The Thirty-Sixth AAAI Conference on Artificial Intelligence (AAAI-22)

Modification-Fair Cluster Editing

Vincent Froese, Leon Kellerhals, Rolf Niedermeier

Technische Universitit Berlin, Faculty IV, Algorithmics and Computational Complexity, Berlin, Germany.
{vincent.froese, leon.kellerhals} @tu-berlin.de

Abstract

The classic CLUSTER EDITING problem (also known as
CORRELATION CLUSTERING) asks to transform a given
graph into a disjoint union of cliques (clusters) by a small
number of edge modifications. When applied to vertex-
colored graphs (the colors representing subgroups), standard
algorithms for the NP-hard CLUSTER EDITING problem may
yield solutions that are biased towards subgroups of data (e.g.,
demographic groups), measured in the number of modifica-
tions incident to the members of the subgroups. We propose a
modification fairness constraint which ensures that the num-
ber of edits incident to each subgroup is proportional to its
size. To start with, we study MODIFICATION-FAIR CLUS-
TER EDITING for graphs with two vertex colors. We show
that the problem is NP-hard even if one may only insert
edges within a subgroup; note that in the classic “non-fair”
setting, this case is trivially polynomial-time solvable. How-
ever, in the more general editing form, the modification-fair
variant remains fixed-parameter tractable with respect to the
number of edge edits. We complement these and further the-
oretical results with an empirical analysis of our model on
real-world social networks where we find that the price of
modification-fairness is surprisingly low, that is, the cost of
optimal modification-fair differs from the cost of optimal
“non-fair” solutions only by a small percentage.

Introduction

Imagine two competing parties, the reds and the blues. The
party members are nodes in a (social) network. The goal is
to cluster the nodes into a set of disjoint cliques by a small
number of edge modifications, that is, edge deletions or in-
sertions. As the parties are competing against each other,
they are very careful about the other party having to pay
the relatively same “modification cost”. That is, the aver-
age number of edits involving red vertices as edge endpoints
should be the same as the average number involving blue
vertices, see Figure 1 for an example. This yields a col-
ored version of the well-studied NP-hard CLUSTER EDIT-
ING problem, where now the criterion of having relatively
same modification cost becomes a process-oriented fairness
concept which we are going to introduce in this paper.

In recent years, fairness in algorithmic problems has be-
come a profoundly studied topic, particularly so in machine

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

6631

~
(g}
~

(d

(b) i

ﬁ I @
Figure 1: An exemplary graph G' with blue and red vertices
(a) and three modifications of G to a cluster graph (b)—(d).
Added edges are marked green, deleted edges are green and
dashed. (b) A modification of minimum size with five ed-
its incident to the blues and one edit incident to the reds.
So Aeq = |5/4 — /3| = 11/12, see Eq. (1). (¢c) A more fair
modification of minimum size (Aeq = 1/2). (d) A more fair
(but larger) modification (A¢g = 1/3).

X

learning and related areas. Clustering problems are funda-
mental topics of unsupervised learning and optimization in
general. In this work, we focus on graph-based data cluster-
ing, and therein on one of the most basic and best studied
problems, CLUSTER EDITING. Our main conceptual con-
tribution is to introduce a fairness concept that is not mod-
eling the “fairness of the output” of the algorithm (in our
case a disjoint set of cliques, the clusters), but rather the fair-
ness of the generation process. In our case, this means each
party should pay (proportionally to its size) roughly the same
modification cost. We perform both a theoretical (algorithms
and complexity) as well as an empirical study. In a nut-
shell, we show that our new problem MODIFICATION-FAIR
CLUSTER EDITING seems computationally harder (but not
hopelessly hard) than CLUSTER EDITING, but our experi-
mental studies also indicate that the “price of fairness” (that
is, how much more edge edits are needed compared to the
classic, “non-fair” case) is relatively low if one does not go
for perfect fairness.

Related work. For a thorough review on fairness in
the context of machine learning we refer to the survey
by Mehrabi et al. (2021). Closest to our work in terms of
the underlying clustering problem are studies on fair COR-
RELATION CLUSTERING (Ahmadian et al. 2020b; Friggstad
and Mousavi 2021). Both works, following the disparate im-

pact doctrine, focus on an output-oriented fairness, that is,
the fairness is defined by looking at the resulting clusters
enforcing a predefined fraction of each group within each
cluster. This kind of fairness, while prudent in some scenar-
i0s, may be inapt in other contexts, e.g. political districting.
Facing the NP-hardness of the problem, both works mainly
study polynomial-time approximation algorithms (while we
focus on exact solvability).

Chierichetti et al. (2017) were the first to study fair-
ness in the context of clustering, studying k-median and k-
center problems. Herein, the works by Abbasi, Bhaskara,
and Venkatasubramanian (2021) and Ghadiri, Samadi, and
Vempala (2021) are closest to our scenario as they, too,
seek similar costs for every party. There are numerous fur-
ther recent works studying fairness for clustering problems
(Ahmadian et al. 2020a; Bandyapadhyay, Fomin, and Si-
monov 2021; Bandyapadhyay et al. 2021; Chakrabarty and
Negahbani 2021; Mahabadi and Vakilian 2020; Vakilian and
Yalciner 2021). For a general account on classic CLUS-
TER EDITING, we refer to the survey of Bocker and Baum-
bach (2013) and note that the “PACE implementation chal-
lenge 20217 (Kellerhals et al. 2021) was dedicated to CLUS-
TER EDITING.

