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Abstract

Positive-Unlabeled (PU) learning methods train a classifier
to distinguish between the positive and negative classes given
only positive and unlabeled data. While traditional PU meth-
ods require the labeled positive samples to be an unbiased
sample of the positive distribution, in practice the labeled
sample is often a biased draw from the true distribution. Prior
work shows that if we know the likelihood that each posi-
tive instance will be selected for labeling, referred to as the
propensity score, then the biased sample can be used for PU
learning. Unfortunately, no prior work has been proposed an
inference strategy for which the propensity score is identifi-
able. In this work, we propose two sets of assumptions under
which the propensity score can be uniquely determined: one
in which no assumption is made on the functional form of
the propensity score (requiring assumptions on the data dis-
tribution), and the second which loosens the data assumptions
while assuming a functional form for the propensity score.
We then propose inference strategies for each case. Our em-
pirical study shows that our approach significantly outper-
forms the state-of-the-art propensity estimation methods on
arich variety of benchmark datasets.

Introduction

Typical binary classification assumes access to a dataset
of labeled positive and negative examples during training.
However, in practice fully-labeled training data are often
unavailable. Instead, we may have only a small set of la-
beled examples any many unlabeled examples. As the nega-
tive class is often highly diverse, it tends to be prohibitively
expensive, if not impossible, to obtain a sufficient labeled
sample of the negative class, causing only some positive in-
stances to be labeled (Bekker and Davis 2020; Hammoudeh
and Lowd 2020). Such Positive Unlabeled (PU) data is char-
acteristic of a wide variety of domains, such as healthcare (a
lack of diagnosis does not mean someone does not have the
disease) and images (most annotators are only asked to la-
bel objects that are in an image, not the infinite number of
objects that are not).

PU learning assumes that a typically-unknown and com-
plex labeling mechanism decides which positive instances
are labeled. This mechanism is usually an imperfect human
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annotator with inherent and unobserved biases. The vast ma-
jority of recent methods for learning from PU data model
this labeling mechanism by assuming that all positive in-
stances are equally likely to be labeled (Bekker and Davis
2020). This is overly simplistic and disregards all biases in
the labeling mechanism, which naturally lead to certain data
points being labeled. For instance, this assumption ignores
the fact that individuals with health insurance (who are more
likely to visit doctors) are more likely to be be diagnosed
than individuals without health insurance. The biased label-
ing mechanism can also be much more socially innocuous:
objects in the foreground of an image are more likely to be
labeled than objects in the background.

The key idea of our work is to recover the true complex
and biased labeling mechanism by identifying the likelihood
that a given positive instance is labeled. Recovering this la-
beling mechanism is essential for biased PU learning, as
success would allow us to train a classifier that distinguish
between the positive and negative classes given only biased
positive and unlabeled data (Bekker, Robberechts, and Davis
2019). Additionally, learning the biased labeling mechanism
allows us to recover the posterior of the positive class, which
we can integrate over to obtain the class prior. This is impor-
tant, as knowing the class prior allows us to compute perfor-
mance metrics for standard positive-negative classification
even when the test set includes only positive and unlabeled
instances (Bekker and Davis 2020). Lastly, knowing the la-
beling mechanism gives insight into why certain instances
were labeled while others were not, which can be important
for explainability tasks.

While one prior work has likewise attempted to learn this
labeling mechanism (Bekker, Robberechts, and Davis 2019),
known as the propensity score, it does not focus on identifi-
ability. Thus, it is unclear when this method may return the
true propensity score and when the returned value may be
nearly arbitrarily incorrect. Our goal thus is to instead de-
velop an approach that produces an identifiable propensity
score.

This is a challenging task. As we do not directly observe
the propensity score, it must be inferred indirectly from the
data. Further, identifying the true propensity score is im-
possible without additional assumptions; when left uncon-
strained, an infinite number of propensity score/posterior
class probability pairs can explain the observed PU data, as



we show in the Preliminaries section.

It is thus crucial to identify scenarios in which the propen-
sity score is identifiable, due to its importance for biased
PU learning. To yield identifiability, additional assumptions
must be made on either the data distribution (specifically,
the likelihoods of the positive and negative class) or on the
propensity score itself. We thus propose two different esti-
mation procedures: one that makes stronger assumptions on
the positive and negative likelihoods but allows for a flexible
propensity score, and another that makes stronger assump-
tions of the propensity score but allows for weaker likeli-
hood assumptions.

