = {y ∈ A : d(x, y) ≤ r} and the minimum value
ρ such that every ball in X can be covered by 2ρ balls of half
the radius.

Lemma 6 (Doubling Metric, (Kontorovich and Weiss
2014)). A metric is doubling when its doubling dimension
is bounded. Let (X , d) be a metric space, let every ball in X
be covered by ρ balls of half the radius, the doubling dimen-
sion of X is ddim(X ) = log2 ρ. The ε-covering number,
N(ε,X , d), is the smallest number of balls of radius ε, is
bounded by

N(ε,X , d) ≤ (
2diam(X )

ε
)ddim(X) (14)

where diam(X ) = sup{d(x, y) : x, y ∈ X} is the diameter
of X .
Theorem 2 (Generalization Error Bound for PM-
L-LMNNE). Given a metric space (X , dpro), where
dpro is the embedding distance, assume function
f j(x) : X → {0, 1}q is L-Lipschitz with respect to
the sup-norm for each label. Suppose X has a finite dou-
bling dimension: ddim(X ) = N < ∞ and diam(X ) = 1.
Thus, we have

E(

q∑
j=1

P (yj 6= hSj (x))) ≤
q∑
j=1

2P (b∗j (x) 6= yj)

+
3qL(‖V ‖F + ‖W‖F )

n1/(N+1)

(15)

Proof. The proof of this theorem can be found in the sup-
plementary material.

Remark. From the above results, we claim that the error
of PML-LMNNE with generalized regularization converges
to the sum of two times the Bayes error over the labels when
n goes to infinity.

Experiments
In this section, we conduct experiments to evaluate the clas-
sification performance of the proposed method and compare
it with six state-of-the-art PML methods.

Datasets
Experiments are conducted on six synthetic PML datasets1

and four real-world PML datasets (i.e. YeastBP (Yu et al.
2018), Music-emotion (Huiskes and Lew 2008), Music-
style (Huiskes and Lew 2008), MIRFlickr (Huiskes and Lew
2008) of different scales, which are summarized in Table 1
and Table 2 respectively. For synthetic datasets, given the
configuration strategy over multi-label datasets in (Xie and
Huang 2018), (Fang and Zhang 2019), we construct the can-
didate label set by choosing some irrelevant labels together
with the ground-truth labels for each instance. Specifically,
considering the averaging number of labels in each multi-
label dataset, we configure the corresponding candidate la-
bel set with different number of labels. In this paper, we gen-
erate twenty-eight synthetic PML datasets accordingly. For
brevity, we report the detailed results of two configurations
for each dataset, i.e. Candidate Labels being 7 and 11 for
Enron, Corel5k, Eurlex-sm; 9 and 13 for Eurlex-ed and Me-
diamill; 45 and 65 for CAL500.

1http://mulan.sourceforge.net/datasets-mlc.html
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Datasets #Instances #Features #Classes #Ground-truth Labels (avg.) #Candidate Labels (avg.) Domain
Enron 1702 1001 53 3.38 5, 7, 9, 11,13 text
Corel5k 5000 449 374 3.52 5, 7, 9, 11,13 image
Eurlex-sm 19348 5000 201 2.21 5, 7, 9, 11,13 text
Eurlex-ed 19348 5000 3993 5.31 7, 9, 11,13,15 text
CAL500 502 68 174 26.04 35, 45, 55, 65, 75 music
Mediamill 43907 120 101 4.38 7, 9,11,13,15 video

Table 1: Statistics of synthetic PML datasets.

Datasets #Instances #Features #Classes #Labels (avg.)
YeastBP 560 5548 217 30.43
Music-emotion 6833 98 11 5.29
Music-style 6839 98 10 6.04
MIRFlickr 10433 100 7 3.35

Table 2: Statistics of real-world PML datasets.

Baselines
We compare the proposed PML-LMNNE method with six
state-of-the-art PML approaches.

• PARTICLE (Fang and Zhang 2019): An identifying
method, which tries to extract credible labels with high-
confidence values by label propagation procedure, and
then trains classifiers by applying two exisiting multi-
label models, which are PAR-VLS and PAR-MAP for
short. Here, we choose PAR-VLS for comparison.

• DRAMA (Wang et al. 2019): An identifying method,
which tries to get the reliable labels with high-confidence
by conisdering the structure of feature space, and then in-
duces a gradient boosting model to train classifiers.

• PML-fp and PML-lc (Xie and Huang 2018): An embed-
ding method, which attempts to figure out the label confi-
dence by minimizing the ranking loss and exploiting data
structure information with two models: one considering
feature prototype (i.e., PML-fp) and the other consid-
ering label correlations (i.e., PML-lc). Here, we choose
PML-lc for comparison.

