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Abstract

In sequential recommender system applications, it is impor-
tant to develop models that can capture users’ evolving in-
terest over time to successfully recommend future items that
they are likely to interact with. For users with long histories,
typical models based on recurrent neural networks tend to
forget important items in the distant past. Recent works have
shown that storing a small sketch of past items can improve
sequential recommendation tasks. However, these works all
rely on static sketching policies, i.e., heuristics to select items
to keep in the sketch, which are not necessarily optimal and
cannot improve over time with more training data. In this pa-
per, we propose a differentiable policy for sketching (DiPS),
a framework that learns a data-driven sketching policy in an
end-to-end manner together with the recommender system
model to explicitly maximize recommendation quality in the
future. We also propose an approximate estimator of the gradi-
ent for optimizing the sketching algorithm parameters that is
computationally efficient. We verify the effectiveness of DiPS
on real-world datasets under various practical settings and
show that it requires up to 50% fewer sketch items to reach
the same predictive quality than existing sketching policies.

Introduction
Recommender Systems (RSs) have seen great success in
matching users with items they are interested in when large-
scale user-item interaction datasets are available. Early ap-
proaches in RS assume that a user’s interest is static over
time and uses a RS model to compute their latent interest
state from historical interactions and predict their ratings on
future items (He et al. 2017; Xue et al. 2017). Sequential RS
(SRS) is an emerging research topic on how to effectively
capture user preference changes over time. The general idea
is to keep track of a user’s latent interest state over time, e.g.,
using a recurrent neural network (Wu et al. 2017; Chung
et al. 2014; Belletti, Chen, and Chi 2019). Since recurrent
neural networks are prone to forget interactions in the distant
past, in many practical scenarios, sequential RS approaches
prioritize on making decisions according to a user’s recent
interactions in the current session (Hidasi et al. 2015; Hidasi
and Karatzoglou 2018). However, these approaches are not
adept at capturing a user’s static interests from their history,
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which can also be critical to future recommendations. Re-
cently, (Wang et al. 2018; Guo et al. 2019) found that storing
a small set of historical items is highly beneficial in session-
based SRS. Therefore, the sketching policy, i.e., how to select
which items to keep in the sketch, is key to the effectiveness
of SRS approaches.

The sketching policy plays an important role in real-world
SRS applications to reduce memory consumption and has
been extensively studied in the context of problems such
as moment finding, k-minimum value, and distinct element
counting with probabilistic guarantees (Cormode 2011). Vari-
ous data structures can be used for sketching (Cormode 2011);
in this paper, we will focus on sample-based sketching as
used in previous RS literature (Wang et al. 2018; Guo et al.
2019) where each sketch item is a past user-item interaction.
This setting is related to problems such as data summarization
and coreset construction where influence score and item hard-
ness are often used to select representative samples (Aljundi,
Kelchtermans, and Tuytelaars 2019; Koh and Liang 2017).
Another related problem is active learning where the label
uncertainty of future items is often used to select the next
item to query (Settles 2011). A common theme for all these
methods is that they define a measure of informativeness to
select the most informative item(s).

The signature of RS applications is that items come in a
streaming fashion (Chang et al. 2017); thus, at each time step,
we observe a single item, decide whether to store it in the
sketch, and decide which item to remove from the sketch if
the current item is stored. This streaming nature is in stark
contrast to the aforementioned problems where one often
have access to the full set of items available to select from.
This “one-pass” sketching setup is more challenging than
the sketching setup in other problems. In practice, simple
sketching strategies such as uniform reservoir sampling are
often adopted in RS applications (Guo et al. 2019; Wang et al.
2018). These approaches usually keep a reservoir of random
historical items to compute the gradient required for model
updates.

Although static sketching policies often work well, two ma-
jor limitations hinder their further development. First, these
methods define a heuristic informativeness measure to select
items to add or remove from the sketch that is not optimized
on the real objective of RS: predictive quality of the user’s
interaction with future items. Second, these informativeness
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metrics are static and cannot exploit abundant information
that can be extracted from larger and larger training datasets
that are made available in recent years. Recently, there have
been approaches for differentiable sample selection policy
learning in data streams in other application domains (Ghosh
and Lan 2021); however, these approaches are only applica-
ble when the prediction objective is computed on a static set
of known items. In contrast, in streaming RS sketching, items
included in the prediction task are constantly changing.

Contributions. In this paper, we propose DiPS, a
Differentiable Policy for Sketching framework to learn a
sketching policy that optimizes the performance on the fi-
nal recommendation tasks in SRS. The sketching policy is
learned in an end-to-end manner together with the base RS
model; at each time step, the policy takes the past sketch (of
K items) and the recent item (or items) and produces a new
sketch (of K items) for use in subsequent time steps. We
make three key contributions:

First, we formulate the sketch update and recommendation
tasks as a bi-level optimization problem (Franceschi et al.
2018) with a learnable sketching policy. In the outer-level op-
timization problem, we learn both the base RS model and the
sketching policy by explicitly maximizing predictive quality
on future recommendations. In the inner-level optimization
problem, we adapt the base RS model for the user using the
items in the current sketch. The sketching policy is learned
in a fully differentiable manner with the sole objective of
maximizing performance on future time steps.

Second, we propose an approximate estimator of the true
gradient of the sketching policy parameters using a separate
queue module that is computationally efficient. Since at any
time step, the sketch is dependent on all the prior decisions
made by the sketching policy, we need to back-propagate
gradient to all the previous time steps. This gradient com-
putation requires a re-computation of the entire sketching
process from the start until the current step using the current
policy parameters, which is computationally intensive. In-
stead, we show that our approximation effectively alleviates
these cumbersome computations.

