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Abstract

Recent research on graph neural network (GNN) models suc-
cessfully applied GNNs to classical graph algorithms and
combinatorial optimisation problems. This has numerous ben-
efits, such as allowing applications of algorithms when pre-
conditions are not satisfied, or reusing learned models when
sufficient training data is not available or can’t be generated.
Unfortunately, a key hindrance of these approaches is their
lack of explainability, since GNNs are black-box models that
cannot be interpreted directly. In this work, we address this
limitation by applying existing work on concept-based ex-
planations to GNN models. We introduce concept-bottleneck
GNNs, which rely on a modification to the GNN readout mech-
anism. Using three case studies we demonstrate that: (i) our
proposed model is capable of accurately learning concepts
and extracting propositional formulas based on the learned
concepts for each target class; (ii) our concept-based GNN
models achieve comparative performance with state-of-the-art
models; (iii) we can derive global graph concepts, without
explicitly providing any supervision on graph-level concepts.

Introduction
Graph neural networks (GNNs) have successfully been ap-
plied to problems involving data with irregular structure, such
as quantum chemistry (Gilmer et al. 2017), drug discovery
(Stokes et al. 2020), social networks (Pal et al. 2020) and
physics simulations (Battaglia et al. 2016). One of the latest
areas of GNN research focuses on using GNNs for emulation
of classical algorithms (Cappart et al. 2021). In particular,
this research explored applications of GNNs to iterative al-
gorithms (Veličković et al. 2020b; Georgiev and Liò 2020),
pointer-based data structures (Veličković et al. 2020a; Strath-
mann et al. 2021), and even planning tasks (Deac et al. 2020).
Importantly, these works demonstrate that GNNs are capable
of strongly generalising to input graphs much larger than the
ones seen during training.

Unfortunately, in all of the aforementioned cases, these
state-of-the-art GNN models are black-boxes, whose be-
haviour cannot be understood/intepreted directly. In practice,
this can lead to a lack of trust in such models, making it chal-
lenging to apply and regulate these models in safety-critical
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applications, such as healthcare. Furthermore, this lack of in-
terpretability also makes it difficult to extract the knowledge
learned by such models, which prevents users from better
understanding the corresponding tasks (Adadi and Berrada
2018; Molnar 2020; Doshi-Velez and Kim 2017).

Recent work on Explainable AI (XAI) introduced a novel
type of Convolutional Neural Network (CNN) explanation ap-
proach, referred to as concept-based explainability (Koh et al.
2020; Kazhdan et al. 2020b; Ghorbani et al. 2019; Kazhdan
et al. 2021). Concept-based explanation approaches provide
model explanations in terms of human-understandable units,
rather than individual features, pixels, or characters (e.g., the
concepts of a wheel and a door are important for the de-
tection of cars) (Kazhdan et al. 2020b). In particular, work
on Concept Bottleneck Models (CBMs) relies on concepts
and introduces a novel type of interpretable-by-design CNN,
which perform input processing in two distinct steps: com-
puting a set of concepts from an input, and then computing
the output label from the concepts (Koh et al. 2020).

In this paper, we apply the idea of CBMs to GNN models,
by introducing Concept Bottleneck Graph Neural Networks
(CBGNNs). In particular, we rely on the encode-process-
decode paradigm (Hamrick et al. 2018), and apply concept
bottleneck layers before the output of GNN models – see Fig-
ure 1. By doing this we are able to extract update/termination
rules for the step updates of step-level combinatorial opti-
misation approaches (Veličković et al. 2020b,a; Deac et al.
2020; Strathmann et al. 2021).

Importantly, we show that by relying on a suitable set of
concepts and supervising on them, we are capable of deriving
the rules of classical algorithms such as breadth-first search
(Moore 1959), and Kruskal’s algorithm (Kruskal 1956), as
well as more advanced heuristics such as parallel graph color-
ing (Jones and Plassmann 1993). Furthermore, we present an
approach to utilise node-level concepts for extracting graph-
level rules. Our evaluation experiments demonstrate that all
of our extracted rules strongly generalise to graphs of 5×
larger size.

