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Abstract

Time series data appears in many real-world fields such as en-
ergy, transportation, communication systems. Accurate mod-
elling and forecasting of time series data can be of sig-
nificant importance to improve the efficiency of these sys-
tems. Extensive research efforts have been taken for time se-
ries problems. Different types of approaches, including both
statistical-based methods and machine learning-based meth-
ods, have been investigated. Among these methods, ensemble
learning has shown to be effective and robust. However, it is
still an open question that how we should determine weights
for base models in the ensemble. Sub-optimal weights may
prevent the final model from reaching its full potential. To
deal with this challenge, we propose a reinforcement learning
(RL) based model combination (RLMC) framework for de-
termining model weights in an ensemble for time series fore-
casting tasks. By formulating model selection as a sequential
decision-making problem, RLMC learns a deterministic pol-
icy to output dynamic model weights for non-stationary time
series data. RLMC further leverages deep learning to learn
hidden features from raw time series data to adapt fast to the
changing data distribution. Extensive experiments on multi-
ple real-world datasets have been implemented to showcase
the effectiveness of the proposed method.

Introduction
Time series forecasting is crucial for many real-world ap-
plications, such as energy prediction (Miller et al. 2020),
weather forecasting (Liang et al. 2018) and inventory con-
trol (Seeger, Salinas, and Flunkert 2016). In recent years,
significant progress has been made in time series forecast-
ing with machine learning (ML) methods (Lim and Zohren
2021). A notable challenge for applying time series fore-
casting in real world is the non-stationary problem (Tanaka
2017). For example, in the demand forecasting domain, the
erratic and intermittent data breaks some core assumptions
of many ML models, such as stationarity, or i.i.d. distribu-
tion. Moreover, due to the complex and changing dynamics,
there is no single forecasting model that is universal to all
types of problems (Wolpert 1996).

Existing time series forecasting methods can be mainly
divided into two categories, namely, statistical methods and
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ML-based methods (Fawaz et al. 2019). Statistical meth-
ods such as Auto-Regressive Integrated Moving Average
(ARIMA) models (Zhang 2003; Pai and Lin 2005) and
Exponential Smoothing State Space (ETS) models (Hynd-
man et al. 2008; Durbin and Koopman 2012) provide ba-
sic benchmarks for predicting individual time series. Preva-
lent ML-based methods mostly apply deep neural networks
(DNNs) to learn complex patterns from raw data across dif-
ferent related time series (Rangapuram et al. 2018; Oreshkin
et al. 2019).

Among these methods, ensemble learning has been
proved to be an effective strategy for improving prediction
accuracy (Taylor, McSharry, and Buizza 2009; Makridakis,
Spiliotis, and Assimakopoulos 2018). In the ensemble learn-
ing, a strong learner is learned by combining results from
multiple weak learners (Dietterich et al. 2002). Models with
different capacities usually fit well in different data regimes,
hence a combined model sometimes is with the potential to
achieve superior performance (Zhou 2021). However, it is
still an open question that how should the weights for base
models in the ensemble be determined. Sub-optimal weights
may prevent the final model from reaching its full poten-
tial (Weigel, Liniger, and Appenzeller 2008). In this work,
we focus on the model combination problem for time series
forecasting with ensemble learning.

Determining the weights for a set of base models is in-
deed challenging for several reasons. First, many real-life
time series have complex dynamics and non-stationary data
distribution. For example, the generation process of renew-
able energy is usually intermittent that is difficult to pre-
dict (Gowrisankaran, Reynolds, and Samano 2016). Second,
many existing time series forecasting models would overfit
to some specific data distributions and fail to generalize well
on other data regimes (Binkowski, Marti, and Donnat 2018).
An ideal model combination method should be able to learn
effective representations from time series data and adapt fast
to the changing distribution by selecting the most appropri-
ate models, as illustrated in Fig 1.