Third, we verify the effectiveness of DiPS through ex-
tensive experiments on five real-world datasets. We ob-
serve that the learned sketching policy outperforms exist-
ing sketching policies using static informativeness metrics
on future recommendation and prediction tasks, requiring
up to 50% fewer sketch items to reach the same predictive
quality. Our implementation will be publicly available at
https://github.com/arghosh/DiPS.

Methodology
We now detail the DiPS method. We will start with notations
and the generic sketching problem setup, followed by de-
tails on base RS models, the sketching policy, and how to
efficiently learn the sketching policy.

Notation and Problem Setup
We use the notation [N ] to denote the set {1, · · · , N} and use
shorthand notation x1:t for the set {x1, · · · , xt}. There are a
total of N users, indexed by i ∈ [N ] and M items, indexed

by j ∈ [M ]. For notation simplicity, we will only discuss the
sketching process for a single user, with a total of T discrete
time steps, i.e., interactions, indexed by t.

We consider two commonly studied RS settings. In the
explicit RS setting, for a user, the sequence of interactions
is denoted as [(x1, rx1

), · · · , (xT , rxT
)]; each element in the

sequence is an item-rating pair denoted as a tuple, where
xt ∈ [M ] is the tth item they interacted with and rxt

is
the rating they gave to the item xt. The sketching policy
keeps a sketch of K pairs. Therefore, the sketch at time t
is denoted as St = {(x(1), rx(1)

), · · · (x(K), rx(K)
)} where

x(k) ∈ x1:t and k ∈ [K]; for the first K time steps, the
sketch St contains all the past history. Our goal is to predict
their (real/binary/categorical-valued) rating on the item they
interact with at the next time step, rxt+1

, using the sketch St,
given that we know which item they interact with next. In the
implicit RS setting, for a user, the sequence of interactions
is denoted as [x1, · · · , xT ] where xt ∈ [M ] is the item they
interacted with at time t. There are no explicit ratings; items
the user interacts with are considered positively rated while
items that the user does not interact with are considered to
be negatively rated. The sketching policy keeps a sketch
of K items. Therefore, the sketch at time t is denoted as
St = {x(1), · · ·x(K)} where x(k) ∈ x1:t and k ∈ [K]. Our
goal is to predict the item that they interact with next, xt+1,
out of the entire set of items [M ], using the sketch St.

We consider two sketching policy updating settings de-
pending on how frequently the sketch St is updated. In the
online setting, we update the sketch at each time step. Specif-
ically, given the sketch at the last time step, St−1 and the
current interaction/item (xt, rxt) (or xt) for the explicit (or
implicit) case at time t, the sketching policy decides whether
to include the current item in the sketch; if so, it also de-
cides which item to remove from St−1 to keep the size of
the sketch fixed, arriving at the sketch for the current time
step, St. We use Ŝt = St−1 ∪ {(xt, rxt

)} (or {xt}) to de-
note the intermediate sketch of K + 1 items and the sketch-
ing policy decides which single item to remove from Ŝt
to get the new sketch St. In the batch setting, we update
the sketch once every τ time steps; setting τ = 1 results
in the online setting. Our method is equally applicable to
the case of varying update time periods τ1, τ2, · · · ; for nota-
tion simplicity, we will only detail the case of a fixed time
period τ in this paper. Specifically, given the sketch at the
last time step, St, and a batch of current interactions/items
[(xt+1, rxt+1

), · · · , (xt+τ , rxt+τ
)] (or [xt+1, · · · , xt+τ ]) for

the explicit (or implicit) case at time t + τ , the sketch-
ing policy decides whether to include the current items in
the sketch and in that case which items to remove, arriv-
ing at the sketch for the current time step St+τ . Similarly,
we use Ŝt+τ = St ∪ {(xt+1, rxt+1), · · · , (xt+τ , rxt+τ )}
(or {xt+1, · · · , xt+τ}) to denote the intermediate sketch of
K + τ items and the sketching policy decides which τ items
to remove from Ŝt+τ to get the new sketch St+τ .

Sketching Objective
We solve the following bilevel optimization problem (for one
user only for notation simplicity) (Franceschi et al. 2018):
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minimize
Θ,Φ

T−1∑
t=0

ℓ(rxt+1,g(xt+1;θ
∗
t (Θ,Φ)))≜

T−1∑
t=0

ℓt+1(θ
∗
t ) (1)

s.t. θ∗t=argmin
θt

K∑
k=1

ℓ(rx(k)
,g(x(k); θt))+R(θt;Θ)≜L(St; θt)

(2)
whereSt+1:t+τ = π(St, (xt+1:t+τ , rt+1:t+τ ); Φ). (3)

Here, Θ and Φ are the global RS model and sketching policy
parameters, respectively. g(·) is the RS model that takes an
item xt as input and predict its explicit or implicit rating
(which we denote as rxt

= 1). π(·) is the sketching policy
that takes as input the sketch at the last time step, St, the
current items xt+1:t+τ , and outputs the updated sketch St+τ .

The outer-level optimization problem minimizes the loss,
ℓ(rxt+1

, g(xt+1; θ
∗
t )) across all users and all time steps to

learn both the global RS model and the sketching policy. The
inner-level optimization problem minimizes L(St; θt), the
loss on the sketch for each user at each time step, to adapt the
global RS model locally, resulting in a user, time step-specific
parameter θ∗t .R(θt; Θ) is a regularization term that penalizes
large deviations of the local parameters from global values.
Note that θ∗t is a function of the global parameters Θ and Φ,
reflected through both the regularization term in (2) and the
items the sketching policy selects for the user in (3).