To summarise, we make the following contributions in this
work:

• Present Concept Bottleneck Graph Neural Networks
(CBGNN), a novel type of GNN relying on intermedi-
ate concept processing. To the best of our knowledge, this
is the first work to apply concept bottleneck approaches
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Figure 1: An overview of our Concept Bottleneck Graph Neural Network (CBGNN) approach. Importantly, CBGNN models can
be trained to extract concept information for a given task as well as algorithm rules. We give examples of 3 algorithms, showing
how CBGNN extract concepts from the input data and then uses these to compute the output.

to GNNs.
• Quantitatively evaluate our approach using three differ-

ent case-studies (BFS, graph colouring, and Kruskal’s),
showing that our CBGNN approch is capable of achieving
performance on-par with that of existing state-of-the-art

• Qualitatively evaluate our approach, by demonstrating
how the concepts utilised by CBGNN models can be
used for providing rules summarising the heuristics the
CBGNN has learned

Related Work
GNN Explainability Recent work began exploring applica-
tions of XAI techniques in the context of GNNs. For instance,
work in (Pope et al. 2019; Baldassarre and Azizpour 2019;
Schnake et al. 2020) adapt feature-importance gradient-based
approaches used for CNN applications (such as Class Acti-
vation Mappings, or Layer-wise Relevance Propagation) to
GNNs, in order to identify the most important nodes/sub-
graphs responsible for individual predictions. Alternatively,
works in (Ying et al. 2019; Vu and Thai 2020; Luo et al.
2020) focus on more complex approaches unique to GNN
explainability, such as those based on mutual information
maximisation, or Markov blanket conditional probabilities
of feature explanations. Importantly, these works focus on
GNN tasks and benchmarks involving social networks, chem-
istry, or drug discovery, instead of focusing on combinatorial
optimisation tasks, which is the focus of this work. Further-
more, these works focus on explaining pre-trained GNNs
in a post-hoc fashion, whereas we focus on building GNN
models interpretable-by-design. Finally, these works focus on
feature-importance-based explanation approaches (i.e. retur-
ing relative importance of input nodes/subgraphs), whereas
we rely on concept-based explanation approaches instead.

Concept-based Explainability A range of existing works
have explored various concept-based explanations applied to
CNN models. For instance, work in (Ghorbani et al. 2019;

Kazhdan et al. 2020b; Yeh et al. 2019) introduce approaches
for extracting concepts from pre-trained CNNs in an unsuper-
vised, or semi-supervised fashion. Work in (Chen, Bei, and
Rudin 2020; Koh et al. 2020) rely on concepts for introducing
CNN models interpretable-by-design, performing processing
in two distinct steps: concept extraction, and label prediction.
Other works on concepts include studying the connection
between concepts and disentanglement learning (Kazhdan
et al. 2021), as well as using concepts for data distribution
shifts (Wijaya et al. 2021). Importantly, these works explore
concepts exclusively in the context of CNNs, with (Kazhdan
et al. 2020a) being the only work exploring concepts in the
context of RNN models. In this work, we focus on concept-
based explainability for GNNs, where, similar to Koh et al.
(2020), the concepts are human-specified.

Combinatorial Optimisation for GNNs Following the
hierarchy defined in Cappart et al. (2021), our work classifies
as a step-level approach. We directly extend on Veličković
et al. (2020a,b), therefore we use the models presented in
these works as baselines. We do not compare our model to an
algorithm-level combinatorial optimisation approaches (Xu
et al. 2020; Tang et al. 2020; Joshi et al. 2020) or unit-level
ones (Yan et al. 2020) for the following reasons: Algorithm-
level approaches usually give one output per data sample
(rather than one output per step), but rules/invariants of a
given algorithm come from how the iteration proceeds mak-
ing algorithm-level combinatorial optimisation less suitable
for a concept bottleneck. Unit-level learning focuses on learn-
ing primitive units of computation, such as taking maximum
or merging lists and then combining these manually – having
explanations at this level would not be of great benefit. To
the best of our knowledge, only Veličković et al. (2020a)
attempted to explain GNN predictions, using GNNExplainer
(Ying et al. 2019). However, their model (i) was not explain-
able by design and (ii) required further optimisation for a
single sample to give a local explanation. All other previous
works operated in a black-box fashion and did not consider
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explainability of the learnt models.