In some early works, researchers used hand-engineered
task-specific rules to select models (Collopy and Armstrong
1992), which require lots of domain knowledge and fail
to generalize to different tasks. Later, some researchers
proposed to use meta-learning (Vilalta and Drissi 2002;
Nichol, Achiam, and Schulman 2018) to solve the time
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Figure 1: For non-stationary time series, different base models usually perform well on different data regimes. Compared with
predicting the next value directly (Q1), it could be easier to predict which base model is more likely to perform well (Q2).
Therefore, our goal is to find the appropriate models to make prediction with fast adaptation to the changing data distribution.

series model combination problem (Prudêncio and Luder-
mir 2004; Lemke and Gabrys 2010; Talagala et al. 2018;
Montero-Manso et al. 2020). For example, FFORMS (Tala-
gala et al. 2018) formulates the problem from a classification
perspective to select the best model. FFORMA (Montero-
Manso et al. 2020) later extends FFORMS to output con-
tinuous weights to form a weighted forecast combination.
Other lines of research includes using some heuristics to
weight base models according to their recent performances
(Cerqueira et al. 2017; Sánchez 2008), and applying rein-
forcement learning based methods (Feng and Zhang 2019;
Feng, Sun, and Zhang 2019).

In this work, we propose to tackle the model weight de-
termination problem for time series prediction as an rein-
forcement learning problem. Recently, RL has shown to be
effective on selecting teacher models for knowledge distil-
lation (Yuan et al. 2021) and selecting suitable samples to
accelerate the training process (Fan et al. 2017). RL is ap-
pealing for this type of weight determination problem for
several reasons:

• Model-free RL methods enable us to learn a policy purely
from logged data without knowing the underlying com-
plex system dynamics.

• Compared with supervised learning based methods, RL
is able to explore the search space more effectively to
optimize the policy.

In this paper, we propose a Reinforcement Learning based
Model Combination (RLMC) method to learn complex pat-
terns from raw time series data by deep learning approaches.
We aim to select the most suitable base model based on the
observation of the time series data . The main contribution
of this paper can be summarized as follows:

• We propose a general reinforcement learning based
model combination method which outputs dynamic
weights for time series forecasting problems with non-
stationary data distribution.

• The model combination problem is analyzed from the re-

inforcement learning perspective with some insights.
• Our model achieves state-of-the-art performances on var-

ious public benchmarks.

The rest of this paper is organized as follows. In Section 2
and Section 3, we provide the backgrounds and introduce
some related work. We then introduce the proposed RLMC
framework in the Section 4. Experiments are conducted in
Section 5 on several real-world datasets. We conclude the
paper in Section 6.

Background
Time Series Forecasting
We consider the time series forecasting problem with dis-
crete time points. At time t, the task is to use a length-T
observed series history X t = {xt

1, · · ·xt
T |xt

i ∈ Rdx} to pre-
dict a vector of future values Yt = {yt

1, · · · ,yt
H |yti ∈ Rdy},

where Rdx and Rdy are the dimensions of the input/output
data, and H is the forecast horizon. Time series forecasting
tasks can be further categorized into two fundamentally dif-
ferent cases: time series data task and panel data task. In the
time series data task, we are always predicting for the same
time series; while in the panel data task, we need to predict
for multiple different time series at the same time. Further-
more, depends on the prediction output to be a point forecast
or a distribution, the time series forecasting task can also be
divided as point forecasting and probabilistic forecasting.

Reinforcement Learning
Reinforcement learning is usually formulated as a Markov
Decision Process (MDP), which can be defined as a tuple
M := ⟨S,A,P, r, γ⟩, where S is the set of states and A is
the set of actions, P(s′|s, a) represents the dynamics func-
tion, r(s, a) represents the reward function, and γ ∈ [0, 1]
is the discount factor. The goal of an RL agent is to learn
a policy π(a|s) that maximizes the cumulative discounted
rewards Rt =