Recommender System Model
Since our focus in this paper is differentiable sketching pol-
icy learning, which is agnostic to the underlying base RS
model, we adopt a standard neural collaborative filtering
(NCF) model as the base RS model (He et al. 2017) since
NCF works well with gradient-based optimization; we use
NCF to compute the loss ℓ(rxt

, g(xt; θt)) in both the inner
and outer optimization problems. We emphasize that our
approach is model agnostic and equally applicable to any
differentiable RS model; in the experiments, we also use case
studies to show that a learned sketching policy under one RS
model is still highly effective for another RS model.

The prediction model parameter Θ contains the embedding
of a user Θ(u) and a neural network with parameter Θ(p)
corresponding to the parameters of the items. For simplicity,
we will use Θ to denote {Θ(u),Θ(p)}. For the explicit RS
setting, given the local parameter θt and the next item xt,
we predict the rating rt as g(xt; θt). For real-valued ratings,
we define a Gaussian likelihood function and use the mean-
squared error loss ℓmse; for binary (or categorical) ratings, we
define a logistic (softmax) likelihood function resulting in the
binary (or categorical) cross-entropy loss ℓbce (or ℓcce). For
the implicit RS setting, we predict the next item xt as g(xt; θ)
among all the items [M ]. We define a softmax function over
all M items, resulting in a categorical cross-entropy loss. The
number of items is often large; therefore, several alternative
loss functions such as the bayesian personalized ranking loss
or the Top1 loss, together with negative sampling, are often
used instead (Rendle et al. 2012; Hidasi et al. 2015). We
emphasize that our method is agnostic to the loss function;

for simplicity, we use the standard categorical cross-entropy
ℓcce loss in our experiments.

Sketching Policy
We use a sparse vector zt ∈ {0, 1}M to represent the indices
of each item in the sketch St at time t, with zt,j = 1 if
and only if item index j is present in the current sketch.
This vector has a one-to-one correspondence with the sketch
St. We also use the vector y = [r1, · · · , rM ] ∈ RM to
represent the user’s ratings of all items. These ratings are real-
valued under the explicit RS setting and binary-valued under
the implicit RS setting.1 The ratings on the non-interacted
items do not need to be defined; the DiPS algorithm masks
ratings on these items. In the online (τ = 1) and batch update
settings, using the intermediate sketch we defined above, at
time t+ τ , we have

ẑt+τ = zt +
t+τ∑

j=t+1

exj
,

where exj
∈ {0, 1}M represents the unit vector with a 1 only

at index xj and 0 at all other indices.
The sketching policy π only has access to items in the

intermediate sketch. Therefore, we can represent this rating
information using the vector ẑt+τ ⊙ y ∈ RM where ⊙ de-
notes element-wise multiplication. The policy π(ẑt+τ ,y; Φ)

updates the intermediate sketch Ŝt+τ to St+τ . In particu-
lar, it outputs a sparse vector wt+τ ∈ {0, 1}M that indicates
whether each item in the sketch should be kept or removed. In
the online setting, the policy outputs the item index to remove,
wt+1 ∈ {0, 1}M ∩∆M−1, where ∆M−1 is the probability
simplex. In the batch setting, the policy outputs the K item
indices to keep, wt+τ ∈ {0, 1}M ∩ {w : 1Tw = K}.

The sketching policy π computes a score for each item
that is in the intermediate sketch ẑt+τ using a neural net-
work f(·) with the observed ratings as f(ẑt+1,y; Φ) =
f(ẑt+1 ⊙ y; Φ). In the online setting, we use the softmax
distribution σ(f(ẑt+1 ⊙ y; Φ)) to select the item to remove,
wt+1(σ(f(ẑt+1 ⊙ y; Φ))). We can do this either in a deter-
ministic way by selecting the item with the highest score or
in a stochastic way by sampling from the softmax probability
distribution. The item indices included in the updated sketch
St+1 are then computed as

zt+1 = zt + ext+1
−wt+1(σ(f(ẑt+1 ⊙ y; Φ))). (4)

In the batch setting, we need to select K items from K + τ
items. We employ the Top-K projection layer (Amos, Koltun,
and Kolter 2019) defined as

µ(f(ẑt+τ ⊙ y; Φ)) =argmin
0<u<1

−f(ẑt+τ⊙y; Φ)Tu−H(u)

s.t. 1Tu = K, (5)

where H(u) is the binary cross entropy function and
f(ẑt+τ ⊙ y; Φ) is the score for the M items. Similarly, we

1Our framework allows multiple interactions with the same item;
for notation simplicity, we detail our method in the case where a
user interacts with each item at most once.
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Figure 1: Top/bottom: true/approximate gradient computation
at time step t. The approximate gradient calculated using
intermediate sketches, obtained from past parameters Φ1:t−1,
is close to the true gradient when the learning rate is small.

can sample the K points to keep, wt+τ (µ(f(ẑt+τ , y; Φ))),
in either a deterministic way or a stochastic way. The sketch
at time t+ τ is given by

zt+τ = wt+τ (µ(f(ẑt+τ ⊙ y; Φ))). (6)

In both cases, the sketching policy output is only defined
over items in the intermediate sketch. This constraint can be
satisfied by adding log ẑt+τ as input to the final softmax or
Top-K projection layer of the sketching policy network.