• fPML (Yu et al. 2018): An embedding method, which fig-
ures out the label confidence by adopting a feature and
label coherent matrix to factorize the original matrix for
prediction.

• PML-LRS (Sun et al. 2019): An embedding method,
which utilizes low-rank and sparse decomposition to cap-
ture the ground-truth label matrix and irrelevant label ma-
trix from the observed candidate label matrix.

• MUSER (Li, Lyu, and Feng 2020): An embedding
method, which considers redundant labels together with
noisy features and figures out the label confidence via
optimizing correlation matrix.

For all PML baselines, we set the trade-off parameters as
suggested in the original papers. i.e., PAR-VLS and PAR-
MAP: trade-off parameter α = 0.95, credible label elici-
tation threshold thr = 0.9 and the number of neighours
k = 10; DRAMA: δ1 = 0.01 and δ2 = 1/0.5; PML-fp
and PML-lc: C1 = 1, C2 is chose from {1, 2, . . . , 10} and

C3 is chose from {1, 10, . . . , 100}; fPML: λ2 = 1; PML-
LRS: trade-off parameters are set as γ = 0.01, β = 0.1 and
η = 1; MUSER: α, β, γ are chosen from

{
10−3, . . . , 103

}
with a grid search manner. Libsvm (Chang and Lin 2011) is
used as the binary learning algorithm for PARTICLE.

For PML-LMNNE, we initialize the regularization pa-
rameter C by 10-fold cross-validation over the range{

10−2, . . . , 102
}

and use Euclidean metric to find the near-
est neighbour in initializing the training process.

Evaluation metrics: We employ five widely-used multi-
label metrics including ranking loss, hamming loss, one er-
ror, coverage, and average precision. More details about
these evaluation metrics can be found in (Fürnkranz et al.
2008), (Zhang and Zhou 2014), (Zhou and Zhang 2017).

For the ranking loss, hamming loss, one error and cover-
age metrics, the smaller value means the better performance.
For the average precision metric, the larger value means the
better performance.

Experimental Results
We report the performance of the proposed PML-LMNNE
and six state-of-the-art PML methods on six synthetic
datasets and four real-world datasets in terms of ranking
loss, hamming loss, one error, coverage and average preci-
sion. As the results of ranking loss, one error and coverage
are similar to that of hamming loss and average precision,
we only report hamming loss and average precision in Ta-
bles 3 and 4 respectively. The other results can be found
in the supplementary material. From the overall results, we
make the following observations:
• The proposed PML-LMNNE consistently outperforms

all baselines on most real-world datasets, like Music-
emotion, Music-style and MIRFlickr datasets, while is
comparable to the best performance on YeastBP dataset.
For example, PML-LMNNE is comparable to MUSER
in terms of ranking loss, hamming loss, one error, aver-
age precision, and comparable to DRAMA in terms of
coverage.

• PML-LMNNE is superior to all baseslines on most syn-
thetic datasets, like Enron, Corel5k, Eurlex-sm, Eurlex-
ed and Mediamill while is comparable to the best perfor-
mance on CAL500 dataset. Specifically, PML-LMNNE
is comparable to MUSER in terms of ranking loss
and coverage, while it is comparable to DRAMA and
MUSER in terms of hamming loss and average precision,
to fPML and MUSER in terms of one error.

• From the above results, we can see PML-LMNNE per-
forms the best on most real-world and synthetic datasets,
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Dataset Candidate Labels PML-LMNNE PAR-VLS DRAMA PML-lc fPML PML-LRS MUSER
YeastBP 30.43 .161±.014 .236±.012 .227±.021 .218±.014 .214±.015 .182±.009 .158±.012
Music-emotion 5.29 .281±.010 .360±.012 .318±.013 .354±.013 .452±.025 .381±.028 .284±.023
Music-style 6.04 .162±.011 .173±.021 .169±.031 .167±.013 .338±.027 .379±.023 .173±.016
MIRFlickr 3.35 .145±.016 .193±.017 .219±.014 .216±.018 .223±.022 .237±.012 .193±.056

Enron 7 .097±.012 .286±.005 .183±.022 .320±.014 .115±.017 .207±.021 .108±.003
11 .121±.011 .303±.005 .209±.013 .331±.012 .128±.018 .209±.014 .123±.014

Corel5k 7 .007±.002 .015±.006 .013±.012 .011±.003 .009±.002 .008±.006 .009±.003
11 .011±.004 .038±.006 .021±.005 .023±.014 .018±.013 .019±.002 .012±.005