Methodology
Encode-process-decode Following the “blueprint” for
neural execution outlined in Veličković et al. (2020b), we
model the algorithms by the encode-process-decode architec-
ture (Hamrick et al. 2018) applied on a graph with nodes V
and edges (edge index) E. For each algorithm A, at a (itera-
tion) timestep t of the algorithm, an encoder network fA en-
codes the algorithm-specific node-level inputs z(t)i into the la-
tent space. These node embeddings are then processed using
the processor network P , usually a GNN. The processor takes
as input the encoded inputs Z(t) = {z(t)i }i∈V and graph edge
indexE to produce latent features H(t) = {h(t)

i ∈ R|L|}i∈V ,
where |L| is the size of the latent dimension. In contrast with
previous work, we calculate algorithm outputs by first passing
the latent embeddings through a decoder network g′A, which
produces concepts for each node C(t) = {c(t)i ∈ (0, 1)|C|},
where |C| is number of concepts. The concepts are then
passed through a concept decoder gA to produce node-level
outputs Y(t) = {y(t)

i }.
Where applicable, we also utilise a termination network

TA for deciding when to stop the algorithm’s execution. How-
ever, in contrast with prior work, we observed that training is
more stable if we calculate the termination probability based
on potential next step embeddings (i.e. a belief about what is
the state after an iteration has been executed). Additionally
we found it insufficient to use the average node embeddings
as input to TA – averaging would obfuscate the signal if
there is just a single node which should tell us whether to
continue iterating or not. Instead, we opted to use the output
of an adapted PrediNet (Shanahan et al. 2020) architecture
with one attention head. PrediNet is designed to represent the
conjunction of elementary propositions, therefore it can (the-
oretically) capture the logical bias of the termination rules.
The whole idea is visualised in Figure 1 as well as in the
equations below (and further detailed in the Appendix):
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(
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))
(8)

where σ is a logistic sigmoid function. When using TA, equa-
tions 1-8 are repeated if τ (t) > 0.5.

The combination of encoded inputs, together with the la-
tent state of the given node, contains sufficient information

not only about the output at a given step, but also: (i) a node’s
current state and (ii) observations about other nodes’ states
in its neighbourhood. If our concepts are engineered to cap-
ture some knowledge of either (i) or (ii), then we can extract
meaningful algorithm output explanations without provid-
ing any explicit information about how the algorithm works
(theorems, invariants, etc.)

Explicitly relational GNN architecture Some graph level
tasks (e.g. deciding termination) can be reduced to a logical
formula over all nodes – for the algorithms and concepts we
consider, termination can be reduced to existence of a node
with specific properties. (See graph-level rule extraction). We
engineer this logical bias into the termination network τ by
adapting PrediNet (Shanahan et al. 2020) to the graph do-
main. The PrediNet network architecture learns to represent
conjunction/disjunction of elementary propositions and is
therefore suitable for the termination task. We list the two
minor modifications we made to adapt PrediNet to our tasks
in Appendix A.

Extracting node-level algorithm rules After the network
has been trained deciding node-level formulas for algorithm
A is achieved by examining the weights of the concept de-
coder gA. To achieve this, we used the open-source package
pytorch explain1 (Barbiero et al. 2021) implementing
a wide collection of techniques to extract logic-based ex-
planations from concept-bottleneck neural networks (Gori
2017; Ciravegna et al. 2020). The library takes as inputs (i)
node-level output decoder weights, (ii) predicted concepts
from training data, and (iii) training data ground truth labels,
and generates logic formulas in disjunctive normal form as
outputs (Mendelson 2009). By construction, the concept de-
coder ḡA ≈ gA learnt from concepts C to outputs O is a
Boolean map. As any Boolean function, it can be converted
into a logic formula in disjunctive normal form by means of
its truth-table (Mendelson 2009). The weights of the concept
decoder gA are used to select the most relevant concepts for
each output task. To get concise logic explanations when
many concepts are required as inputs (in our experiments
this is only the graph coloring task), we add a regularization
term in the loss function minimising the L1-norm of the con-
cept decoder weights W , leading to sparse configurations of
W . Later, at the training epoch tprune, first-layer weights are
pruned concept-wise, i.e. removing all the weights departing
from the least relevant concepts:

W̃ 1
j = W 1

j I||W 1
j ||1≥maxi

||W1
i
||1

2

, for i = 1, . . . , |C|

(9)
where I is the indicator function and W 1 are weights of the
first layer. Further details on logic extraction are provided in
Appendix B.