We refer to our first case with rigid likelihoods and a flexi-
ble propensity score as the Local Certainty Scenario. Specif-
ically, we assume that the relationship between the observed
features and the true classes is a deterministic function, im-
plying no class ambiguity when observing an instance which
is appropriate for many real cases. For instance, an object
either is or is not present in a given image, and this fact
will not change if the same image is observed again. This
matched a classic data assumption from unbiased PU learn-
ing (Du Plessis and Sugiyama 2014).

We refer to the flexible class likelihood with rigid propen-
sity score as the Probabilistic Gap Scenario. In this case,
we assume that the relationship between the observed fea-
tures and the true class is probabilistic. To allow for this,
we make the reasonable assumption that positive instances
that resemble negative instances are less likely to be labeled.
This handles the case where there is class overlap or ambi-
guity of class assignment for a given instance. For instance,
a temperature check and symptom questionnaire can only
yield the probability that someone has COVID-19, but can-
not diagnose it with 100% certainty.

This work makes the following contributions:

* We establish two scenarios under which the propensity
score can be uniquely identified.

* For each scenario, we propose inference algorithms to
identify the propensity score.

» Through a series of extensive experiments we show that
our models outperform the state-of-the-art methods by
estimating propensity scores more accurately and subse-
quently making more accurate classifications.

Related Work

Positive Unlabeled data has been researched for well over
a decade (Liu et al. 2003). The overwhelming majority of
PU works focus on the case where the positively labeled
samples are an unbiased sample of the true positive distri-
bution (Kiryo et al. 2017; Jain, White, and Radivojac 2017),
and do not address the biased PU setting that is the focus
of our work. These works range from performing classifica-
tion (Elkan and Noto 2008; Guo et al. 2020) to recovering
the positive class prior (Bekker and Davis 2018; Jain, White,
and Radivojac 2016; Zeiberg, Jain, and Radivojac 2020).
Recent Positive Unlabeled work has begun to focus on
the biased setting, where the labeled positives are a biased
sample of the true positives (Jain et al. 2020; Bekker, Rob-
berechts, and Davis 2019; Hammoudeh and Lowd 2020;
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Gerych et al. 2020). Many make the assumption that the
probability of labeling a positive instances follows the order
of the class probabilities (He et al. 2018; Youngs, Shasha,
and Bonneau 2015; Kato, Teshima, and Honda 2019), which
is similar to but slightly more general than the assumption
made by our Probabilistic Gap Scenario method. However,
unlike our work these methods can not and do not recover
the labeling mechanism (propensity score), and generally
focus on making accurate binary classification decisions. A
few other works relax this label ordering assumption (Ham-
moudeh and Lowd 2020; Na et al. 2020), but likewise do
not learn the labeling mechanism and thus do not address
the task that is the focus of this work.

The work that is most closely related to ours is the SAR-
EM method of (Bekker, Robberechts, and Davis 2019). This
paper focuses on our goal of recovering the propensity score.
SAR-EM employs an expectation-maximization algorithm to
jointly find the true class posterior and propensity score by
maximizing the probability of the observed data. However,
as we show in the following section, there are an infinite
number of possible propensity scores over a wide range of
values that perfectly explain the observed data, but are far
from the true propensity score.

The method proposed in (Jain et al. 2020) differs from the
other biased PU methods, as it is designed for recovering the
class prior from biased PU data rather than performing clas-
sification. This approach assumes that there exists clusters
in the distribution of the positive instances, such that the la-
beling probability is constant per cluster. Although not dis-
cussed in (Jain et al. 2020), as this method finds the prior of
each cluster, it can be used to recover this constant propen-
sity score per cluster. This differs from our work by assum-
ing that the propensity score is constant per cluster, and thus
the propensity score can only take on a few discrete values
over the whole data space (limited by the number of clus-
ters).

Preliminaries

The goal of Positive-Unlabeled (PU) learning is to map fea-
tures € X into classes Y = {0,1} given only positive
and unlabeled examples. If for a given = the corresponding
y € Y is 1 then the class is “positive”, otherwise the class is
“negative”. We assume there is a joint distribution p(z, y, £),
such that y € {0, 1} is the class and ¢ € {0, 1} is the label
indicator. If £ = 1, then the instance is labeled (y = 1). If
¢ = 0, then the instance is unlabeled (and either y = 1 or
y = 0). The class y is unobserved; thus, it is not straightfor-
ward to estimate the class posterior p(y = 1|x), while the
label posterior p(¢ = 1|x) can be estimated by training a
non-traditional classifier (Elkan and Noto 2008) to predict
the probability of ¢ (which is observed) given .