Our contributions. We introduce MODIFICATION-FAIR
CLUSTER EDITING, reflecting a process-oriented fairness
criterion in graph-based data clustering: instead of look-
ing at the outcome, we consider the modification process
that yields the clustering. Here we demand that the average
number of modifications at a vertex is balanced among the
groups (we focus on two groups). We parameterize our fair-
ness constraint by the difference between these averages.
Thus, our modification fairness can be seen as aiming at
equal average error or distortion for both groups (similar
in spirit as for socially fair k-means (Ghadiri, Samadi, and
Vempala 2021) or fair PCA (Samadi et al. 2018)). For a
formal definition of MODIFICATION-FAIR CLUSTER EDIT-
ING, we refer to the next section. On the theoretical side,
we show that MODIFICATION-FAIR CLUSTER EDITING re-
mains NP-hard even if only edge insertions are allowed
(which is trivially polynomial-time solvable in the classic
case). Moreover, we show the NP-hardness of very restricted
cases of the general editing version (e.g., all but one ver-
tex having the same color) and provide conditional run-
ning time lower bounds. On the positive side, we identify
a polynomial-time solvable special case (disallowing to edit
edges whose both endpoints have the same color) and show
fixed-parameter tractability with respect to the number of
edge modifications. We also introduce a useful cluster trans-
formation problem (a simple to define algorithmic problem
with a strong numerical flavor) which may be of indepen-
dent interest; we employ it in our NP-hardness proofs. On
the empirical side, we demonstrate that while typically com-
putationally hard(er) to find, “fair solutions” typically seem
not much more expensive than conventional ones.

Preliminaries

We assume familiarity with basic concepts of algorithms,
complexity, and graph theory. A clique is a completely con-

6632

nected graph and by clique size we refer to its number of
vertices. It is well-known that a clique cannot contain a Ps
(a path on three vertices) as an induced subgraph. A cluster
graph is a disjoint union of cliques.

We investigate the well-studied CLUSTER EDITING prob-
lem (also called CORRELATION CLUSTERING) under fair-
ness constraints regarding edge modifications. Here, we are
given a graph G = (V| E) with vertices V = RW B col-
ored either red or blue. An edge modification set is a sub-
set S C (%), that is, a subset of the size-two vertex subsets.
We define #edg(v) = |[{e € S | v € e}] to be the num-
ber of edge modifications incident to a vertex v (that is, the
degree of v in the modification graph (V, S)). Then

ZveR #edg(v) ZvEB #edg(v)

Ae(S) = —
a(S) 7 B

)

is the absolute difference of the average numbers of modifi-
cations at a red vertex and a blue vertex.

MODIFICATION-FAIR CLUSTER EDITING

Input: An undirected graph G = (V, E) with ver-
tices colored either red or blue, ¥ € N,
and § € Q.

Question: Is there an edge modification set S C (‘2/)

with |S| < k and Ae(S) < 0 that trans-
forms G into a cluster graph?

We immediately observe some simple upper bounds on Agg.

Observation 1 (k'). For every edge modification set S,

the following upper bounds hold: (i) A.4(S) < |S|,
(1) Dea(S) < V] = 1, (iii) Aea(S) < mrmt BTy

By Observation 1, if § > min(k, |[V| — 1, 2%/min(|R|,| B])),
then MODIFICATION-FAIR CLUSTER EDITING is simply
CLUSTER EDITING.

Finally, we recall some basic (parameterized) complex-
ity concepts. A parameterized problem is fixed-parameter
tractable if there exists an algorithm solving any in-
stance (z,p) (x is in the input instance and p is some
parameter—in our case it will be the number k£ of edge
modifications) in f(p) - |z|®() time, where f is a com-
putable function solely depending on p. The class XP con-
tains all parameterized problems which can be solved in
polynomial time if the parameter p is a constant, that is, in
f(p)-|z|9) time. The Exponential Time Hypothesis (ETH)
claims that there exists a constant ¢ > 0 such that the 3-
SAT problem cannot be solved in O(2°") time. It is used
to prove conditional running time lower bounds, for exam-
ple, it is known that one cannot find a clique clique of size s
in an n-vertex graph in p(s) - n°(*) time for any function p,
unless the ETH fails (Chen et al. 2006).

Modification Fairness: Complexity
We explore the algorithmic complexity of MODIFICATION-
FAIR CLUSTER EDITING and compare it to the standard

'Proofs of results marked with % are deferred to the full version
of the paper, available at arXiv (http://arxiv.org/abs/2112.03183).

CLUSTER EDITING problem and its restrictions which ei-
ther only allow edge deletions (CLUSTER DELETION) or in-
sertions (CLUSTER COMPLETION). We find NP-hardness,
ETH-based lower running time bounds, and tractability re-
sults (a polynomial-time solvable special case and fixed-
parameter tractability of the general problem).

First, we show that even very special cases of MODIFICA-
TION-FAIR CLUSTER EDITING remain NP-hard, the corre-
sponding polynomial-time many-one reductions also lead-
ing to ETH-based running time lower bounds.

Theorem 2. MODIFICATION-FAIR CLUSTER EDITING
and MODIFICATION-FAIR CLUSTER DELETION are NP-
hard for arbitrary 6 > 0 and neither solvable in 2°(F) .
|V|O(1) time, in 2°0VD time, nor in 2°0ED time unless the
Exponential Time Hypothesis fails. This also holds

1. if only mono-colored edge modifications are allowed or
2. if there is only one red vertex.