Optimization
At the inner-level, we adapt the user parameter θ∗t from the
global parameter Θ using the sketched items St at each time
step. In practice, we keep item-specific neural network pa-
rameters Θ(p) fixed and adapt only the user embedding Θ(u)
to minimize the loss on the K items in the sketch. Following
the model agnostic meta learning approach (Finn, Abbeel,
and Levine 2017), we set θt(u), θt(p) ← Θ(u),Θ(p) and
take a fixed number of gradient descent (GD) steps as

θt(u)← θt(u)− α∇θ(u)L(St; θ)|θ=θt . (7)

A fixed number GD steps in Eq. 7 is equivalent to implicit
regularization (Grant et al. 2018); thus, we do not impose
any explicit regularization in the inner optimization problem.
Since θ∗t is a function of Θ, computing the gradient w.r.t. Θ
in the outer optimization objective (1) requires us to compute
the gradient w.r.t. the gradient in (7), i.e., the meta gradi-
ent, which can be computed using automatic differentiation
(Paszke et al. 2017). Similarly, to learn the sketching pol-
icy parameters Φ, we need to compute the gradient of the
outer optimization objective w.r.t. Φ through the user param-
eters θ∗t (Θ,Φ) in (2). However, the discrete item indices to
remove from the intermediate sketch are non-differentiable.
Therefore, we need to develop a method to approximate this
gradient, which we detail next.

Sketching Policy Optimization. The inner-level optimiza-
tion in (2) uses zt, the vector version of the sketch St, to
compute the inner-level loss, which is used to adapt the user
specific parameter θ∗t . This loss is computed on all items, re-
gardless of whether they are part of the sketch, and multiplied
with the weight vector zt before taking gradient steps. There-
fore, we can still compute the gradient w.r.t. to the weight
of all the items dℓt+1

dzt
even if their corresponding weight is

zero. We start with the online setting and denote the outer
optimization objective at time t + 1 as ℓt+1(θ

∗
t ). Thus, we

need to compute dℓt+1

dΦ . Note that ℓt+1 is a function of θ∗t ,
which is a function of Φ (from (2) and (3)) as

θ∗t = argmin
θt

M∑
j=1

zt,j(Φ)ℓ(rj , g(j, θt)) +R(θt; Θ). (8)

We can re-write the gradient using the chain rule as
dℓt+1

dΦ
=

dℓt+1

dθ∗t

dθ∗t
dΦ

=
dℓt+1

dθ∗t

dθ∗t
dzt

dzt
dΦ

.

We also note that the sketch item indices zt at time t is a
function of {zt−1, · · · , z1} which are themselves a function
of Φ. We can write the total derivative of zt w.r.t. Φ in terms
of the partial derivative as

dzt
dΦ

=
∂zt(ẑt⊙y; Φ)

∂Φ
+

t−1∑
j=1

∂zj(ẑj⊙y; Φ)
∂Φ

(
t−1∏
l=j

dzl+1

dzl
), (9)

where the partial derivatives ∂zj(ẑj ;Φ)
∂Φ w.r.t. Φ are computed

by keeping the input ẑj constant. The main challenge here is
that in order to compute the gradient for the loss on item xt+1,
we need to re-generate the computation graph from z1 to zt,
i.e., the entire sketching history, using the current policy
parameter Φ (at time step t), which cannot be computed
in previous time steps with past policy parameters (with
multiple SGD steps in between). This regeneration is often
infeasible due to its high computational cost. An alternative
is to run the sketching with the current policy parameter
and solve the inner optimization for each time step at once;
however, that leads to enormous memory requirements for
the backward gradient propagation even for a few time steps.

We propose to approximate the total derivative in (9) with-
out recomputing the entire sketching process at every time
step. For each iteration, we take a mini-batch of users (with
multiple time steps for multiple interactions) for stochas-
tic gradient descent (SGD) optimization. We represent the
policy parameter Φ at time t as Φt in the training iteration.
Note that in (9), every past zj (and ẑj) correspond to the
sketch indices obtained using the current parameter Φt. How-
ever, we can use a queueM storing the intermediate sketch
indicesM = [ẑ1, · · · , ẑt] computed from old policy param-
eters, Φ0,Φ1, · · · ,Φt−1 respectively. If the learning rate is
small enough in the SGD steps, we can assume that the past
sketches stored in queue, which were computed from the old
sketching policy parameters, to be close to that computed
from the new parameters Φt. At time step t, we can then run
the sketching policy with the current parameter Φt on the
stored intermediate sketch indicesM in parallel to obtain
z1:t−1 and compute ∂zj(ẑj⊙y;Φ)

∂Φ |Φ=Φt
efficiently. We can ap-

proximate the Jacobian dzl+1

dzl
with the identity matrix since

they are additive in (4), which does not need to be explicitly
generated in (9). We can compute the gradient v = dℓt+1

dzt
and

obtain the vector-Jacobian product dℓt+1

dzt

dzt

dΦ efficiently as

dℓt+1

dΦ
≈ ∂ℓt+1(ẑt; Φ)

∂Φ
+

∂

∂Φ

(
vT

t−1∑
j=1

(zj(ẑj ; Φ)
)
, (10)
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where v is fixed and only zj’s are a function of Φ for com-
puting the partial derivatives. We note that in (10), there is no
sequential dependency; all the terms can be computed in par-
allel. We use a fixed-size queueM (with size Q ∼ 50− 100)
where we remove the oldest sketch indices when the queue
gets full. We update the queue after every τ time steps. This
approximate gradient computation process is visualized in
Figure 1. In the supplementary material, we show that this
approximate gradient remains close to the true gradient.