∑L
k=0 γ

krt+k, where L is the length of the
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horizon. Depends on whether we have the access to the dy-
namics model P(s′|s, a) and reward function r(s, a), RL
can be classified as model-free methods (Silver et al. 2014)
and model-based methods (Sutton and Barto 2018). Model-
free RL algorithms learn a policy purely from the transitions
collected by interacting with the environment, while model-
based RL algorithms can leverage the dynamics model to
generate transitions to optimize the policy. Based on whether
the control policy is modeled directly, RL algorithms can
also be categorized into value-based methods (Mnih et al.
2013) and policy-based methods (Schulman et al. 2015). In
the value-based method, we aim to approximate the opti-
mal value functions to select actions, while the policy-based
method search directly for the optimal policy parameters.

Related Work
Traditional time-series methods based on linear auto-
regression or exponential smoothing (Hyndman and Athana-
sopoulos 2018) usually work on a few numbers of time-
series at a time. However, these methods can hardly be scal-
able to real-world problems with a large amount of train-
ing samples. Due to the ability to model non-linear temporal
patterns, deep neural networks, especially the recurrent neu-
ral networks (RNN) (Lai et al. 2018), dilated convolutions
(Oord et al. 2016) and Transformers (Zhou et al. 2021), have
gained popularity in time-series forecasting problems.

To solve model combination problem for time-series data,
many early works (Collopy and Armstrong 1992; Arm-
strong, Adya, and Collopy 2001) use hand-crafted rules to
select models for prediction. However, rule-based methods
rely heavily on expert knowledge and are limited to the spe-
cific tasks. Moreover, previous methods mostly either use
the model performance or time-series data feature to select
model. For example, (Cerqueira et al. 2017; Sánchez 2008)
use some heuristics to weight base models according to their
recent performances. On the other hand, FFORMS (Tala-
gala et al. 2018) formulates the model selection problem as
a classification problem, in which it trains a random forest
to select the best model based on the input time-series fea-
tures. FFORMA (Montero-Manso et al. 2020) later extends
FFORMS to output continuous weights to form a weighted
forecast combination. Another line of research is to formu-
late the model combination problem as an RL problem. For
example, DMS (Feng, Sun, and Zhang 2019) learns a Q-
learning agent to solve the model selection problem in which
the performance ranking improvement is used as the reward.
However, DMS needs to learn a tabular Q-table for each
rolling window with model index as input state, which re-
quires learning thousands of individual Q-tables for large
scale problems and fail to leverage the information from the
time series data.

Methods
In this section, we first present the MDP formulation for the
model combination problem. Then, we discuss the insights
about the model combination problem from the reinforce-
ment learning perspective. Lastly, we present the proposed
RL-based dynamic model combination method.

MDP Setting for Model Combination Problem
Determining the weights for base models in a dynamic way
can be treated as a sequential decision-making problem. The
MDPM = ⟨S,A,P, r, γ⟩ for the model selection problem
can be summarized as:

• State-space S . State st ∈ RT×ds describes the informa-
tion about the time series at timestep t, where T is the
input sequence length and ds is the input dimension.

• Action-space A. Action at ∈ RN is the non-negative
model weights that sum to one for the N base models
at timestep t.

• Transition dynamics P(st+1|st, at) = P(st+1|st) is
actually irrelevant to the output model weights, which
means that our action at will not affect the next state st+1

in the model combination problems.
• Reward function r(s, a). Reward rt is defined as the pre-

diction performance, i.e., prediction error or rank perfor-
mance at timestep t.

• Discount factor γ ∈ [0, 1] describes how much we weigh
for future performance. If we only care about one-step
prediction, then we can set γ = 0.

The value of a state s is defined as:

V π(s) = E

[
L∑

t=0

γtr(st, at)|s0 = s, at ∼ πϕ(at|st)

]
,

(1)
where L is the horizon length. The objective is to find a pol-
icy πϕ(a|s) that maximizes the expected value of the states
from the initial state distribution µ. In our problem, µ is the
uniform distribution across the samples in the test dataset.