Eurlex-sm 7 .110±.003 .168±.014 .151±.007 .179±.017 .113±.072 .115±.006 .112±.005
11 .166±.005 .767±.009 .363±.016 .194±.016 .668±.016 .597±.008 .169±.003

Eurlex-ed 9 .043±.003 .061±.013 .058±.008 .085±.016 .098±.009 .078±.008 .047±.003
13 .147±.007 .769±.025 .371±.013 .199±.018 .812±.024 .717±.010 .149±.002

CAL500 45 .260±.013 .271±.024 .235±.017 .286±.008 .268±.015 .282±.013 .279±.024
65 .285±.016 .357±.032 .327±.036 .375±.014 .288±.015 .327±.026 .283±.014

Mediamill 9 .059±.013 .098±.014 .101±.020 .096±.004 .065±.007 .072±.023 .087±.021
13 .122±.010 .145±.018 .201±.027 .218±.025 .513±.021 .191±.017 .183±.012

Table 3: Experimental results of the proposed PML-LMNNE with six state-of-the-art PML baselines on real-world as well as
synthetic PML datasets in terms of hamming loss. The best result (the smaller the better) is in bold.

Dataset Candidate Labels PML-LMNNE PAR-VLS DRAMA PML-lc fPML PML-LRS MUSER
YeastBP 30.43 .152±.023 .082±.031 .083±.017 .140±.035 .096±.021 .085±.023 .154±.031
Music-emotion 5.29 .611±.017 .527±.006 .582±.012 .541±.023 .538±.015 .516±.014 .598±.033
Music-style 6.04 .726±.024 .717±.031 .693±.013 .627±.010 .659±.017 .716±.018 .718±.013
MIRFlickr 3.35 .831±.012 .685±.017 .707±.014 .743±.018 .731±.015 .796±.012 .801±.016

Enron 7 .779±.010 .601±.006 .613±.002 .679±.003 .751±.012 .782±.011 .771±.003
11 .694±.006 .587±.006 .556±.012 .660±.004 .670±.006 .683±.007 .681±.005

Corel5k 7 .289±.010 .205±.036 .235±.014 .253±.023 .264±.017 .237±.013 .280±.003
11 .282±.005 .196±.012 .218±.025 .226±.013 .258±.015 .217±.011 .276±.015

Eurlex-sm 7 .755±.019 .741±.024 .744±.017 .718±.037 .685±.022 .699±.016 .751±.025
11 .752±.014 .721±.016 .728±.013 .716±.006 .628±.027 .615±.017 .748±.023

Eurlex-ed 9 .757±.013 .735±.013 .727±.016 .719±.024 .686±.010 .696±.015 .755±.023
13 .755±.028 .728±.015 .725±.023 .715±.017 .668±.014 .681±.016 .752±.012

CAL500 45 .615±.021 .446±.024 .563±.027 .581±.018 .531±.025 .516±.023 .620±.014
65 .480±.011 .432±.012 .481±.015 .434±.015 .412±.022 .448±.014 .479±.018

Mediamill 9 .765±.018 .756±.018 .687±.017 .685±.025 .695±.017 .689±.010 .716±.012
13 .733±.016 .699±.024 .698±.014 .685±.019 .674±.018 .686±.013 .702±.021

Table 4: Experimental results of the proposed PML-LMNNE with six state-of-the-art PML baselines on real-world as well as
synthetic PML datasets in terms of average precision. The best result (the larger the better) is in bold.

except on YeastBP and CAL500, which is maybe be-
cause the instance number of YeastBP and CAL500 is
small that decreases the prediction performance. This
aligns with our theoretical analysis that PML-LMNNE
can generalize well with the increasing number of in-
stances.

The overall results validate the superior performance of the
proposed method.

Conclusion
This paper provides a new insight into partial multi-label
learning problem from LMNN and embedding perspectives.
In order to perform disambiguation for PML, we propose a
novel method called Partial Multi-label Learning via Large
Margin Nearest Neighbour Embeddings (PML-LMNNE),
which aims to conduct disambiguation by projecting labels

and features into a lower-dimension embedding space and
reorganize the underlying structure by LMNN in the em-
bedding space simultaneously. An efficient algorithm is de-
signed to implement the proposed method and the conver-
gence rate of the algorithm is analyzed in this paper. More-
over, we present a theoretical analysis of the generalization
error bound for the proposed PML-LMNNE. The results
show that the generalization error converges to the sum of
two times the Bayes error over the labels when the number
of instances n goes to infinity. To thoroughly evaluate the ef-
fectiveness of PML-LMNNE, we conduct extensive exper-
iments on four synthetic datasets as well as six real-world
PML datasets. The results clearly demonstrate the superiori-
ties of the proposed PML-LMNNE compared with the state-
of-the-art PML methods.
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