Proof. Both cases use similar reductions, based on NP-
hardness results in the “non-fair setting”.

Case 1. Komusiewicz and Uhlmann (2012, Theorem 1)
showed that CLUSTER EDITING is NP-hard in the case that
every solution has size at least £ and can be assumed to only
delete edges. They also showed that this case is not solvable
in 20(k) . |17|0() 200V or 200FD) time assuming the ETH
(Komusiewicz and Uhlmann 2012, Theorem 2). We reduce
from this version of classic CLUSTER EDITING.

Let (G = (V, E), k) be such an instance and let § > 0.
We define an instance (G’ k’,d) of MODIFICATION-FAIR
CLUSTER EDITING as follows: The graph G’ contains a
copy of G where all vertices are colored blue. Addition-
ally, G’ contains 3k red vertices which form % disjoint Pss.
Moreover, we add max(|V|,3k) — 3k isolated red vertices
and max(|V[,3k) — |V] isolated blue vertices to G’ such
that the number of red vertices equals the number of blue
vertices. Finally, we set k' := 2k.

Clearly, the reduction can be performed in polynomial
time. For the correctness, assume first that (G, k) is a yes-
instance, that is, G' can be made a cluster graph by deleting
exactly k edges. Then, deleting the corresponding %k edges
in G’ and also one arbitrary edge of each red P; in G’ clearly
yields a solution S of size 2k = k' with A¢q(S) =0 <4
(as G’ contains the same number of red and blue vertices).

Conversely, let (G', k', §) be a yes-instance. Note that ev-
ery solution deletes at least one edge of each of the k red Pss
in G’. Hence, at most k edge deletions are performed to
make the copy of G in G’ a cluster graph.

For the ETH-based running time lower bounds, note
that & € O(k), |V(G')| € O(max(|V],k)), and |[E(G')| €
O(max(|E|, k)). Hence, the claimed lower bounds follow.
Case 2. As in the proof for Case 1, we reduce from CLUS-
TER EDITING with a given instance (G = (V, E), k) ob-
tained from the reduction by Komusiewicz and Uhlmann
(2012, Theorem 1). We make additional use of the fact that
their construction yields an instance where |V| < 2k.

Our instance (G',k’,d) is defined as follows. The
graph G’ contains a blue copy of G and one red vertex r
which is connected to an arbitrary vertex = of degree six

6633

from G (which always exists for nontrivial graphs G). We
further add 2k — |V'|+ 1 many isolated blue vertices such that
overall G’ contains 2k + 1 blue vertices. We set k' := k + 1.

Clearly, the reduction can be performed in polynomial
time; the correctness is shown next. The ETH-based lower
bounds follow in complete analogy to Case 1. If (G, k) is
a yes-instance with solution S, then S’ = S U {{r,z}}
yields a solution for G’ of size k + 1 = k' with Ay(S") =
12kl — o <.

17 2k+1 =

Conversely, if (G',k’,d) is a yes-instance with solu-
tion S’, then {{r,z}} € S". If {r, 2} were not in S’, then the
six other edges incident to « would have to be deleted, which
leaves a budget of k — 5 edge deletions for the remaining
graph. However, by construction, the remaining graph has a
budget lower bound of £ — 4 (Komusiewicz and Uhlmann
2012, Theorem 1). Thus, {r,z} € S’ and G has a solution
of size at most k. O

Remark. The graph in the reduction of Komusiewicz and
Uhlmann (2012, Theorem 1) has maximum degree six.
Moreover, they also show that the maximum number of
edge deletions at any vertex in a solution is four (Ko-
musiewicz and Uhlmann 2012, Corollary 1). Hence, Case 1
of Theorem 2 also holds for input graphs of maximum
degree six and at most four local edge deletions.

Surprisingly, CLUSTER COMPLETION, which is trivially
solvable in polynomial time, becomes NP-hard when en-
forcing fairness.

Theorem 3. MODIFICATION-FAIR CLUSTER COMPLE-
TION is NP-hard for every constant 5 > 0 (also if only
mono-colored edges are inserted).

The proof is based on a polynomial-time many-one reduc-
tion from the following problem, which we will prove to be
NP-hard in the following section (Theorem 6).

CLUSTER TRANSFORMATION BY EDGE ADDITION

Input: A cluster graph G and an integer k.
Question: Can G be transformed into another cluster
graph by adding exactly k edges?

Proof of Theorem 3. Let (G = (V,E), k) be an instance
of CLUSTER TRANSFORMATION BY EDGE ADDITION.
Moreover, we clearly can assume that & < (“2/‘) — | E| since
otherwise we have a trivial no-instance.

Let 6 > 0 be an arbitrary constant. We construct an in-
stance (G',k’,0) as follows. The graph G’ contains a blue
copy of G together with |V'| many red vertices which form

an arbitrary connected graph with (1) — & — | 15| edges.

To see that this is actually possible, note that (I%) — & —

L“Q/—ltﬂ > |V| (for large enough |V|) since k € o(]V]?) in
our reduction (see Lemma 7). We set k' = 2k + L‘Qﬂ(SJ

Now assume that (G, k) is a yes-instance. Then, adding
the corresponding k edges to the blue copy of G in G’ and
the k + L%dj missing edges to the red subgraph yields a
cluster graph. This set S’ of added edges satisfies

V]

2k + [590]) 2k <4

Aw(S') = -
S

Conversely, let (G', k', 0) be a yes-instance. Then, the so-

lution S’ clearly contains the k + LI—‘Q/‘cSJ missing edges of
the red subgraph of G’. Let k;, < k denote the number of
added edges between blue vertices in S’. Then,

C2k+) Hk—hk 2%tk -k

Aed(S/) o |V| |V|
2% 2 |V|., 2k 2k — ky — 1)
S I A0 Y e O B L
Vi v 2 V| V]

Since A¢q(S’) < 4, we have k, = k, so S’ contains k edges
in the blue copy of G in G’, and (G, k) is a yes-instance. [

We observe from the intractability results so far that the
hardness of MODIFICATION-FAIR CLUSTER EDITING is
rooted in finding the right mono-colored edge modifications.
Indeed, when allowing only bicolored edge modifications,
the problem becomes polynomial-time solvable.