J(π) = Es∼µ [V
π(s)] . (2)

Insights from An RL Perspective
Unlike prevalent RL testbeds, such as playing video games,
the model combination problem has some unique properties.
Here, we provide two insights from the reinforcement learn-
ing perspective.

Insight 1: Model-based exploration. Our first insight
comes from the notice of the decoupling of state and action
in the transition dynamics P(st+1|st, at) = P(st+1|st). If
we treat the transition dynamics P(st+1|st) as determinis-
tic by only using samples from the training set, then we are
actually in a model-based setting where the user-defined re-
ward function r(st, at) is also known. This insight indicates
that we can generate arbitrary transitions (st, at, rt, st+1)
with P(st+1|st) and r(st, at) to facilitate exploration.

Insight 2: Sparse optimal actions. Let us consider a spe-
cial case of the model combination problem, where we only
select one model at a time. Then, the optimal policy is de-
terministic and outputs an one-hot vector unless there are
multiple models that are equally well. In this case, a policy-
based method might be problematic, where we need to com-
pute an estimator ĝ of the policy gradient and optimize it
with gradient ascent algorithm (Schulman et al. 2015):

ĝ = Êt

[
∇ϕ log πϕ(at|st)Ât

]
, (3)
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where Ât is an estimator of the advantage function at
timestep t. Because the optimal policy π∗ is nearly deter-
ministic, which always selects the best model. Hence, most
action probabilities π(at|st) will be close to zero except for
the optimal action a∗. When we use samples to approximate
Eq 3 during training, the log-probability is likely to be close
to minus infinity. Though we have multiple optimal actions
in the common model combination problem setting, how-
ever, the potential explosive log-probability problem still ex-
ists due to the sparse optimal actions. Fig 2 demonstrates
this problem by plotting the | log πϕ(a|s)| during training a
policy-gradient agent on the ETT dataset (Zhou et al. 2021).

Figure 2: Because the optimal model combination policy
only selects few optimal actions, a policy-based method may
suffer from explosive log πϕ(at|st) for bad actions at, which
makes it unstable to optimize the policy.

Model Combination with DDPG
Given the potential explosive log-probability issue of policy-
based method, we develop our model based on an off-policy
actor-critic algorithm, DDPG (Lillicrap et al. 2015). We se-
lect DDPG for the following reasons:
• It outputs continuous actions that fit well for the model

combination problem.
• It is a model-free off-policy algorithm which can be

trained with logged data for better sample efficiency.
Some other continuous control algorithms such as TD3 (Fu-
jimoto, Hoof, and Meger 2018) and SAC (Haarnoja et al.
2018) can also be used in our RLMC framework.

In DDPG, we concurrently learn a deterministic policy
a = πϕ(s) as the actor (Silver et al. 2014) and an action-
value function Qθ(s, a) as the critic, where πϕ(s) aims to di-
rectly approximate the optimal action a∗, and Qθ(s, a) tries
to approximate the optimal action-value function Q∗(s, a).
For the critic, we use a standard Bellman update by mini-
mizing the mean-squared Bellman error (Sutton and Barto
2018):

min
θ

E(s,a,r,s′)∼D
[
(y −Qθ(s, a))

2
]
, (4)

where target y = r + γQθ′(s′, a′)|a′=πϕ(s) is computed by
the target network Q′

θ(s, a). For the actor, we perform gra-
dient ascent to maximize the expected return:

max
ϕ

Es∼D [Qθ(s, πϕ(s))] . (5)

RL Based Model Combination (RLMC)
RLMC agent. Inspired by some previous works (Feng,
Sun, and Zhang 2019; Montero-Manso et al. 2020), at each
timestep t, the RLMC model takes a combination of time
series data X t = {xt

1, · · ·xt
T } and the history of model

performance Lt = {L1
t−1, · · ·LN

t−1} as model inputs st =
(X t,Lt), where X t is the length-T observed series history
at timestep t, and Lt is the history base model performance
at previous timestep. Specifically, the actor πϕ(st) adopts
the dilated causal convolutions (Franceschi, Dieuleveut, and
Jaggi 2019) as the basic encoder structure to extract latent
time series features, and uses a rank embedding table to ex-
tract the base model features. A softmax function is later
used in the actor πϕ as the output layer to generate the com-
bination weight for base models in the ensemble. An illus-
tration of the RLMC actor is shown in Fig 3. The critic
Qθ(st, at) used a similar dilated CNN-based encoder struc-
ture as the actor πϕ(st).

softmaxdilated CNN

at = (w1
t ,⋯,wN

t )
L1
t−1

. .
 .