We assume the common single training set scenario (also
known as the censoring scenario), in which a sample of data
is collected from the joint distribution p(z,y). When an in-
stance is from the positive class, it is labeled with proba-
bility p(¢ = 1lz,y = 1), and is unlabeled (¢ = 0) oth-
erwise. The alternative PU assumption is the case-control
scenario, in which the unlabeled data is drawn from the
marginal p(z) and another sample of labeled data is drawn
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Figure 1: (a) Local Certainty Scenario. Non-overlapping
class distributions and arbitrary propensity score. (b) Prob-
abilistic Gap Scenario. Allows for non-overlapping classes,
requires propensity score to follow ordering of p(y = 1|z).

from p(¢ = 1]z, y = 1). We describe our method in the sin-
gle training set scenario as it more commonly used in PU
learning (Bekker and Davis 2020). However, like most other
PU techniques, it is straightforward to convert between the
two.

To-date, the vast majority of the literature has focused
on unbiased PU learning. This assumes that the labeled
samples are an unbiased sample of the positive instances:
p({ = 1llz,y = 1) = p({ = 1|y = 1). However, we in-
stead focus on the more challenging and realistic biased PU
learning setting, where the likelihood that an instance is la-
beled depends on the features of that instance. Thus, gener-
ally p(€ = 1z,y = 1) # p(f = 1|y = 1).

Recently, a method for directly modeling p(¢ = 1|z, y =
1), known as the propensity score and referred to by the sym-
bol e, has been proposed (Bekker, Robberechts, and Davis
2019). Theorem shows the value of modeling the propen-
sity score.

Let ¢ be the predicted posterior probability of y. Then,
E[Rpmp(Y|E, L)] = R(Y|X), where R is the standard em-
pirical positive-negative risk of the predictions gy € Y and
R,,,p is the propensity weighted risk defined as

RPTOP(Y‘E7 L) :% Zi(iél(gl) +(1- ;)5()(gz)>
i=1 g v
+ (1=4)do (7)),

ey

such that d; (¢;) is the cost of predicting 4 assuming that y;
is a true positive, and Jo(y;) is the cost assuming y; is a true
negative, L is the set of class labels in the dataset and E is
the set of corresponding propensity scores.

This theorem, proven by (Bekker, Robberechts, and Davis
2019), tells us that if the propensity score is known, we can
train a classifier to predict the true class y using risk min-
imization, given only biased positive and unlabeled data.
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Moreover, this allows us to train a probabilistic classifier to
model the class posterior p(y|x), which is useful for uncer-
tainty analysis and for obtaining an estimate for the class
prior p(y), which is required to calculate several standard
PU classification evaluation metrics (Jain, White, and Radi-
vojac 2017; Bekker and Davis 2020). Note that this is in
contrast to most other biased PU methods, which attempt
to only make accurate binary predictions for y, rather than
modeling the class posterior (Kato, Teshima, and Honda
2019; Youngs, Shasha, and Bonneau 2015). Furthermore,
the propensity score is a model of the complex labeling
mechanism that decided which positive instances were la-
beled and thus provides information on why certain in-
stances were selected to be labeled while others were not.

Existing approaches for calculating the propensity score
do so by maximizing the probability of the observed data,
treating both the class posterior and propensity score as la-
tent variables. Unfortunately, this does not yield an identifi-
able propensity score; there are multiple incorrect hypothe-
sis for the propensity score that are as equally likely to be
returned by the method as is the true propensity score. In
fact, the trivial solution of assuming all positive instances
are labeled (treating all unlabeled instances as negative) with
a corresponding propensity score of 1 for all positives in-
stances is a valid solution.

The focus of this work is thus to develop approaches that
yield an identifiable propensity score. This requires under-
standing when it is even possible for the propensity score to
be identifiable. A natural starting place is to consider the four
different standard data assumptions commonly in PU liter-
ature (Bekker and Davis 2020): Local Certainty/Separable
Classes (Bayes Error of 0 between positive and negative dis-
tributions), Positive Subdomain (there is some region A of
the feature space determined by partial attribute assignment
such that the Bayes error is 0), Positive Function (there is
some region A of the feature space determined by an arbi-
trary function for which the Bayes error is 0), Irreducibility
(the negative distribution is not a mixture containing the pos-
itive distribution).