Theorem 4. MODIFICATION-FAIR CLUSTER EDITING is
polynomial-time solvable when no mono-colored edge mod-
ifications are allowed.

Proof. Let (G = (RW B, E),k,¢) be an input instance.
Then, G[R] and G[B] have to be cluster graphs, otherwise
we have a no-instance. Also, since mono-colored edge mod-
ifications are forbidden, we have A.4(S) = |S] - \ﬁ —

ﬁ| for any solution S. Thus, we may assume that £k <
1 1
6|17k —

Let Ry,...,R, and Bq,..., B} be the vertex sets of the
clusters in G[R], respectively G[B]. Since mono-colored
edge modifications are forbidden, a solution can never merge
two blue or two red clusters into one. Thus, any solution ei-
ther isolates a cluster, or merges it with exactly one clus-
ter of the other color. This can be modeled as a matching
in a complete bipartite graph H with vertices vy, ..., v,
and wy,...,w,, where a matching edge indicates which
clusters are merged. Clearly, every cluster editing solution
corresponds to a matching and vice versa. Let £/ C E be
the edges between R and B and let E;; C E’ denote the
edges between R; and B;. For a given matching M in H,
the size of the corresponding solution can then be written as

B = > Eyl+ > (RilBj| - |Byl).
{vi,w;YeM {vi,w; }YeM
Hence, the solution size is minimized by a matching
that maximizes Z{v“wJ}GM(2|EU| — |R;||B;|). Thus,
we can solve the problem by computing a maximum-
weight matching in H with edge weights w({v;, w;}) =
(2|Eyj] — |R;i||By]) in polynomial time (Lovasz and Plum-
mer 2009). O

We next show fixed-parameter tractability for the num-
ber k of edge modifications. Our approach is as follows. We
first run the well-known Ps-branching algorithm (Cai 1996)
to obtain a cluster graph. As the resulting solution need not
be modification-fair, we may need to do further edge modifi-
cations. For this, we first apply polynomial-time data reduc-
tion rules which shrink the graph size to a polynomial in £,
and then brute-force on the reduced graph.

6634

Theorem 5. MODIFICATION-FAIR CLUSTER EDITING is
solvable in 20k1°8 %) . (|V| 4- | E|) time.

Proof. Let (G = (V, E), k,) be an instance of MODIFICA-
TION-FAIR CLUSTER EDITING. We first apply the standard
Ps-branching algorithm for CLUSTER EDITING to enumer-
ate all minimal cluster edge modification sets S of size at
most k in O(3%(|V|+|E|)) time (Cai 1996). For each S, we
check whether A¢4(S) < 0. If not, then we try to extend S
to a fair edge modification set. Clearly, each fair edge modi-
fication set of size at most & contains at least one of the enu-
merated edge modification sets. Note that in order to check
later that our modification set is fair, we store the original
numbers |B| and |R| of blue and red vertices in G.

For each .S, we first apply the following three data reduc-
tion rules to the cluster graph G’ obtained from S.

1. If there is a clique with more than k& + 1 vertices, then

delete it.

If there are more than 2k isolated vertices of the same

color which have not been touched by S, then delete one

of them.

.Let2 < s < k+1and 0 < t < s. If there are more
than k cliques with s vertices, ¢ of which are blue, and
none of them are touched by .S, then delete one of them.

2.

Note that we keep all cliques with at most k + 1 in G’ which
contain an endpoint of an edge in S. Clearly, there are at
most 2|.S| such cliques.

For the correctness, note that if a clique with £ > 2 ver-
tices is modified, then this requires at least / — 1 edge mod-
ifications. Hence, Rule 1 is correct. Clearly, k£ edge modifi-
cations can touch at most 2k vertices of any color, so Rule 2
is correct. Rule 3 is correct as we cannot touch more than k
cliques of size at least two.

For exhaustive application of the data reduction rules, we
run a depth-first search and count the number of cliques
with the same numbers of blue and red vertices. As we
added at most k edges to obtain G’, we can apply the rules
in O(|V| + |E| + k) time. After exhaustive application,
the remaining graph comprises O(k?) vertices contained in
cliques touched by S and O(k?) vertices not touched by S.

Let W C V be the vertices remaining after exhaustive
application of the above data reduction rules. We now try all
possible extensions S” C (%) \ S of size at most k — |S|
and check whether the set S* = S U S’ transforms G
into a cluster graph and is fair, that is, Ac(S*) < 0.
There are O(k‘%) such extensions; the checking can be done
in O(|V] + |E| + k) time each. The overall running time is
thus 20(F10g k) . (V| + |E)). O

We remark that the above theorem implies that MODIFI-
CATION-FAIR CLUSTER EDITING can be solved in linear
time when only constantly many edges need to be modified.