LN
t−1

embedding table

model loss 

embedding

time series 
embedding

RLMC 

Actor πϕ(st)

time series

history model

performance

Figure 3: In RLMC, the actor π(st) takes the time series and
history model performance as inputs to predict the combina-
tion weights.

Reward function r(s, a). Given the predicted combina-
tion weights for the N base models at = (w1

t , · · · , wN
t )

and the base model predictions (ŷ1t , · · · , ŷNt ), we can then
compute a reward rt = r(st, at) w.r.t. the ensemble predic-
tion ŷt =

∑N
i wi

tŷ
i
t, where ŷit is the i-th base model predic-

tion. Similar to (Yuan et al. 2021), we use a mixture reward
function, which combines the raw forecasting metric, i.e.,
sMAPE, and the rank performance to measure the quality of
prediction is:

rt = αRsMAPE
t +Rrank

t . (6)
where α is a hyper-parameter to balance the sMAPE reward
and the rank reward. To make the reward function generable
for problems with different scales, we normalize the reward
RsMAPE

t and Rrank
t to range [−1,+1] by following trans-

formations:

RsMAPE
t = 1− 2 ∗ τ(δt)

9
, Rrank

t = 1− 2 ∗ rpt
N − 1

(7)
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where δt is the sMAPE at timestep t, τ(δt) = {0, · · · , 9} is
the quantile of δt w.r.t. the base model prediction errors in
the training set, and rpt = {0, · · · , N − 1} is the rank of the
prediction error w.r.t. other N base model prediction error at
timestep t.

Overall pipeline. We apply the standard DQN training
pipeline (Mnih et al. 2013) to train the RLMC agent with a
replay buffer. For each trajectory, we first randomly select a
timestep t as the initial state s0 from the training set. Then
we use our RLMC agent to interact with the environment
by selecting model weights for a horizon of H steps. The
reward rt for each state-action pair (st, at) is computed ac-
cording to the self-defined reward function (Eq 7). We store
the collected transitions to a replay buffer for later training.
An overview of the RLMC training pipeline is shown in Fig
4. Alg 1 describes the details of the RLMC approach 1.

L1
t−1

. .
 .

LN
t−1

Actor

πϕ(st)

Critic

Qθ(st, at)

at = (w1
t ,⋯,wN

t ) prediction error δt

̂yt =
N

∑
i

wi
t ̂yitensemble prediction

rt = αRsMAPE
t + Rrank

t

reward function

(st, at, rt, st+1)

replay buffer

1

2 3

4

5

6

6

Figure 4: Overview of RLMC training pipeline: (1) At
timestep t, state st describes the information of the input
time series and history base model performances. (2) Our
RLMC agent selects an action at = (w1

t , · · · , wN
t ) as the

combination weights for the N base models. (3) We then
compute the final ensemble prediction ŷt w.r.t. base model
predictions {ŷ1t , · · · , ŷNt }. (4) We compute the mixture re-
ward rt with the self-defined reward function. (5) We save
the transition into the replay buffer for later training. (6) We
update the actor πϕ(st) and critic Qθ(st, at) using the sam-
pled transitions from the replay buffer.