Extracting algorithm termination rules When deciding
whether to continue execution, we use the fact that a number
of graph algorithms continue iterating until a node with a spe-
cific combination of concepts exists. Since it is unclear what
combination of concepts we should supervise towards, we

1Apache 2.0 Licence.
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Algorithm Concepts Example ground-truth explanations
(not provided to the model)

BFS hasBeenV isited (hBV ) hV N(i) =⇒ y
(t)
i = 1

hasV isitedNeighbours (hV N ) ∃i.¬hBV (i) ∧ hV N(i) =⇒ τ (t) = 1

Coloring

iC(i) ∧ c1S(i) ∧ ¬c2S(i) =⇒ y
(t)
i = 2

isColored (iC), hasPriority (hP )
colorXSeen (cXS), X ∈ {1, .., 5} (¬iC(i) ∧ hP (i) ∧ c1S(i) ∧ c2S(i)

∧ ¬c3S(i)) =⇒ y
(t)
i = 3

Kruskal’s

(lEV (i) ∧ ¬nISS(i) ∧ ¬eIM(i))

lighterEdgesV isited (lEV ) =⇒ y
(t)
i = 1

nodesInSameSet (nISS)
edgeInMst (eIM ) (nISS(i) ∧ ¬eIM(i))

=⇒ y
(t)
i = 0

Table 1: Algorithms and their corresponding concepts. We provide some sample ground truth explanations. Visual examples of
how the algorithms work can be seen in Figure 1.

took a full enumeration approach, applied only to the training
data, when extracting rules for termination. First, we generate
a sample j of the form (Uj , τ ′j) from the training set from
each step for a given graph. τ ′j is the ground truth for whether
we should keep iterating, and Uj = {c′1, . . . , c′k} is a set
of all unique concepts combinations,2 after the algorithm
update state has been performed (hence c′). Given a set of
concept indexes3 I ⊆ P({1..|C|}), where P denotes power-
set, and truth assignment T : {1..|C|} → {0, 1} telling us
which concepts must be true/false, we check if the following
is satisfied:

∀j
(
τ ′j = 1 ⇐⇒ (∃c ∈ Uj . ∀Ii ∈ I. cIi = T (Ii))

)
(10)

i.e. we should continue iterating if a special concept combi-
nation exists, and we should stop iterating if it does not. We
employ a brute-force approach for finding I and T , break-
ing ties by preferring smaller I.4 The complexity of such an
approach is exponential, but if the concept bottleneck is care-
fully engineered, the number of necessary concepts, and/or
the number of concepts in the special combination will be
small, making the computation feasible.

More importantly, if the same enumeration approach was
applied to the raw node input data a I/T combination may
not exist. For example, the node-level inputs for the BFS task
on each step do not tell us which nodes have visited neigbours
(crucial for deciding termination). Additionally, if we have
larger number of input features, the brute-force approach
may not be computationally feasible – the combinations scale
exponentially with the number of node features and concepts
are one way to reduce this number.

2k may vary across samples
3{a..b} denotes the set of integers from a to b
4In our case this broke all ties, but, if necessary, one can add

tie-break on truth assignment, by e.g. choosing assignments with
more true/false values

Experimental Setup
Algorithms considered We apply our GNN to the follow-
ing algorithms: breadth-first search (BFS), parallel coloring
(Jones and Plassmann 1993), a graph coloring heuristic, and
Kruskal’s minimum spanning tree (MST) algorithm (Kruskal
1956). BFS is modelled as a binary classification problem
where we predict whether a node is visited or not, parallel
coloring – as a classification task over the classes of possible
node colors, plus one class for uncolored nodes. Kruskal’s
is modelled as two tasks trained in parallel – one, as a clas-
sification task to choose the next edge to be considered for
the MST and one to help us decide which nodes belong to
the same set. As the original Kruskal’s algorithm executes
for |E| steps, we do not learn termination for the MST task
and stick to a fixed number of steps. We show how we model
inputs/outputs for all algorithms in Appendix C.

Importantly, all algorithms we experimented with posses
the following two properties: (i) node/edge outputs are dis-
crete and can be described in terms of concepts; (ii) con-
tinuing the execution can be reduced to the existence of a
node with a specific combination of features. Examples of
classical algorithms that do not fall into this category are the
class of shortest path algorithms: to explain such algorithms,
we would need to use arithmetic (e.g. minimum, sum) for the
rules – something that concepts cannot directly capture. We
leave explanation of such algorithms for future work.

To generate our concepts, we took into account what prop-
erties of the nodes/neighbourhood the algorithm uses, but we
did not provide any details to the model how to use them.
Table 1 gives more details on what concepts we chose and
some example explanations. We give an outline how one can
use these concepts for explaining the algorithms, in Appendix
D.