Transforming Cluster Graphs

In this section, we prove the following, most technical theo-
rem of our work. We believe the considered problem CLUS-
TER TRANSFORMATION BY EDGE ADDITION (defined in

the previous section) to be of independent interest, also mak-
ing connections to the area of scheduling.

Theorem 6. CLUSTER TRANSFORMATION BY EDGE AD-
DITION is NP-hard.

We devise a polynomial-time many-one reduction from
the NUMERICAL 3D MATCHING problem introduced and
proven to be strongly NP-hard by Garey and Johnson (1975).

NUMERICAL 3D MATCHING

Input: Positive integers t,
bl,bg,...,bn,cl,CQ,...,Cn.
Question: Are there bijections «, 3,v: [n] — [n] such

that for each i € [n], aq ;) +bg)+cy@) = t?

A1,02,...,0n,

On a high level, our reduction works as follows. We add
a small clique for every a;, a medium clique for every b;,
and a large clique for every c;. By appropriate choice of our
budget k, we can ensure that every clique in the resulting
cluster graph G + S is the result of merging one small, one
medium, and one large clique. We finally show that if each
cluster consists of cliques corresponding to elements a;, b;,
and ¢, such that their sum is equal to the target ¢, then the
number of required edge additions is minimized. That is, if
there is a cluster that does not hit this target, then the bud-
get k is overspent.

Construction. Let I = (t,a1,a2,...,0n,01,b2,...,bn,
€1,C2,...,Cn), n > 3, be an instance of NUMERICAL 3D
MATCHING. As NUMERICAL 3D MATCHING is strongly
NP-hard, we may assume that for all i € [n], a;,b;,¢; <
n® for some constant d > 0. We further assume that ¢t >
ai, bi, ¢ foralli € [n] and that >, (a; + b; + ¢;) = n - t,
as otherwise I is a trivial no-instance.

We construct an instance I’ (G,k) of CLUS-
TER TRANSFORMATION BY EDGE ADDITION as follows.
Let A == n??, let B := n®?, and let C := n"®. For i € [n],
we set af = a; + A, b, = b; + B, ¢, = ¢; + C, and
add three cliques of order a, b}, and ¢}, respectively, to G.

12 T

We refer to these cliques by their order a, b;, ¢} and call

them small, medium-sized, and large, respectively. Finally,
wesett' :=t+ A+ B+ C and

k()11 -0 (4) 35 (5)+ () ()

First, we provide a lower and an upper bound on &, which
will be used later. The bounds are obtained by observing that

50 ()~ ()~ () - v cac

F(t—a)A+({t—b)B+(t— ci)C’>,

@

as shown in the proof of Lemma 7 in the full version of the
paper.
Lemma 7 (). Forn > 3 and d > 1, one has n'04t! <
k< 2pl0d+1,

Lemma 7 implies that we cannot merge two large cliques.

Lemma 8 (). If I is a yes-instance, then in a solution no
two large cliques can be merged.

6635

At the same time, we cannot reach our budget unless we
merge every medium-sized clique with a large one.

Lemma 9 (). If I’ is a yes-instance, then in any solution
graph, for every i € [n], the clique b, is merged with exactly
one clique c,,), where (i) € [n].

Now we know that a significant part of the budget is spent
on merging medium-sized cliques with large cliques. Never-
theless, we cannot meet our budget unless we spend the re-
maining budget on merging small cliques with a large clique
as well.

Lemma 10. [f I’ is a yes-instance, then in any solution
graph, for every i € [n], the clique a) is merged with ex-
actly one clique !), where x(i) € [n].

Proof. Due to Lemma 9, every solution contains at least

Y bicew =D BO+bC+ (b + B)

edges, where c:o(0 is the large clique that is merged with b/.

Hence, our remaining budgetis k' ==k — Y, blc), =

i((;) - (GQ) N (1)2) - (Cz) +AB + BC + AC

+ (t — ai)A + (t — bz)B + (t - Cl)C
— (BC +b:C + cpibs + %(i)B))

=32((0) - (5) - (3) - (5) + 4+ 40)

+ zn: ((t — @) A+ (t—b; — cp)) B+ (t—ci — bi)C),

=1

due to (2). As (%) + (%) + (§) < 3n*® < AB, and the
second sum in (3) must be nonnegative (otherwise ¢ is too
small, contradicting our assumption in the construction), we
obtain that &’ > nAC = n%t! Assume towards a con-
tradiction that there is one small clique that is not merged
with a large clique. Then, the maximum number of edge ad-
ditions is achieved by merging n — 1 small cliques with all
medium-sized cliques and one large clique, and leaving the
remaining small clique and n — 1 large cliques untouched.
The number of edge additions provided by this is at most

i (b;c;(i) + (g) (B +n%)?

+_n(n —1)(A+n%) (B +n?)

+(n— 1)(A+nd)(C +nd) + (’2‘) (A% 4 24nd + n2d>)

3)

n
< Z bgc:a(i) + n2(n® + 204 4 n2d) 4 n2(n°d 4 ntd
i—1
+ 13 4 02 4 (n — 1) (% + n8e 4 n3d 4 n2d)

+ n?(n4d + 2n3d +n2d> < Z ;CI

oy TR <k,
i=1

a contradiction to I’ being a yes-instance.

Combining Lemmas 9 and 10, we obtain the following.

Lemma 11 (%). If I’ is a yes-instance, then every solution
graph consists of exactly n cliques.

With Lemma 11 at hand, we can show that the budget k&
is exactly met if and only if each resulting clique contains
t/ vertices.