Strategies for Efficient Exploration
In the training period, we first train N base models M =
⟨M1, · · · ,MN ⟩ on the training set. Notably, we can select
different types of algorithms, i.e., classic statistical mod-
els or neural networks, as the base models to increase the
diversity. Given the N pre-trained models, the action a =

(w1, · · · , wN ) is a probability simplex, such that
∑N

i wi =
1 and wi ∈ [0, 1]. When the ensemble consists many differ-
ent base models, we are facing a continuous control problem
with an enormous search space. Therefore, a naive ϵ-greedy
exploration strategy may require a large number of samples

1Code is available at https://github.com/TSRLMC/RLMC.

Algorithm 1: RL-based Model Combination (RLMC)

1: Input: pretrianed base models M = ⟨M1, · · · ,MN ⟩,
training set Dtrain, total training steps T , exploration
parameter ϵ, trajectory horizon H , reward threshold r̂t,
update frequency d, Polyak update parameter τ .

2: Initialize critic network Qθ, and actor network πϕ with
random parameters θ, ϕ.

3: Initialize target networks θ′ ← θ, ϕ′ ← ϕ.
4: Initialize reply buffer B and the extra buffer B′.
5: pre-train the actor model πϕ(s) on Dtrain for a multi-

class classification task w.r.t. the cross-entropy loss.
6: for i in {1, · · · , T} do
7: Randomly select a timestep j from the training set,

use the time series X t and base model performance
Lt at timestep j and j+1 as the state s and next state
s′. We rollout this trajectory for H steps.

8: Select action a = πϕ(s) with the ϵ-greedily explo-
ration strategy with sparsity inductive bias (Eq 8).

9: Compute the final time series prediction with the out-
put combination weight ŷt =

∑N
i wi

tŷ
i
t.

10: Compute the reward r with the pre-defined reward
function (Eq 6).

11: Store the transition (s, a, r, s′) to the replay buffer B.
12: Store the transition to the extra buffer B′ if reward r

is lower than the threshold r̂t.
13: if t mod d then
14: Sample mini-batch of transitions (s, a, r, s′) from

both B and B′.
15: Update the critic Qθ by minimizing the mean-

squared Bellman error (Eq 4).
16: Update the actor πϕ with deterministic policy gra-

dient (Eq 5).
17: Update the target networks θ′ ← τθ + (1 − τ)θ′

and ϕ′ ← τϕ+ (1− τ)ϕ′.
18: end if
19: end for

to learn a near-optimal policy . Here, we introduce three
techniques (Fig 5) to improve the exploration efficiency.

Firstly, we pre-train the actor πϕ(s) model with a multi-
class classification task, in which for each state st the index
of the optimal model is used as the class label (Talagala et al.
2018). If multiple models are equally accurate, we randomly
select one as the best model. We optimize the πϕ(s) with
respect to the cross-entropy loss.

Secondly, we also provide a convex combination induc-
tive bias to our agent to further accelerate the exploration.
Notice that the final prediction ŷt =

∑N
i wi

tŷ
i
t is a convex

combination of the individual base model predictions. We
can provide our agent with the information about how good
is the i-th base model for the state st by directly sampling the
one-hot vector ei where the i-th element equals one. Hence,
we design a special ϵ-greedy exploration strategy which ac-
tively selects more samples around the one-hot vector:

a =
|ei + ϵ|
∥ei + ϵ∥2

(8)
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where i is a random index, and ϵ is the random noise.
Thirdly, we find that the RL-based agent would suffer

from an overfitting problem if there exists a few superior
base models that win all the time. The imbalanced data dis-
tribution problem would cause the RL agent to degrade to
just copy the best model in the training set. Therefore, we
propose to use a second replay buffer to store the hard sam-
ples with low rewards, and we train the RLMC agent by
sampled transitions from both buffers to mitigate overfitting.

(1) pre-training the actor πϕ(s)

Actor 
πϕ(s)

yt1

ytN

. .
 .

classification tasktime series

(2) search around vertex

0 1

1

(3) extra buffer for hard samples

RLMC  
Agent Env

DDPG

Buffer

Extra

Buffer

a* = (0,1)

hard samples

random samples

Figure 5: Three techniques for better exploration. (1) We
first pre-train our actor πϕ(s) on a multi-class classification
task in which the optimal model index is used as the class
label. (2) Inspired by the convex combination inductive bias,
we can tell the agent how good each base model is by di-
rectly sample one-hot weights. (3) To mitigate overfitting,
we maintain a second buffer to store hard samples.