Data generation Following prior research on the topic of
neural execution (Veličković et al. 2020b), for BFS we gener-
ate graphs from a number of categories – ladder, grid, Erdős-
Rényi (Erdős and Rényi 1960), Barabási-Albert (Albert and

6688



Barabási 2002), 4-Community graphs, 4-Caveman graphs
and trees. For the coloring task, we limit the number of col-
ors to 5 and then generate graphs where all nodes have fixed
degree 5. This made the task both challenging (i.e. there are
occassions where 5 colors are necessary) and feasible (we can
generate graphs that are 5-colorable). Training data for these
tasks graph size is fixed at 20 and we test with graph sizes
of 20, 50 and 100 nodes. For Kruskal’s algorithm, we reused
most graph categories for the BFS task, except the last three
where the graph is either a tree or is not connected. Due to
GPU memory constraints, training MST on graphs of size 20
required reducing the batch size by a factor of 4 and making
the training very time consuming. Therefore, for the MST
task we reduced the size of the training graphs to 8. Testing
is still performed on graphs of size 20, 50 and 100. For all
tasks we did a 10:1:1 train:validation:testing split.5 The data
for each task is generated by the corresponding deterministic
algorithm. More details about the data generation are present
in Appendix E.

Architectures tested We decided to choose message-
passing neural networks (Gilmer et al. 2017) with the max
aggregator for the main skeleton of our processor (GNN)
architecture as this type of GNN is known to align well with
algorithmic execution (Veličković et al. 2020b; Georgiev and
Liò 2020; Veličković et al. 2020a). However, due to the non-
linear nature of some of the tasks (parallel coloring) and the
added concept bottleneck we found it beneficial to add a hid-
den layer to some of the encoders and decoders, rather than
simply model them as an affine projection.

The Kruskal’s algorithm consists of several steps – mask-
ing out visited edges, finding the minimal edge from the
unmasked and checking if two nodes are in the same set and
unifying if they are not. The architecture for this algorithm,
follows the main ideas of Figure 1, to implement them we
combine the architecture of Yan et al. (2020) for the first two
steps and Veličković et al. (2020a) for the third step. More
details can be found in Appendix F.

As we extend on the models in (Veličković et al. 2020b,a)
we use these models as baselines.

Experimental details We train our models using teacher
forcing (Williams and Zipser 1989) for a fixed number of
epochs (500 for BFS, 3000 for the parallel coloring, 100 for
Kruskal’s). When testing BFS/parallel coloring, we pick the
model with the lowest sum of validation losses and when
testing Kruskal’s – the model with highest last-step accu-
racy. For training we use Adam optimizer (Kingma and Ba
2015) with initial learning rate of 0.001 and batch size 32.
We optimise the sum of losses on the concept, output and
termination (except for Kruskal’s, see above) predictions –
for more details on how we define our losses see Appendix
G. We evaluate the ability to strongly generalise on graphs
with sizes 50 and 100. Standard deviations are obtained over
5 runs. For parallel coloring we add L1 regularisation and
pruning on epoch 2000 to obtain higher quality explanations
since every combination of (concepts, output) pair may not

5When working with multiple graph categories, the ratio is pre-
served across each category

Metric |V | = 20 |V | = 50 |V | = 100

MSA 99.09±0.86% 98.74±0.44% 97.92±1.50%
LSA 99.25±0.56% 99.17±0.20% 99.13±0.29%
TA 98.79±0.86% 96.79±1.53% 95.08±2.89%
MSA 99.71±0.11% 99.23±0.21% 98.92±0.59%
LSA 99.69±0.13% 99.17±0.23% 99.10±0.22%
TA 99.61±0.18% 99.02±0.43% 98.59±0.77%
F MSA 99.71±0.12% 99.24±0.21% 98.93±0.59%
F LSA 99.69±0.13% 99.16±0.22% 99.08±0.19%
F TA 99.51±0.17% 99.02±0.43% 98.48±0.74%
*C MSA 99.85±0.05% 99.60±0.10% 99.45±0.29%
*C LSA 99.72±0.07% 99.35±0.23% 99.42±0.09%

Table 2: Parallel coloring accuracies over 5 runs – standard
(above the line) versus bottlenecked model (below the line).
MSA is mean-step accuracy, LSA is last-step accuracy, F
denotes formula-based, C denotes concepts’ metrics

be observed during training. Libraries, code, and computing
details are described in Appendix L. All hyperparameters
were tuned manually.