Lemma 12. If I’ is a yes-instance, then every clique in a
solution graph G' is of size t'.

Proof. By Lemma 11, G’ consists of n cliques. Let their
sizes be s1, sa,. .., S,. Note that Z?Zl s; = nt’, since oth-
erwise the NUMERICAL 3D MATCHING instance [is a no-
instance. Further, the number | E(G’)| of edges in G’ is

1 — 1 — 1 — 1
=52 sy si=g) s —ynt
=1 =1 =1

|E(G)] + k n(%). Hence,
= nt'? holds. By the Cauchy-Schwarz inequality,
we have

=) =n nt'’

>(3)

Note that |E(G')|
Do st

n

D

i=1

that is, 327", s2 > nt'> holds for all s,...,s, with
> . s; = nt’. Note that equality is known to hold only

fors; =89 =---=s, =t. O

Lemma 13 (). If I’ is a yes-instance, then every clique in
a solution graph G’ consists of a small, a medium-sized, and
a large clique.

We now have everything at hand to prove Theorem 6.

Proof of Theorem 6. We use our construction to build an
instance I’ of CLUSTER TRANSFORMATION BY EDGE
ADDITION from a given instance I of NUMERICAL 3D
MATCHING in polynomial time. Let «, 3,y be a solution for
instance I. Creating n clusters by merging the cliques a/, (i)

b3 (i) €, (iy for each i € [n] yields a solution graph G’ with
! / /
N =S (%n Te t)
B =3, (0

=S (AP = ()

edges, created by adding |E(G’)| — |E(G)| = k edges.

Let S be a solution for instance I’ and let G’ :== GAS be
the corresponding solution graph. By Lemma 11, G’ consists
of n clusters of orders s1, ss, ..., S,. By Lemma 13, there
are o, 8,7v: [n] — [n] such that, for every ¢ € [n], we have
8i = Qg (i) H (o) T sy = ae) TOp() Ty (@) AT BHC =
t+ A+ B+ C. Hence, «, 3, is a solution for our instance
of NUMERICAL 3D MATCHING. O

6636

Set n m kopt Topt
1 16.1 40.3 14.1 0.0186
2 344 1289 50.0 0.1579
3 69.2 2920 140.3 13.991
4 1141 611.2 339.1 2150.6

Table 1: Averages of the number of vertices (n), the num-
ber of edges (m), and the solution size (kopt) and running
time (¢,) in seconds required to solve standard (“non-fair”)
CLUSTER EDITING on the graphs in sets 1 through 4.

Experiments

In the spirit of Bocker, Briesemeister, and Klau (2011) who
studied classic CLUSTER EDITING, we refrain from using
our FPT algorithm (Theorem 5 is rather a classification re-
sult) but instead rely on mathematical programming to in-
vestigate our model of modification fairness. We evaluate
our model on the SNAP Facebook data set (Leskovec and
Krevl 2014) which lists for each person (vertex) their gen-
der (color). As this data was gathered from Facebook be-
fore 2012, the data on gender is binary. The dataset contains
ten graphs, for each of which we sampled four subgraphs of
different sizes. We grouped the subgraphs of similar sizes
into sets. See Table 1 for the average graph sizes in each set.

We computed optimal solutions for MODIFICATION-
FAIR CLUSTER EDITING using an integer linear pro-
gramming (ILP) formulation of our problem fed into the
commercial solver Gurobi 8.1.1. The ILP formulation is
based on the standard formulation for CLUSTER EDIT-
ING (Grotschel and Wakabayashi 1989), wherein one has
a binary variable z; ; for every {i,j} € (‘2/) indicating
whether or not the solution graph contains the edge {i, j},
and three constraints for every vertex triple, which ensure
that the triple does not induce a P5. The formulation can
be easily extended to a formulation for MODIFICATION-
FAIR CLUSTER EDITING by adding a constraint that en-
sures that the upper bound § on our fairness measure Aeq
holds. In order to make the results within the datasets
comparable, we introduce a normalized fairness mea-
sure Aporm (S) == Aed(S)/(215/min(|R|,|B|)). Herein, we use
the upper bound on A4 from Observation 1, Part (iii). Anal-
ogously let dnorm = 0/ (Zkort/min(|R|,|B|)), wherein kqpy iS
the minimum size of a “non-fair” cluster editing set. Hence,
if dporm = 1, our instance is an instance of standard CLUS-
TER EDITING, see the discussion after Observation 1.

The experiments were run on machines with an Intel
Xeon W-2125 4-core 8-thread CPU clocked at 4.0 GHz and
256GB of RAM, running Ubuntu 18.04. All material to re-
produce the results is publicly available.'

We first evaluate the modification fairness of standard
CLUSTER EDITING. Figure 2 shows the number n of ver-
tices and the modification fairness for each of our instances
when run with dpom = 1. For small graphs, the modifica-
tion fairness is rather low, with Ayorm > 0.1 for 35% of
the graphs in Sets 1 and 2. For larger graphs, however, even

"https://git.tu-berlin.de/akt- public/mod-fair-ce

|RI/|B|

0.25 9
0.2 —
°
g 0.15 | *
2 0.1) N 5
h % °
005 . oo o oo .
ol © % %
| | | | | | 1
0 20 40 60 80 100 120
n

Figure 2: How fair is the “non-fair” variant? Normed mod-
ification fairness Ao, (y-axis) of the optimal solution for
standard CLUSTER EDITING compared to the number n of
vertices (x-axis) and the ratio |R|/| B| of red versus blue ver-
tices (color). The ratio is normed such that |R| > |B|.