Let propensity score e be an arbitrary function of z, e :
X — (0,1]. Let the PU assumption hold (y is unobserved,
¢ and x are observed). Then, e is non-identifiable under the
Positive Subdomain, Positive Function, and Irreducibly sce-
narios. Theorem , proven in the Appendix, shows that a gen-
eral propensity score is not identifiable in any of the stan-
dard PU data assumptions other than the Probabilistic Gap
scenario. Thus, we provide an identifiable propensity score
estimation procedure in this setting in the following Local
Certainty Propensity Estimation section.

Note that Theorem only holds for a general propensity
score. If we make stronger assumptions on the propensity
score, we can make less restrictive data assumptions. Thus,
we provide an estimation strategy for an identifiable propen-
sity score in the Positive Function assumption in the Proba-
bilistic Gap Propensity Estimation section, in which we as-
sume a linear functional form for the propensity score.

An overview of the difference of assumptions of these two
scenarios is shown in Figure 1.



Local Certainty Propensity Estimation

We first describe a method to recover the true propensity
score in the Local Certainty scenario. In this setting, we
assume the relationship between the observed features and
the true class is a deterministic function f : X — Y,
where X is the feature space and )V = {0,1} (where 1
is for the positive class and O is for the negative), while
allowing the propensity score to be an arbitrary function
e : supp(p(zly = 1)) — {q € R|0 < ¢ < 1}; i.e., an arbi-
trary function from the feature space of positive instances to
a probability between 0 and 1. Note that the propensity score
is only defined for regions of the feature space where x may
be positive, as in PU learning negative instances are never
labeled. The deterministic f is a valid assumption when the
observed features are sufficient for uniquely determining the
class of each instance. For instance, the features observed
for an image (i.e. the pixels) are sufficient for determining
which objects are in the image.

The first step to identifying the propensity score under lo-
cal certainty is to express it in terms of the positive distribu-
tion and labeled distribution:

e=p(=1llz,y=1) ()
:p(: 1‘1‘; Y= 1)_p(x,y = ) 3)
p(x,y— )
_p(: Laz,y= 1)
plz,y=1) @
_ p(: 17'T)
Cp(zy=1) ®
p(=Dp(z[=1)
oy =1Dplaly =1) ©

While we can take samples from p(z| = 1), we cannot ap-
proximate the above density ratio because we cannot sample
from p(x|y = 1) and no existing prior estimation method is
applicable for estimating p(y = 1) in our biased PU data'.
We thus propose to replace the p(z|y = 1) in the denomina-
tor of the last line with p(x)/p(y = 1).

At a glance, this seems like an arbitrary and poor approx-
imation of p(x|y = 1). However, note that p(z) = p(y =
Dp(zly = 1) + (1 — ply = 1))p(zly = 0). Further, un-
der the local certainty assumption there is no overlap be-
tween the positive and negative assumptions so for a posi-
tive instance z, p(zly = 0) = 0 as there is no ambiguity
of class belongingness for any observation. Thus, for pos-
itive instance z, p(z) = p(y = 1)p(z|y 1) + 0 and
so p(z|ly = 1) = p(y = 1)~ !p(x). This means that mak-
ing this substitution in the denominator of Equation 6 will
produce the exactly correct propensity score for all positive
instances. Let e* then be the value when we swap into the
denominator of Equation 6:

o p(=

Dp(z| =
p(x)
"More precisely, there is no previously proposed method for

calculating this class prior from biased PU data under the local
certainty assumption.

1
) . @)
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Note that the true propensity score, given in Equation 6,
is undefined for all negative instances under the Local Cer-
tainty Scenario, as the denominator will equal 0 when z is
outside of the support of the positive class (which all neg-
ative instances will be under the deterministic mapping as-
sumption). However, e* will be 0 for all negative instances,
as p(xz|¢ = 1) = 0 when z is outside of the support of
the positive class by the Positive Unlabeled assumption (i.e.,
no negative instances are labeled). Additionally, note that e*
will only equal O for negative instances because e is strictly
greater than O for all positive instances. Thus,

. {e . e* #£0 ®)
Undefined e* =0

The candidate propensity score e* can be estimated from the
observed PU data because both p(= 1) and p(z| = 1)/p(z)
can be calculated from the observed data. p(= 1) can be
easily calculated by simply calculating the ratio of labeled
vs unlabeled data. The ratio of p(z| 1) to p(x) can
be estimated using density ratio estimation (Rhodes, Xu,
and Gutmann 2020; Sugiyama, Suzuki, and Kanamori 2012;
Sugiyama 2009) by taking samples from biased positives for
p(z| = 1) and samples from the unlabeled instances for
p(z). Alternatively, this ratio can be calculated as the poste-
rior probability of the label indicator. Thus, the output of a
flexible probabilistic classifier trained to distinguish labeled
vs. unlabeled, rather than positive vs. negative, can be used
to obtain an estimate for e*.