Metrics We use a variety of metrics, such as mean-step
accuracy (average accuracy of per-step outputs), last-step
accuracy (average accuracy of final algorithm outputs) and
termination accuracy (average accuracy of predicting ter-
mination). Similarly, from the predicted and ground-truth
concepts we compute: concepts mean-step accuracy and con-
cepts last-step accuracy as well formula mean-step accuracy,
formula last-step accuracy and formula termination accuracy.
The last three are derived by applying the extracted formulas
to the predicted concepts for predicting the output/termina-
tion instead of using the respective neural network. The moti-
vation behind is that if we achieve high concept accuracies
and high formula accuracies then the formulas are likely to
be representing the underlying algorithm (or data) accurately.

Qualitative analysis We provide several qualitative exper-
iments: (i) We fit a decision tree (DT) for the C → O task
(C → T is not possible, due to DTs working on fixed size
node-level features). Concepts and targets are obtained from
the ground truth concepts and target classes of all training
data nodes at each step for each graph. (ii) We also plot the
concepts last/mean step accuracy vs epoch for each concept
and provide further analysis on which concept the networks
find the most difficult. (iii) We provide sample target class
explanations for each algorithm.

Code and data All our training and data generation code
is available at https://github.com/HekpoMaH/algorithmic-
concepts-reasoning.

Results and Discussion
Concept accuracies As can be seen from Tables 2&3 and
Table 6, Appendix H (metrics with an asterisk) we are able to
learn concepts with high accuracy (99% and higher accuracy
for BFS and parallel coloring). Results show that GNNs are
capable of producing high-level concepts, capturing either
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(a) Concept mean-step accuracy (b) Concept last-step accuracy

Figure 2: Concept accuracies per epoch of the parallel coloring algorithm. (1 point every 50 epochs). cXS is colorXSeen. Note
the y axis scale. It can be observed that the hasPriority concept is one of the worst performing concepts. This leads to nodes
being colored in a different order and therefore lower last-step concept accuracy for concepts related to colors. Standard deviation
obtained from 5 runs.

Metric |V | = 20 |V | = 50 |V | = 100

MSA 96.75±0.15% 95.41±0.09% 94.68±0.10%
LSA 93.70±0.33% 90.10±2.80% 86.69±4.28%
MSA 96.93±0.13% 95.86±0.37% 95.27±0.59%
LSA. 94.00±0.24% 92.20±0.52% 91.29±0.86%
F MSA 96.79±0.37% 95.77±0.31% 95.25±0.54%
F LSA. 93.70±0.71% 91.92±0.47% 91.15±0.60%
*C MSA 97.91±0.08% 97.21±0.22% 96.80±0.35%
*C LSA. 99.56±0.29% 99.49±0.49% 97.09±0.29%

Table 3: Kruskal’s algorithm accuracies over 5 runs – stan-
dard (above the line) versus bottlenecked model (below the
line). Abbreviation definitions same as Table 2

node or neighbourhood information, for these algorithmic
tasks and the learned concept extractors strongly generalise –
concept accuracy does not drop even for 5× larger graphs.

Parallel algorithms: BFS and coloring For the BFS task
both the baseline and bottlenecked model perform optimally
in line with the state of the art. We therefore present results
from the BFS task in Appendix H. Results from the parallel
coloring task are shown in Table 2. Apart from the high
accuracy achieved, our results show that: (i) the bottleneck
doesn’t have a major impact on the final model accuracy
– original metrics6 remain the same or are better for both
algorithms; (ii) we are able to learn concepts accurately and
(iii) the extracted rules are accurate – applying them to the
accurately predicted concepts in order to produce output has
no significant negative effect on the predictive accuracy of
our model – formula based accuracies do not deviate more
than 5-6% than the original metrics.

6namely mean-, last-step accuracy and termination accuracy

Qualitative analysis: decision trees We visualise the fit-
ted decision trees (DTs) for each algorithm in Appendix I. In
all cases the logic of the DT follows the logic of the original
algorithm. Additionally, the leaf nodes of all decision trees
contain samples from a single class showing that concepts
were capable of capturing the complexity of the algorithm.