t/topt
0.05 | 2.‘25 1.‘61 1.‘27 1.‘36 *
0.04 |- 1.64 1.85 1.13 1.45 31.62
£ 0.03 = 1.66 1.89 1.44 1.7 |
< 002 1.92 2.24 1.32 1.93 | v
0.01 | 3.29 2.68 2.14 297 | 3.16

36.19
Set 2

80.35
Set 3

Set 1 Set 4

Figure 3: How much extra time do we need to be fair? Each
heatmap cell contains the average ratio of the running time
needed to compute a solution with fairness dpomm and the
“non-fair” running time for every set of graphs, see Table 1.

without imposing fairness constraints the solution is already
very fair, the mean value of Ayom being 0.05 for graphs in
Set 4. Figure 2 further shows that our tested graphs do not al-
low for a statement whether the initial modification fairness
correlates with the ratio between red and blue vertices.

We next evaluate the price of fairness, that is, how
much solution size and running time increase when
requiring fair solutions. We made runs for dpom €
{0,0.01,0.02,...,0.05}. We set a time limit of 100 times
the time required for running standard CLUSTER EDITING
on the same instance and return the best feasible solution
found up to this point. The running times and solutions sizes
for standard CLUSTER EDITING are gathered in Table 1.

Figure 3 shows that requiring perfect fairness results in
prohibitively high running time. Allowing a little bit of slack
in the fairness however yields significantly lower increments
in running time. For dy0rm = 0.01 and graphs of Set 4, 3/4 of
the runs were slower by a factor of at most 2.81. For d,orm =
0.02 the factor was at most 1.48 for 3/4 of the graphs.

Figure 4 shows that, except for very small graphs, the so-

6637

k/Kopt

0.05 1.04 1.01 101 |

0.04 1.05 1.01 1.02 ’
£ 0.03 1.07 1.02 1.02 25
< 0.0 1.08 1.02 1.03 | 2

0.01 111 1.03 1.03 | 15

0 1.31 1.31 116 .
Set 1 Set 2 Set 3 Set 4

Figure 4: How much extra edits do we need to be fair? Each
heatmap cell contains the average ratio of the minimum size
of a solution with fairness of 6,4, and the minimum size of
a “non-fair” solution for every set of graphs, see Table 1.

lution size need not increase much to meet modification fair-
ness requirements. For 80% of the graphs in Sets 2, 3 and 4,
the solution size increases by at most 33%, 10%, and 8%
when 6o 18 0, 0.01, and 0.02, respectively. A likely reason
for the higher increment for Set 1 graphs is that a single edge
has a higher impact on the modification fairness, i.e., balanc-
ing out the modifications requires proportionally more edits.

Conclusion

Undoubtedly, fairness is an elusive, multi-faceted concept
bearing many (future) challenges. With our work, we hope
to have provided a first step towards process-oriented fair-
ness in graph-based data clustering. Focusing on our newly
introduced problem MODIFICATION-FAIR CLUSTER EDIT-
ING, there are many research challenges. For instance, in
Theorem 5 we showed that MODIFICATION-FAIR CLUS-
TER EDITING is fixed-parameter tractable for the parameter
number k of edge modifications. The corresponding expo-
nential factor is 2°(*1°8%)_can we improve on this or is
there an ETH-based lower bound excluding 2°(klog k)92

Arguably, our definition of modification fairness is not
the only one that could be studied; e.g., instead of study-
ing the average, one could also study the maximum num-
ber of edits per group member. Generally, we believe that
some of our results could be adapted to such related con-
cepts. One should also extend our studies to more than two
colors. While we focused on exact algorithms, the study of
approximation algorithms makes sense as well.

Finally, the fairness investigations could be extended to
generalizations of CLUSTER EDITING such as HIERARCHI-
CAL TREE CLUSTERING (Guo et al. 2010a), s-PLEX CLUS-
TER EDITING (Guo et al. 2010b), but also to other combina-
torial problems. This was already done for SHORTEST PATH
(Bentert, Kellerhals, and Niedermeier 2022) and MATROID
INTERSECTION and BIPARTITE MATCHING (Chierichetti
et al. 2019).

>We remark that for classic CLUSTER EDITING there is a tight
bound 2°*) (Komusiewicz and Uhlmann 2012).

Acknowledgements

We thank Tomohiro Koana (Technische Universitit Berlin)
for providing the initial idea for the NP-hardness result for
CLUSTER TRANSFORMATION BY EDGE ADDITION.