Equation 8 is the theoretically accurate value of the
propensity score. However, in practice it is useful to have
an estimate of e that is defined for all points when using
e to train a classifier to determine the true class y. In this
case, we propose directly using e* as the estimated value of
the propensity score e for all points. This substitution intro-
duces no bias when used to train such a classifier: Let € be
an estimate for propensity score e. Then,

Zyl 1_*

This is shown in (Bekker, Robberechts, and Davis 2019)
and the proof is repeated in our appendix for the sake of
completeness. Theorem implies that estimated propensity
scores of negative instances do not introduce any bias when
they are used to estimate p(y = 1|z). Therefore defining the
propensity score for negative instances to be O (or in fact any
value) will not affect the downstream posterior estimates.

Thus, Equation 7 is a good estimate of the propensity
score e in the case where the class of each instance is deter-
ministic given the observed features. However, as discussed
in our Introduction, for certain tasks the true class can not be
determined with 100% certainty. In this scenario, the deriva-
tion that leads us to Equation 7 no longer applies, and so e*
may no longer be a good estimate of the propensity score.
For this reason, we propose an additional estimation method
for e that applies to the probabilistic problem setting, de-
scribed in the following section.

bias(Ryrop(Y|E, L)) 61(9) — do(9))



Probabilistic Gap Propensity Estimation

We now describe how we recover the true propensity score
in the probabilistic setting, which we refer to as the Proba-
bilistic Gap Scenario. We assume that there is a probabilistic
function f : X — ), such that f(x) = 1 with probability
g(x), where g : X — {q € R|s.t.0 < ¢ < 1}. Addition-
ally, we assume that The first assumption we now make is
that there exists some region of the support of the positive
class for which p(y = 1|z) = 1; i.e., there is some region
without overlap, even if in general there is uncertainty for
the class assignment. Informally, one can imagine this be-
ing the case for instances very far away from the majority of
the negative instances. We note that this corresponds to the
common Positive Function data assumption made in prior
PU works (Bekker and Davis 2020) and described in our
Preliminaries section. Unfortunately, as stated in Theorem ,
the propensity score is unidentifiable in this scenario when
there are no additional assumptions made on the propensity
score. Thus, we identify assumptions on the functional form
of the propensity score in order to yield identifiability.

To this end, we base our propensity score assumption of
of the common invariance of order assumption made by
methods for biased PU learning (He et al. 2018; Youngs,
Shasha, and Bonneau 2015; Kato, Teshima, and Honda
2019). This corresponds to p(¢ = 1|x) following the or-
der of p(y = 1|z); ie, if p(y = 1|z1) > p(y = 1|z2)
then p(¢{ = 1|ax1) = p(£ = 1|x2). However, this ordering
assumption is slightly too weak to yield identifiability.

Let the Positive Function scenario and invariance of or-
der assumption hold. Then, the propensity score is not iden-
tifiable We show that e is non-identifiable by construct-
ing multiple valid propensity score and class posterior pairs
(both of which are latent variables that determine each other,
as p(y 1jz) - e = p(= 1|z)). Let the class posterior
hypothesis be p(y = 1|z) = p(= 1|z)*/N, and let the
corresponding propensity score p(= lly = 1,2) = p(=
1\;1:)(N —1/N 1n this case, for any positive integer N greater
than 1, p(= 1|z) will follow the order of p(y = 1|z), and
the propensity score/class posterior pair are valid. Thus, the
propensity score is not identifiable under the invariance of
order assumption.

We thus modify the invariance of order assumption
slightly by assuming that the propensity score is a linear
function of the class posterior; i.e., e = k- p(y = 1|z). Intu-
itively, this corresponds to assuming that positive instances
that have less class ambiguity, or are more typical of the pos-
itive class, have a higher likelihood of being labeled. This is
a reasonable assumption for many real-world applications.
For instance, consider a human annotator who is tasked with
labeling the objects in an image. Objects that are obscured,
blurred, in the background, or otherwise difficult to identify
will be less likely to be labeled than objects clearly in the
foreground of the image.