Since the sketch item indices zt(ẑt,y,Φ) are sampled
from the Softmax or Top-K projection layer, they are not
differentiable w.r.t the policy parameters Φ. Thus, we need
to approximate the partial derivative ∂zt(ẑt,y,Φ)

∂Φ , which we
can re-write in the online setting as

∂zt(ẑt,y; Φ)

∂Φ
=

dzt
dwt

dwt

dσ(f(·))
∂σ(f(ẑt ⊙ y; Φ))

∂Φ
,

where σ is the softmax layer and wt contains the sketch in-
dices after sampling in (4). We need to approximate dwt

σ(f(·))
since they are non-differentable; we can leverage the ap-
proximation wt ≈ σ(f(·)) since it holds if the item to be
removed has almost all the probability mass. This approxi-
mation is known as the straight-through (ST) estimator and
it is often found to have lower empirical variance than the
REINFORCE gradient estimator (Williams 1992; Bengio,
Léonard, and Courville 2013). In general, one can test other
differentiable approximations, such as ST-Gumbel softmax
estimator (Jang, Gu, and Poole 2017), for the sampling op-
eration in (4) and (6), which we leave for future work. The
final term ∂σ(f(ẑt⊙y;Φ))

dΦ can be easily computed as the gradi-
ent of the softmax layer w.r.t. the policy parameters. In the
batch setting, the softmax layer (σ) is replaced by the Top-K
projection layer (µ) that scores top K items close to 1 and
other items close to 0. We can approximate the second term
as wt ≈ µ(f(·)) when the top K items that are selected have
the highest scores among all items. We can further use the
KKT conditions and the implicit function theorem to com-
pute the gradient ∂µ(f(ẑt⊙y;Φ))

dΦ ; for details, refer to (Lee et al.
2019; Amos, Koltun, and Kolter 2019).

Connection to Influence Function. In (8), we can compute
the gradient of θ∗t w.r.t. zt,j , ∀j ∈ x1:t using the implicit
function theorem (Cook and Weisberg 1982) as

dθ∗t
dzt,j

=−(∇2
θtL(St; θt))

−1∇θtℓ(rj , g(j, θt))|θt=θ∗
t
. (11)

The gradient for loss on the next rating prediction is given by

dℓt+1

dzt,j(Φ)
= −(∇θtℓ(rxt+1 ; g(xt+1; θt)))(∇2

θtL(St; θt))
−1

∇θtℓ(rj , g(j, θt))|θt=θ∗
t
:= It+1(j),

where It+1(j), the influence function (Koh and Liang 2017)
score of item j, computes the change in the loss on the next
time step under small perturbations in the weight of this item,
zt,j in (8). Intuitively, we would want to keep items that have
gradients similar to that for the future items in sketch, i.e.,
those that are the most informative of future recommenda-
tions. Therefore, in the online setting, the sketching policy

Algorithm 1: Training of DiPS
1: Initialize global parameters Θ,Φ, learning rates η (outer

level), α (inner level) sketch size K, queue size Q.
2: while not converged do
3: Randomly sample a mini-batch of n users.
4: For each user, initialize empty queue of past sketch

indicesM ← ϕ, sketch S0 and sketch indices z0 ∈
{0, 1}M , encode ratings into vector y ∈ RM .

5: for t ∈ 1 · · · (T − 1) do
6: For each user, optimize θ∗t on the sketch St−1.
7: Compute loss ℓt+1 on item (xt+1, rxt+1

) using θ∗t .
8: Compute∇Θℓt+1 update Θ: Θ←Θ−η∇Θℓt+1.
9: Computed intermediate indices ẑt ← zt−1 + ext

.
10: if t > K then
11: Compute zj for j ∈ {1, · · · , t − 1} in parallel

from stored ẑj in queueM using π(·; Φ).
12: Compute ∇Φℓt+1 using Eq.10 and update Φ:

Φ← Φ− η∇Φℓt+1.
13: Append ẑt into queueM, remove oldest if full.
14: end if
15: Compute St and zt using policy π or set zt ← ẑt.
16: end for
17: end while

Dataset ML∗1M ML∗10M Netflix Book FS∗

Users 6K 70K 430K 22K 52K
Items 3.7K 11K 18K 24K 37K
Interactions 1M 10M 100M 1.1M 2.3M

Table 1: Dataset Statistics. ML : Movielens, FS: Foursquare

will tend to select items that are the least informative (to re-
place from the sketch) and in the batch setting, it will tend to
select items that are most informative (to keep in the sketch).

Experimental Results
Datasets and Evaluation Metric. We use five publicly
available benchmark datasets: the Movielens 1M2 and 10M
3 datasets (Harper and Konstan 2015) and the Netflix
Prize dataset 4 for explicit RSs and the Amazon Book5

and Foursquare6 datasets for implicit RSs. The Movielens
datasets contain at least 20 ratings for each user; for the Net-
flix dataset, we filter out users with less than 20 ratings. We
use 20-core settings for the Foursquare and the Amazon book
dataset; thus, all users (items) interact with at least 20 items
(users). For Amazon Book dataset, we keep reviews with rat-
ings more than 3.5 (from 1-5 scale) as the implicit positively
rated items (He and McAuley 2016). The foursquare dataset
contains global user check-in datasets on the Foursquare

2https://grouplens.org/datasets/movielens/1m/
3https://grouplens.org/datasets/movielens/10m/
4https://www.kaggle.com/netflix-inc/netflix-prize-data,https:

//www.netflixprize.com/
5https://jmcauley.ucsd.edu/data/amazon/
6https://sites.google.com/site/yangdingqi/home/foursquare-

dataset
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Figure 2: On implicit RS datasets, (a) Recall@20 with a
GRU4Rec RS model using sketching policies learned by
DiPS (with NCF as the base RS model) and (b) Recall@20
with a session-based GRU4Rec model augmented with K
historical sketch items.

platform from Apr. 2012 to Jan. 2014 (Yang et al. 2019).
See Table 1 for detailed statistics. For explicit RSs, we use
root mean square error (RMSE) as the evaluation metric.
For implicit RSs, we use Recall@20 (= E1rank≤K) as the
evaluation metric where rank is computed among all pos-
sible items; we also provide additional results with Mean
Reciprocal Rank (MRR)@20 as the evaluation metric where
MRR@K = E1rank≤K

rank . We randomly split 60-20-20% of the
users in the datasets into training-validation-testing sets. We
run all experiments five times with different splits and report
the average and standard deviation (std) numbers across all
five runs.

Methods and Baselines. We compare our method, DiPS,
against various baselines including reservoir sampling (Vitter
1985) that has been primarily used in RS applications, which
keeps items with uniform probability (Guo et al. 2019; Wang
et al. 2018). We dub this heuristic sketching policy as Ran-
dom. There are several other heuristic sketching policies in
streaming settings used in various applications. The Hardest
sample heuristic keeps the hardest data point to classify in
the sketch and has been highly successful in continual learn-
ing and active learning tasks (Aljundi, Kelchtermans, and
Tuytelaars 2019). For binary classification, it is equivalent
to uncertainty sampling. Another closely related method is
to construct a coreset in online and batch RS settings. We
use an Influence function-based score to construct the sketch
by selecting the most representative K data points from the
K+τ intermediate sketch items (Borsos, Mutnỳ, and Krause
2020). In contrast, our bi-level optimization framework ex-
plicitly minimizes the loss incurred on predicting future items.
We also experiment with a simpler version of our method,
dubbed as DiPS@1, where we do not keep the queue of past
intermediate sketches and flow gradient only for the current
items, i.e., the first term on the right-hand side of (10). We
test different sketch sizes as K ∈ {2, 4, 8}. For the batch
setting, we set the sketch update period as τ = 4 to cover
three cases: the update period is less than, equal to, or larger
than the sketch size. Model details and parameter settings
can be found in the supplementary material.

Results and Discussion
In Table 2, we list the mean RMSE and std numbers across
all runs for all methods on all explicit RS datasets under the
online setting (τ = 1). On all datasets, for all values of the
sketch size K, DiPS significantly outperforms other methods,
followed by DiPS@1. On all datasets, DiPS reaches simi-
lar predictive quality to that of static informativeness-based
policies using up to 50% fewer sketch items. DiPS@1 does
not perform as well as DiPS, which suggests that storing
past sketch steps in queueM for more than one time step
is beneficial to obtaining a more accurate gradient approx-
imation and better predictive quality. We also observe that
reservoir sampling slightly outperforms the Hardest and In-
fluence heuristics on the Movielens1M and Netflix datasets
while the Hardest heuristic slightly outperforms the other
two on the Movielens10M dataset. Somewhat surprisingly,
reservoir sampling performs well in many cases, without
using any informativeness measures. We postulate that the
reason behind this observation is that the Hardest and In-
fluence heuristics operate locally since they make decisions
only in the context of the local sketch; this restriction means
that they favor items that are more informative to the most
recent user interactions over those that are representative of
longer-term history. Re-weighting these heuristics based on
time difference can be beneficial and is left for future work.

In Table 2, we list the mean RMSE across all runs for all
methods on all explicit RS datasets under the batch setting
(τ = 4). On all datasets, DiPS and DiPS@1 significantly out-
perform other informativeness-based policies. On the smaller
datasets (Movielens 1M), DiPS@1 slightly outperforms DiPS
for larger sketch sizes K ∈ {4, 8}. We postulate that the rea-
son behind this observation is that the policy is not frequently
updated (only once every τ=4 time steps), which reduces the
benefit of more accurate gradient approximation by keeping
the past sketches. Moreover, the fact that Movielens 1M is
significantly smaller than the other two datasets might also
contribute to this observation.

In Table 3, we list the mean Recall@20 metric across all
runs for all the methods on all implicit RS datasets under the
online setting (τ = 1). On all datasets, DiPS and DiPS@1
significantly outperform other informativeness-based poli-
cies. On the Book dataset, DiPS with the smallest sketch size
of K=2 outperforms static informativeness-based policies
with the largest sketch size K = 8 by at least 30%. On the
foursquare dataset, DiPS reaches similar predictive quality
to that of static policies using up to 50% fewer sketch items.
We observe that DiPS@1 slightly outperforms DiPS on the
smaller Book dataset. Combined with a similar observation
in the explicit RS case, this observation suggests that storing
past sketches is more beneficial on the larger datasets. We
also observe that the Influence policy works better than other
static policies on implicit RS datasets. This observation sug-
gests that recent context might be more important under the
implicit RS setting. In Table 3, we list the mean Recall@20
metric across all runs for all the methods on all implicit
datasets under the batch setting (τ = 4). On all datasets,
DiPS significantly outperforms other informativeness-based
policies while DiPS@1 slightly outperforms DiPS on the
smaller Book dataset. These observations fall in line with
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Settings (τ ) Dataset K Random Hardest Influence DiPS@1 DiPS

Online (1)