Experiments
Datasets
To validate the effectiveness of the proposed RLMC frame-
work, we extensively perform experiments on a number of
real-world time series datasets (table 1), including both the
time series data and panel data:

ETT (Zhou et al. 2021) contains multivariate time series
for 1-hourly-level electricity transformer temperature data,
in which the target value is the “oil temperature”.

Climate (Chollet 2017) is a weather time series dataset,
recorded at the Max Planck Institute for Biogeochemistry,
including 14 different features such as air temperature, at-
mospheric pressure, and humidity. We use the hourly data
from 2009 to 2016 to predict the temperature.

GEFCOM (Barta et al. 2017) is a dataset from the Global
Energy Forcasting Competition (GEFCOM) 2014. We use
an hourly dataset with two features including the load and
temperature to predict future electricity load.

M4 (Makridakis, Spiliotis, and Assimakopoulos 2018)
contains 100k panel time series data, representing demo-

graphic, finance, industry, macro and micro indicators. We
use the daily subset in the experiment.

Dataset #Train #Dev #Test

M4-Daily 3,381 845 4,276
Climate 49,063 14,018 7,010
GEFCOM 18,710 4,677 2,488
ETT 8,448 2,816 2,816

Table 1: Statistics of the datasets for experiment.

Experimental Details
Given a length-H predicted series {ŷt+1, · · · , ŷt+H} and
true series {yt+1, · · · , yt+H}, the following metrics are
commonly used to evaluate the forecasting performance:

MAE =
100

H

H∑
i=1

|yt+i − ŷt+i| (9)

MAPE =
100

H

H∑
i=1

|yt+i − ŷt+i|
|yt+i|

(10)

sMAPE =
200

H

H∑
i=1

|yt+i − ŷt+i|
|yt+i|+ |ŷt+i|

(11)

In the experiment, we employ Mean Absolute Error (MAE)
and symmetric Mean Absolute Percentage Error (sMAPE)
to evaluate the performance. We use sMAPE instead of
MAPE to avoid errors caused by near-zero real values.

We adopt early stopping by evaluating the model perfor-
mance on the validation set. We set the exploration parame-
ter to be 0.5, reward threshold to be−1, update frequency to
be 4, and Polyak update parameter to be 0.005. Each exper-
iment is repeated for 5 times, and the average performance
is reported. We run all the models on a desktop with Intel i9
CPU and single Nvidia GeForce 3090 GPU.

Our method is compare with following baselines:
Heuristic methods. We first compare RLMC with differ-

ent heuristic methods. The uniform prediction computes the
simple average of base model outputs. The single best pre-
diction is the result of the model that performs best in the
validation set.

FFORMS. We also compare RLMC to a meta-learning
based baseline. FFORMS (Talagala et al. 2018) formulates
the model selection problem as a classification problem, and
use gradient boosted tree models to learn the meta-learner.

FFORMA. FFORMA later (Montero-Manso et al. 2020)
extends FFORMS to the model combination problem by
outputting continuous weights. It adopts a self-defined loss
function to output weights for different models. We imple-
ment both of the FFORMS and FFORMA baselines with
LightGBM (Ke et al. 2017).