Let ; be an instance in the feature space where p(y;
1]z;) = 1, as we assume exists according to Positive Func-
tion. In this case, the corresponding e; would be equal to &,
ase; = k-p(y = 1|z;) = k- 1. This implies that p(;= 1|z;)
would likewise equal k, as p(;= 1|x;) = e; - p(y; = 1|z;)
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k- 1.

Moreover, this implies that p(;= 1|z;) = Supz~x[p(=
1]|z*)]. Therefore, we can obtain the value of k£ by model-
ing the posterior probability of the label indicator , and then
finding the value that maximizes this probability. Thus, if
h(x) is a model of p(= 1|z),

k= Supy-~x[hx)).

Next, using Equation 9 we can e from h:

(€))

e-ply = lz) =h)

e2

Zh(fL‘)

e=y/k-h)
e =\/Supsexlh(@)] - hez)

Therefore, we can obtain an estimate of the propensity
score in this setting by first training a model of the posterior
of the label indicator, such that the propensity score is the
root of this posterior probability scaled by a constant that is
also obtained from the label posterior.

Experiments

We study the effectiveness of our Local Certainty and Proba-
bilistic Gap methods on several benchmark datasets. We use
a Gaussian Process Classifier (Rasmussen 2003) to model
the label indicator posterior necessary for each method. As
implied, we calculate Equation 7 by using the posterior of
the label indicator rather than more-complex density ratio
estimates. Additional experiments are available in the sup-
plementary materials.

Experimental Setup

Compared methods. We compare against a method that as-
sumes constant labeling as a baseline. Specifically, we em-
ploy the state-of-the-art class prior estimation TiCE (Bekker
and Davis 2018) to find an estimate of p(y 1), and
then obtain an estimate of the propensity score by obtain-
ing p(= 1|y = 1) from the estimated p(y = 1). We call this
baseline Constant, as it assumes that the propensity score is
constant for all positive instances. We also compare against
the two existing PU methods that estimate the propensity
score: SAR EM (Bekker, Robberechts, and Davis 2019) and
the method proposed in (Jain et al. 2020) which we refer to
as Cluster. We use the publicly-available code for TiCE? and
SAR EM? and implement Cluster ourselves.

Datasets. We use several standard benchmark datasets
from the UCI Machine Learning Repository (Dua and Graff
2017): Yeast (Horton and Nakai 1996), Bank (Dua and
Graff 2017), Wine (Aeberhard, Coomans, and De Vel
1994), HTRU_2 (Lyon et al. 2016), Occupancy (Can-
danedo and Feldheim 2016), and Adults (Kohavi 1996).

We likewise use two real-world datasets: Yelp
Reviews (Zhang, Zhao, and LeCun 2015) and PASCAL
vOC 2007 (Everingham et al. 2007).

“https://dtaid.cs. kuleuven.be/software/tice
*https://dtai.cs kuleuven.be/drupal/software/sar
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Figure 2: Results for recovering the propensity score for the arbitrary propensity setting. Our Local Certainty method signifi-
cantly outperforms state-of-the-art on 4/6 datasets, and is never itself outperformed.

These datasets were chosen to have a wide variety in
dataset domains, size, and cardinality. Multi-class datasets
were converted into binary classification problems when
necessary as was done by (Jain et al. 2020). Random 70/30
train/test splits were used for each dataset. Each experiment
was repeated 10 times in order to obtain confidence inter-
vals. Additional dataset details are available in the supple-
mental materials.

Recovering the Propensity Score

We evaluate the ability of each method to recover the
propensity scores in two settings: One in which the true
propensity score is an arbitrary complex function and there
is little to no overlap between classes (the Local Certainty
Scenario) and the setting where the Probabilistic Gap as-
sumptions are met (classes overlap and the propensity score
is a scaled version of the class posterior). We refer to these
as Arbitrary Propensity and Scaled Propensity, respectively.