Movielens 1M
2 0.9701±0.0015 0.9747±0.0026 0.9747±0.0016 0.9615±0.002 0.9543± 0.0015
4 0.955±0.0023 0.9606±0.0025 0.9718±0.0008 0.949±0.0014 0.9418± 0.0018
8 0.9387±0.0017 0.9435±0.0024 0.9662±0.0016 0.9354±0.0017 0.93± 0.002

Movielens 10M
2 0.9232±0.0011 0.9221±0.0013 0.9147±0.0015 0.9174±0.001 0.9008± 0.0011
4 0.9065±0.0011 0.903±0.0014 0.9054±0.0017 0.9009±0.0011 0.8874± 0.0011
8 0.8853±0.001 0.8808±0.0013 0.8948±0.0016 0.8812±0.0011 0.8726± 0.0008

Netflix
2 0.9898±0.0006 0.9946±0.0008 0.9826±0.001 0.9807±0.0009 0.9646± 0.0005
4 0.9708±0.0006 0.9786±0.0008 0.9726±0.0012 0.9631±0.0009 0.9532± 0.0006
8 0.9474±0.0006 0.9564±0.0007 0.9598±0.0013 0.9411±0.0007 0.9351± 0.0006

Batch (4)

Movielens 1M
2 0.9741±0.0022 0.9965±0.0024 0.997±0.0016 0.9658±0.0023 0.9651± 0.0027
4 0.9611±0.0025 0.9848±0.0021 0.9867±0.0016 0.9537± 0.0027 0.9592±0.0017
8 0.9455±0.0017 0.9678±0.0017 0.9753±0.0017 0.9418± 0.002 0.9476±0.0018

Movielens 10M
2 0.9221±0.0012 0.9271±0.0015 0.9127±0.0013 0.9145±0.0011 0.9086± 0.0011
4 0.9055±0.0014 0.9098±0.0013 0.9016±0.0014 0.9001±0.0013 0.8788± 0.001
8 0.8839±0.0014 0.888±0.0014 0.8907±0.0015 0.8801±0.0015 0.8647± 0.001

Netflix
2 0.9825±0.0006 0.9925±0.0008 0.9715±0.0007 0.9732±0.0008 0.9632± 0.0007
4 0.9625±0.0005 0.9766±0.0007 0.9618±0.0007 0.955±0.0005 0.919± 0.0008
8 0.9387±0.0005 0.9543±0.0007 0.9497±0.0007 0.9327±0.0005 0.909± 0.0005

Table 2: Mean and std RMSE for all methods under the online (τ = 1) and batch setting (τ = 4) on all explicit RS datasets.

Settings (τ ) Dataset K Random Hardest Influence DiPS@1 DiPS

Online (1)

Book
2 0.0672±0.0002 0.0682±0.0004 0.074±0.0005 0.1244± 0.0017 0.1163±0.0006
4 0.0769±0.0006 0.0787±0.0007 0.0828±0.0004 0.1349± 0.0005 0.1262±0.0007
8 0.0845±0.0005 0.0876±0.0008 0.0877±0.0005 0.1325± 0.0007 0.1275±0.0007

Foursquare
2 0.1329±0.0002 0.1294±0.0003 0.1316±0.0003 0.1396±0.0001 0.1406± 0.0003
4 0.1416±0.0002 0.1368±0.0003 0.141±0.0003 0.1512±0.0001 0.1513± 0.0002
8 0.1508±0.0001 0.1456±0.0002 0.1489±0.0003 0.1591±0.0002 0.1601± 0.0001

Batch (4)

Book
2 0.0564±0.0004 0.0404±0.0003 0.068±0.0004 0.0859± 0.001 0.0751±0.0004
4 0.0647±0.0006 0.0514±0.0004 0.0787±0.0004 0.1048± 0.0008 0.0987±0.0008
8 0.0714±0.0005 0.0631±0.0006 0.0844±0.0006 0.1046± 0.0006 0.1011±0.0006

Foursquare
2 0.1203±0.0001 0.1059±0.0003 0.1188±0.0002 0.1204±0.0003 0.121± 0.0002
4 0.1283±0.0001 0.1147±0.0001 0.1277±0.0003 0.1344± 0.0001 0.1339±0.0001
8 0.1362±0.0002 0.1254±0.0002 0.1355±0.0002 0.1406±0.0002 0.1421± 0.0002

Table 3: Mean and std Recall@20 for all methods under the online (τ = 1) and batch setting (τ = 4) on all implicit RS datasets.

those in the online setting. In Table 4, we list the mean and
standard deviation of MRR@20 scores for all methods on all
implicit datasets under the online setting (τ = 1) and batch
setting (τ = 4). We observe similar trends for the MRR@20
metric as the Recall@20 metric.

Policy Transfer. We perform additional experiments to
show that the sketching policy learned using one base RS
model, NCF in our case, can be effective even if used in
conjunction with a different base RS model. In particular, we
train a sequential GRU4Rec model (Hidasi et al. 2015) on
the Book and foursquare datasets, where at each time step t,
all history x1:t−1 is used to recommend the next item xt. We
also train three DiPS models (K ∈ {2, 4, 8}) with a base NCF
RS model (on the same training set of users) and only retain
the learned sketching policies π. We test how this GRU4Rec
model would perform when we keep a sketch of only K items
x(1):(K) on the test users to recommend the next item xt. In
Figure 2(a), we plot the performance of the GRU4Rec model
under different values of K for both the DiPS policy and

the reservoir sampling policy. These policies are identical at
K =∞ when the entire history is available. We see that the
DiPS policy requires up to 50% less sketch items to reach the
same recommendation quality than reservoir sampling. This
observation suggests that sketching policies learned with a
particular base RS model can potentially be transferred to
other base RS models effectively. We note that the DiPS
sketching policy exploits items that are highly predictive of
future items, making them amenable to other base RS models.