References
Abbasi, M.; Bhaskara, A.; and Venkatasubramanian, S.
2021. Fair Clustering via Equitable Group Representa-
tions. In Proceedings of the ACM Conference on Fair-
ness, Accountability, and Transparency (FAccT ’21), 504—
514. ACM.
Ahmadian, S.; Epasto, A.; Knittel, M.; Kumar, R.; Mahdian,
M.; Moseley, B.; Pham, P.; Vassilvitskii, S.; and Wang, Y.
2020a. Fair Hierarchical Clustering. In Proceedings of the
33nd Annual Coference on Advances in Neural Information
Processing Systems (NeurIPS ’20).
Ahmadian, S.; Epasto, A.; Kumar, R.; and Mahdian, M.
2020b. Fair Correlation Clustering. In Proceedings of the
23rd International Conference on Artificial Intelligence and
Statistics (AISTATS ’20), volume 108, 4195-4205. PMLR.
Bandyapadhyay, S.; Fomin, F. V.; Golovach, P. A.; Purohit,
N.; and Simonov, K. 2021. FPT Approximation for Fair
Minimum-Load Clustering. CoRR, abs/2107.09481.
Bandyapadhyay, S.; Fomin, F. V.; and Simonov, K. 2021. On
Coresets for Fair Clustering in Metric and Euclidean Spaces
and Their Applications. In Proceedings of the 48th Interna-
tional Colloquium on Automata, Languages, and Program-
ming (ICALP ’21),23:1-23:15.
Bentert, M.; Kellerhals, L.; and Niedermeier, R. 2022.
Finding Balance-Fair Short Paths in Graphs. CoRR,
abs/2203.17132.
Bocker, S.; and Baumbach, J. 2013. Cluster Editing. In 9th
Conference on Computability in Europe, CiE 2013, volume
7921 of LNCS, 33—-44. Springer.
Bocker, S.; Briesemeister, S.; and Klau, G. W. 2011. Ex-
act Algorithms for Cluster Editing: Evaluation and Experi-
ments. Algorithmica, 60(2): 316-334.
Cai, L. 1996. Fixed-parameter tractability of graph modifi-
cation problems for hereditary properties. Information Pro-
cessing Letters, 58(4): 171-176.
Chakrabarty, D.; and Negahbani, M. 2021. Better Algo-
rithms for Individually Fair k-Clustering. In Proceedings
of the 35th Conference on Advances in Neural Information
Processing Systems (NeurIPS °21).
Chen, J.; Huang, X.; Kanj, I. A.; and Xia, G. 2006. Strong
computational lower bounds via parameterized complexity.
Journal of Computer and System Sciences, 72(8): 1346—
1367.
Chierichetti, F.; Kumar, R.; Lattanzi, S.; and Vassilvitskii,
S. 2017. Fair Clustering Through Fairlets. In Proceedings
of the 31st Conference on Advances in Neural Information
Processing Systems (NIPS ’17), 5029-5037.
Chierichetti, F.; Kumar, R.; Lattanzi, S.; and Vassilvitskii, S.
2019. Matroids, Matchings, and Fairness. In Proceedings
of the 22nd International Conference on Artificial Intelli-
gence and Statistics (AISTATS ’19), volume 89, 2212-2220.
PMLR.

6638

Friggstad, Z.; and Mousavi, R. 2021. Fair Correlation Clus-
tering with Global and Local Guarantees. In Proceedings of
the 17th International Symposium on Algorithms and Data
Structures (WADS °21), 414-427. Springer.

Garey, M. R.; and Johnson, D. S. 1975. Complexity results
for multiprocessor scheduling under resource constraints.
SIAM Journal on Computing, 4: 397-411.

Ghadiri, M.; Samadi, S.; and Vempala, S. S. 2021. So-
cially Fair k-Means Clustering. In Proceedings of the ACM

Conference on Fairness, Accountability, and Transparency
(FAccT ’21), 438-448. ACM.

Grotschel, M.; and Wakabayashi, Y. 1989. A cutting plane
algorithm for a clustering problem. Mathematical Program-
ming, 45(1-3): 59-96.

Guo, J.; Hartung, S.; Komusiewicz, C.; Niedermeier, R.; and
Uhlmann, J. 2010a. Exact Algorithms and Experiments for
Hierarchical Tree Clustering. In Proceedings of the Twenty-
Fourth AAAI Conference on Artificial Intelligence, AAAI
2010, 457-462. AAAI Press.

Guo, J.; Komusiewicz, C.; Niedermeier, R.; and Uhlmann,
J. 2010b. A More Relaxed Model for Graph-Based Data
Clustering: s-Plex Cluster Editing. SIAM J. Discret. Math.,
24(4): 1662-1683.

Kellerhals, L.; Koana, T.; Nichterlein, A.; and Zschoche, P.
2021. The PACE 2021 Parameterized Algorithms and Com-
putational Experiments Challenge: Cluster Editing. In Pro-
ceedings of the 16th International Symposium on Parame-
terized and Exact Computation (IPEC ’21), volume 214 of
LIPIcs, 26:1-26:18.

Komusiewicz, C.; and Uhlmann, J. 2012. Cluster editing
with locally bounded modifications. Discrete Applied Math-
ematics, 160(15): 2259-2270.

Leskovec, J.; and Krevl, A. 2014. SNAP Datasets: Stanford
Large Network Dataset Collection. http://snap.stanford.edu/
data.

Lovasz, L.; and Plummer, M. D. 2009. Matching Theory.
AMS Chelsea Publishing.

Mahabadi, S.; and Vakilian, A. 2020. Individual Fairness
for k-Clustering. In Proceedings of the 37th International
Conference on Machine Learning (ICML ’20), volume 119,
6586—6596.

Mehrabi, N.; Morstatter, F.; Saxena, N.; Lerman, K.; and
Galstyan, A. 2021. A Survey on Bias and Fairness in Ma-
chine Learning. ACM Computing Surveys, 54(6): 115:1-
115:35.

Samadi, S.; Tantipongpipat, U. T.; Morgenstern, J.; Singh,
M.; and Vempala, S. S. 2018. The Price of Fair PCA: One
Extra dimension. In Proceedings of the 31st Annual Cofer-

ence on Advances in Neural Information Processing Sys-
tems (NeurIPS ’18), 10999-11010.
Vakilian, A.; and Yalciner, M. 2021. Improved Approxi-

mation Algorithms for Individually Fair Clustering. CoRR,
abs/2106.14043.