Arbitrary Propensity. In this experiment, we decide
which positives are labeled according to an arbitrarily com-
plex propensity score. Specifically, we cluster the distances
of the positive instances from the mean into 20 bins or clus-
ters using k-means (such that the clustering is on the dis-
tances, not the positions of the points in the feature space).
Each bin is assigned a random propensity score between 0.1
and 0.9. Ten trials are run per dataset and bins are randomly
assigned for each. This creates a very complex propensity
function to test the ability of the Local Certainty method
to recover the propensity score without assuming a spe-
cific functional form. Additional details on the experimen-
tal setup are available in the supplemental materials. Results
of these experiments on each dataset are shown in Figure
2, which reports the MAE between the estimated propensity
scores and the true propensity score.

As Figure 2 shows, our Local Certainty method signifi-
cantly outperforms all other methods for all but one dataset
where our method ties SAR EM. As expected, the Proba-
bilistic Gap method does not perform particularly well (usu-
ally in third place), as the assumptions of this method are not
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met in this problem setting. SAR EM is generally in second
place, which is again expected as, unlike the other non-Local
Certainty methods, it does not require a particular functional
form for the propensity score. However, SAR EM is likely
to converge to an incorrect estimate of the propensity score
even when the classes are separable. Our method corrects
for this case and so consistently outperforms SAR EM.

Note that these datasets were not modified to enforce the
class separability assumption of the Local Certainty sce-
nario. However, previous work has shown that classifiers
have been able to achieve close to 100% accuracy on these
datasets, indicating that there is already naturally little or no
class overlap.

Scaled Propensity. We next evaluate the performance of
each method when the Probabilistic Gap assumptions are
met: the classes overlap and the propensity score is a con-
stant multiple of the class posterior (such that an instance
more typical of the positive class is more likely to be la-
beled). To this end, we introduce class overlap to these
benchmark datasets. This is achieved by applying Border-
line SMOTE (Han, Wang, and Mao 2005) to generate sam-
ples along the boundary of the positive and negative class,
such that negative samples were generated on the positive
side and vice versa. We apply this and ensure a roughly 30%
class overlap for each dataset.

The ground truth propensity score in this setting is deter-
mined by first training a probabilistic classifier logistic re-
gression model) to find the posterior of the positive class.
Then, the propensity score was determined as the posterior
model multiplied by a constant k, where k was randomly
sampled from 0.3 to 0.8. k& was re-sampled for each run, for
ten runs per dataset.

Our findings are shown in Figure 3. Our Probabilistic Gap
method significantly outperforms all other methods on each
dataset, indicating that this approach does indeed more ac-
curately recover the propensity score in this scenario.

Interestingly, we observe that our Local Certainty method
is 2nd best, meaning that the Local Certainty method is ro-
bust to its class separability assumption being broken.
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Figure 3: Results for recovering the propensity score for the scaled propensity setting. Our Probabilistic Gap method always
significantly outperforms the state-of-the-art.

Dataset | Prop. Func. | LC (Ours) PG (Ours) Cluster SE Constant
PASCAL VOC Arbitrary | 0.13+/-0.03 | 0.31+/-0.04 | 0.45+/-0.04 | 0.20+/-0.04 | 0.30+/-0.13
PASCAL VOC Scaled | 0.10+/-0.05 | 0.09+/-0.05 | 0.84+/-0.08 | 0.12+/-0.08 | 0.74+/-0.08

Yelp Arbitrary | 0.15+/-0.02 | 0.18+/-0.02 | 0.29+/-0.04 | 0.21+/-0.07 | 0.25+/-0.03
Yelp Scaled | 0.08+/-0.04 | 0.04+/-0.02 | 0.28+/-0.03 | 0.09+/-0.03 | 0.12+/-0.06

Table 1: Mean absolute error between true and recovered propensity score for each method on two real-world datasets.

Dataset HTRU 2 Adult Bank Wine Yeast Digits
LC (Ours) | 0.04+/-0.00 | 0.35+/-0.02 | 0.06+/-0.01 | 0.24+/-0.02 | 0.44+/-0.00 | 0.21+/-0.01
PG (Ours) | 0.10+/-0.00 | 0.40+/-0.00 | 0.22+/-0.01 | 0.36+/-0.02 | 0.47+/-0.00 | 0.33+/-0.01
Cluster | 0.054/-0.00 | 0.37+/-0.00 | 0.09+/-0.00 | 0.48+/-0.01 | 0.46+/-0.00 | 0.23+4/-0.00
SE | 0.10+/-0.05 | 0.374/-0.01 | 0.09+/-0.01 | 0.47+/-0.05 | 0.46+/-0.01 | 0.33+/-0.03
Constant | 0.43+/-0.00 | 0.70+/-0.01 | 0.174/-0.01 | 0.34+/-0.02 | 0.46+/-0.00 | 0.29+/-0.01