Augmented Session-based SRS. We perform additional
experiments to show that a few historical sketch items can
effectively augment base RS models to improve session-
based SRS. In particular, we split the user’s history into
non-overlapping sessions of four items. At each step, the
model has access to items from the current session (0-3
items) and a sketch of K ∈ {2, 4, 8} items from the full
history. We train a modified GRU4Rec model that computes
hidden states using items from the current session plus the
sketch, and concatenate the two hidden states for the final
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Settings (τ ) Dataset K Random Hardest Influence DiPS@1 DiPS

Online (1)

Book
2 0.0165±0.0001 0.0171±0.0001 0.0201±0.0001 0.0377± 0.0008 0.0331±0.0002
4 0.0186±0.0002 0.0196±0.0002 0.0214±0.0002 0.0388± 0.0003 0.0344±0.0003
8 0.0209±0.0001 0.022±0.0002 0.0227±0.0002 0.0363± 0.0003 0.0337±0.0003

Foursquare
2 0.0342±0.0001 0.0332±0.0001 0.0333±0.0002 0.0365±0.0001 0.0373± 0.0001
4 0.0367±0.0 0.0352±0.0001 0.0363±0.0001 0.0403±0.0001 0.0407± 0.0001
8 0.0397±0.0001 0.0376±0.0001 0.0392±0.0001 0.0435±0.0 0.0439± 0.0001

Batch (4)

Book
2 0.0128±0.0001 0.0094±0.0001 0.017±0.0001 0.0217± 0.0003 0.0185±0.0001
4 0.0148±0.0001 0.012±0.0001 0.0194±0.0002 0.0263± 0.0003 0.0244±0.0002
8 0.0164±0.0002 0.0149±0.0001 0.0206±0.0002 0.0263± 0.0002 0.0247±0.0002

Foursquare
2 0.0309±0.0001 0.027±0.0001 0.0304±0.0001 0.0315±0.0 0.0317± 0.0001
4 0.0333±0.0001 0.0295±0.0 0.0327±0.0 0.0362± 0.0001 0.0362± 0.0001
8 0.0358±0.0001 0.0324±0.0001 0.0351±0.0001 0.0383±0.0001 0.0388± 0.0001

Table 4: Mean and std MRR@20 for all methods under the online (τ = 1) and batch setting (τ = 4) on all implicit RS datasets.
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Figure 3: Visualization of the DiPS sketching policy (K = 4)
on the Book dataset for a selected user over 15 time steps.
Cell (i, j) represents whether item i is present in the sketch
and used to successfully recommend item j.

prediction layer. We use uniform reservoir sampling and the
DiPS sketching policy (trained with NCF) to build the sketch;
we train a modified GRU4Rec model on the session items
and the sketched items to recommend the next item. In Fig-
ure 2(b), we plot the performance of the modified GRU4Rec
model. Note that K = 0 represents the standard GRU4Rec
model using only the session data. We see that augment-
ing historical sketch items improve the performance of the
session-based GRU4Rec model by more than 20% on both
datasets. Moreover, the DiPS sketching policy achieves the
same predictive quality as uniform reservoir sampling with
50% fewer sketch items.

Policy Visualization. In Figure 3, we plot the sketching
process (K = 4) following the policy learned by DiPS for
a selected user in the Book dataset for 15 time steps. We
color-coded the columns (time steps) based on successful
(blue)/unsuccessful (red) recommendations (from a total of
23, 774 distinct books), i.e., whether the actual item is in-
cluded in the top-20 recommendations. This user is interested
in the “Mystery/Suspense” and “Fiction” genres. The third
book, “Moon Dance”, is kept in the sketch between time
steps 4 and 12 and used to successfully predict similar items,
such as “Moon Child”. The book “The Girl with the Dragon
Tattoo” is kept in the sketching memory and used to success-

fully predict similar items “The Girl Who Played with Fire’‘
and “The Girl Who Kicked the Hornet’s Nest”. The book
“The Girl Who Kicked the Hornet’s Nest” is not kept in the
sketch, possibly since it is the last book in the original “Mil-
lennium” series; its information is already well-captured in
the sketch by the first book. Although we cannot successfully
predict the book “Samantha Moon: The First Four Vampire”,
it is kept in the sketch to capture the user’s interest on fiction,
which is later used to successfully predict “Dead Until Dark”
with the same theme. We note that although the model is not
able to always successfully recommend items, the sketching
policy captures item properties and adds/removes incoming
items to improve future recommendations.

Conclusions and Future Work

In this paper, we developed a framework for differentiable
sketching policy learning for recommender systems applica-
tions. The policy decides which past items to keep in a small
sketch to explicitly maximize future predictive quality using
items in the sketch. We use a bi-level optimization setup to
directly learn such a sketching policy in a data-driven man-
ner. Extensive experimental results on real-world datasets
under various recommender systems settings show that our
framework can sometimes significantly outperform existing
static, informativeness-based sketching policies. Although
side information (or metadata) often plays an important role
in recommender systems, we did not use any side information
in this paper. We briefly discuss how to incorporate metadata
in the DiPS framework in the supplementary material. Av-
enues for future work include i) using more sophisticated
recommender systems models that take item metadata into
account, and ii) using interpretable recommender systems ar-
chitecture to explicitly interpret how past items in the sketch
help us predict future items (Shi et al. 2020).
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