DMS. We then compare RLMC to another RL-based
method, named DMS (Feng and Zhang 2019). The original
DMS uses a tabular Q-learning method without leveraging
the time series features. It needs to learn a new Q-table for
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Uniform Single FFORMS FFORMA DMS M3 RLMC
σ1 σ2 σ1 σ2 σ1 σ2 σ1 σ2 σ1 σ2 σ1 σ2 σ1 σ2

D1 5.22 79.83 4.59 73.69 4.89 75.98 5.42 80.77 5.14 78.12 4.63 74.06 4.39 72.11
D2 1.70 26.44 1.67 25.80 1.78 26.65 1.69 25.78 1.70 25.89 1.66 25.66 1.47 25.50
D3 112.65 3.51 89.09 2.75 95.03 2.94 86.93 2.69 90.10 2.79 86.85 2.70 88.25 2.73

D4 250.39 3.93 147.61 2.39 183.90 3.12 161.52 2.72 150.36 2.48 148.60 2.45 145.78 2.31

Table 2: Metric σ1 and σ2 denote the MAE and sMAPE loss. D1, D2, D3, D4 denotes EET, Climate, Gefcom and M4 dataset.

each rolling window, which is not scalable. In the experi-
ment, we extend to original DMS to a deep learning based
variant by learning a Q-network instead of a Q-table.

M3. We also compare RLMC to an NN-based sequential
expert select method, named M3 (Tang et al. 2019), which
uses a gating mechanism to compute a weighted sequence
representation for prediction. The original M3 method re-
quires to learn the base models at the same time. To keep
consistent with other baselines, in the experiment, we adopt
a variant of the M3 model with a similar gating mechanism
based on the learned based models.

Base Models
We use different base models for different time series fore-
casting tasks. For example, in the M4 dataset with univariate
panel data, we use the same baseline models as in (Montero-
Manso et al. 2020), i.e., theta method, automated ARIMA,
TBATS, STLM-AR, and automated exponential smoothing.
In the ETT dataset, we use an ensemble of nine Informer
models (Zhou et al. 2021) with different parameters. In the
Climate and GEFCOM dataset, we use an ensemble of nine
basic deep learning models including GRU, LSTM, dialated
CNN, and transformers. Since our objective is to showcase
the ability to select appropriate models in the ensemble for
prediction, we try to avoid training a super model that is al-
ways the best model in the dataset.

Results and Analysis
Table 2 summarizes the time series forecasting results of all
methods. We can observe that the proposed RLMC model
consistently outperforms other baselines on all 4 datasets.
We note that DMS, M3 and RLMC usually perform bet-
ter than FFORMS and FFORMA, which implies that the
proposed DL-based encoder has superior ability in captur-
ing useful time series features. Further, we can observe that
other baseline methods usually fail to beat the single best
baseline. We attribute this failure to the overfitting problem
caused by the imbalanced best model distribution. We im-
plement a case study on the ETT dataset by training an DQN
agent in DMS. In the experiment, the third base model M(3)
is the best model in the training set. Fig 6 shows the percent-
age of transitions that select the third model as the best one.
We can find that the model starts to overfit after around three
epochs. Then the agent just select the best training model.

We further conduct ablation studies on the climate dataset
to validate the effectiveness of the proposed techniques (Fig
7). We can find that the proposed exploration strategy is the
most important ingredient for the success of RLMC. This
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Figure 6: A case study of the overfitting problem.

is intuitive because the original DDPG algorithm learns a
deterministic policy which is prone to suffer from the over-
fitting problem. Besides the special exploration strategy, the
pretrain step and extra buffer techniques are also helpful for
the RLMC agent to achieve better performances.
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Figure 7: Ablation study of the three proposed techniques
for better exploration.

Conclusion
Accurate analysis and forecast of time series data can be of
significant importance for real-world systems. In this paper,
we proposed a general reinforcement learning (RL) based
model combination framework, named RLMC, for time se-
ries forecasting. We first analyzed the problem from the RL
perspective and provide two insights. We then designed an
off-policy method based on DDPG with some special strate-
gies for effective exploration. The effectiveness of RLMC is
validated by experiments on real-world data. One limitation
of our method is that the RLMC agent only outputs deter-
ministic policy due to the use of DDPG. This may limit the
full potential of RLMC when the dataset is extremely imbal-
anced. In the future, we plan to investigate how to combine
some unsupervised time series representation learning meth-
ods with our framework.
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