Qualitative analysis: concept learning curves We
present per concept learning curves for the parallel color-
ing in Figure 2 and for Kruskal’s in Figure 3: (i) Parallel
coloring exhibits many occasions where there are drops of
concept accuracy across almost all concepts. If we observe
more carefully Figure 2a, we will notice that they coincide
with a drop of the accuracy of hasPriority concept. This
drop also explains the lower last-step concept accuracy –
changing the coloring order early on may produce quite dif-
ferent final coloring. To confirm this observations, we trained
an oracle model that is always provided with the correct value
for hasPriority. Such oracle model achieved almost perfect
concept accuracy – we provide a plot of the concept learning
curves in Appendix J; (ii) The concept instability was present
only in the beginning for Kruskal’s, but it converged to a
stable solution. The reason edgeInMst concept remained
with the lowest last-step accuracy is that the overall last-step
accuracy of the model is lower.

Qualitative analysis: explanations We list examples of
obtained explanations in Table 4 and present all explana-
tions obtained from the algorithms in in Appendix K. The
extracted rules show that concepts are one way to extract
accurate representation of the rules of the algorithm. E.g. we
can (re)infer from the listed rules for parallel coloring that
for getting a given color that color should not be seen in
the neighbourhood and colors coming before that one have
already been seen.

We additionally observed, that as the number of concepts
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Algorithm Thing to explain Explanation

BFS n is visited hasV isitedNeighbours(n)
continue execution ∃n.¬hasBeenV isited(n) ∧ hasV isitedNeighbours(n)

parallel
coloring

n has color 2 (isColored(n) ∧ ¬hasPriority(n) ∧ c1S(n) ∧ ¬c2S(n))∨
(hasPriority(n) ∧ c1S(n) ∧ ¬c2S(n) ∧ ¬isColored(n))

n has color 5

(isColored(n) ∧ ¬hasPriority(n) ∧ c1S(n)
∧c2S(n) ∧ c3S(n) ∧ c4S(n))∨
(hasPriority(n) ∧ c1S(n) ∧ c2S(n)
∧c3S(n) ∧ c4S(n) ∧ ¬isColored(n))

continue execution ∃n.¬isColored(n)

Kruskal’s e not in MST (nISS(e) ∧ ¬eIM(e)) ∨ (¬lEV (e) ∧ ¬eIM(e))
e in MST (lEV (e) ∧ nISS(e) ∧ eIM(e)) ∨ (lEV (e) ∧ ¬nISS(e) ∧ ¬eIM(e))

Table 4: Sample explanations for each algorithm obtained from the learned model. cXS denotes colorXSeen, nISS is
nodesInSameSet, lEV is lighterEdgesV isited, eIM is edgeInMst.

(a) Concept mean-step accuracy (b) Concept last-step accuracy

Figure 3: Concept accuracies per epoch of the Kruskal’s algorihm on graphs with 20 nodes. (1 point per epoch). After an initial
instability concepts are consistently accurate. Standard deviation obtained from 5 runs.

increases, if we need shorter and more general rules we need
more and more data. One way to alleviate such problem is
L1 regularisation and pruning – we additionally perform an
ablation study in Appendix K showing that without regulari-
sation rules are still usable (giving good formula accuracy)
but are less general.

Conclusions
We presented concept-based reasoning on graph algorithms
through Concept Bottleneck Graph Neural Networks. We
demonstrated through the surveyed algorithms, that we can
accurately learn node-level concepts without impacting per-
formance. Moreover, by examining training data and model
weights, we are capable of explaining each node-level output
classes with formulas based on the defined concepts. Con-
cepts also allow us perform a unsupervised rule extraction of
certain graph-level tasks, such as deciding when to terminate.

Extracted rules are interpretable and applying them does not
heavily impact accuracy.

Broader Impact

Our work evaluates the extent to which concept bottlenecks
can be applied to GNNs for explaining algorithms and hence
has no specific ethical risks associated. However, our ap-
proach is not restricted only to algorithms and can be applied
to other graph domains. GNNs have already seen a lot of suc-
cess on various real-world settings including, but not limited
to: bioinformatics/computational medicine, social network-
ing applications, physics and quantum chemistry simulations.
Applying CBGNNs on each of the aforementioned domains
carries the ethical risks present in the domain.
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A. 2020b. Now You See Me (CME): Concept-based Model
Extraction. arXiv preprint arXiv:2010.13233.
Kazhdan, D.; Dimanov, B.; Terre, H. A.; Jamnik, M.; Liò,
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