Table 2: Classification error for arbitrary propensity score scenario

Dataset HTRU 2 Adult Bank Wine Yeast Digits
LC (Ours) | 0.144/-0.01 | 0.75+/-0.01 | 0.384/-0.03 | 0.26+/-0.01 | 0.45+/-0.01 | 0.51+/-0.02
PG (Ours) | 0.054/-0.00 | 0.25+4/-0.03 | 0.30+/-0.01 | 0.25+/-0.02 | 0.41+/-0.01 | 0.27+/-0.01
Cluster | 0.04+/-0.00 | 0.27+/-0.00 | 0.33+/-0.00 | 0.78+/-0.01 | 0.45+/-0.00 | 0.51+/-0.01
SE | 0.14+/-0.08 | 0.26+/-0.01 | 0.35+/-0.01 | 0.51+/-0.06 | 0.44+/-0.01 | 0.49+/-0.03
Constant | 0.43+/-0.00 | 0.464/-0.03 | 0.39+/-0.01 | 0.34+/-0.03 | 0.46+/-0.00 | 0.54+/-0.01

Table 3: Classification error for scaled propensity score scenario
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Real-World Datasets. The previous experiments were
conducted on benchmark datasets that were modified to
meet our assumptions. To show the robustness of our ap-
proach and utility for real-world datasets, we perform exper-
iments on two additional real-world datasets: PASCAL-VOC
2007 (featurized using a pre-trained Resnet-18 model (He
et al. 2016)) and the Yelp Reviews dataset. The data was
not modified to meet our data assumptions (i.e.,we did not
ensure separable classes, or add new data using SMOTE).
For each dataset, we performed experiments with either the
arbitrary propensity score or the linear propensity score,
as was done with the other datasets in our paper. Table 1
shows the results of these experiments. Our Local Certainty
method still outperforms all other methods on both real-
world datasets for the arbitrary propensity score experiment,
and performs second only to our other method (Probabilis-
tic Gap) for the linear propensity score (as expected). This
shows that our methods still outperform the state-of-the-art
even on complex, real-world datasets.

Utility of Recovered Propensity Scores:
Using Propensity Sores For Classification

As discussed in the Preliminaries section, the propensity
score can be used for classification. We thus illustrate the
utility of our estimated propensity scores by comparing
the class posteriors obtained from our estimated propensity
scores to those obtained form the state-of-the-art propen-
sity estimation methods. We achieve this by training a
down-stream classifier for each dataset using the propensity-
weighted risk (Equation 1). We utilize the propensity scores
obtained in the the “Recovering the Propensity Score” ex-
periments; thus, the dataset preparation and details for those
experiments hold true for this experiment as well.

The results, shown in Table 2 and Table 3, demon-
strate that our Local Certainty method produces a down-
stream classifier with the lowest (best) error for the Arbi-
trary Propensity setting (Table 2 ), and our Probabilistic Gap
method produces the best classifier in 5/6 of the datasets in
the Scaled Propensity setting (Table 3). This shows that our
methods nearly always result in the training of a more accu-
rate classifier than the state-of-the-art propensity-recovering
PU methods.

Additional Experiments

We include additional experiments in the Appendix. First,
we show that the Probabilistic Gap method does perform
well as long as the propensity score follows the order of
the class posterior, even if the true propensity is not exactly
a constant multiple of the class posterior (thus, the method
still produces good results even when its somewhat strong
assumption is broken). Additionally, we show how the per-
formance of our methods is degraded when a poor estimate
of the label indicator posterior is used, showing the need to
pick a robust posterior model.

Conclusion

This work proposes a significant step forward for PU learn-
ing in the biased setting, which is more realistic than much
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of the prior work. Specifically, we establish two cases where
the propensity score can be uniquely identified, and propose
estimation strategies for recovering this propensity score.
This is important, as knowing the propensity score allows
us to learn the true class posterior and to calculate impor-
tant quantities such as the class prior. We show that our
approach significantly outperforms existing methods, even
in cases where our model’s assumptions are not completely
met. This work also serves as a jumping off point for future
research directions for biased PU learning. In particular, we
foresee estimation procedures for a propensity score in the
probabilistic setting that do not follow the rigid probabilistic
gap assumption.
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