
Scaling Neural Program Synthesis with Distribution-Based Search
Nathanaël Fijalkow1, 2, Guillaume Lagarde1, Théo Matricon1,

Kevin Ellis3, Pierre Ohlmann4, and Akarsh Potta5

1 CNRS, LaBRI and Université de Bordeaux, France
2 The Alan Turing Institute of data science, United Kingdom

3 Cornell University, United States
4 University of Paris, France

5 Indian Institute of Technology Bombay, India

Abstract

We consider the problem of automatically constructing com-
puter programs from input-output examples. We investigate
how to augment probabilistic and neural program synthe-
sis methods with new search algorithms, proposing a frame-
work called distribution-based search. Within this framework,
we introduce two new search algorithms: HEAP SEARCH,
an enumerative method, and SQRT SAMPLING, a proba-
bilistic method. We prove certain optimality guarantees for
both methods, show how they integrate with probabilistic
and neural techniques, and demonstrate how they can operate
at scale across parallel compute environments. Collectively
these findings offer theoretical and applied studies of search
algorithms for program synthesis that integrate with recent
developments in machine-learned program synthesizers.

Introduction
Writing software is tedious, error-prone, and accessible only
to a small share of the population – yet coding grows in-
creasingly important as the digital world plays larger and
larger roles in peoples’ lives. Program synthesis seeks to
make coding more reliable and accessible by developing
methods for automatically constructing programs (Gulwani,
Polozov, and Singh 2017). For example, the FlashFill sys-
tem (Gulwani, Polozov, and Singh 2017) in Microsoft Ex-
cel makes coding more accessible by allowing nontechnical
users to synthesize spreadsheet programs by giving input-
output examples, while the TF-coder system (Shi, Bieber,
and Singh 2020) seeks to make coding neural networks
more reliable by synthesizing TensorFlow code from input-
outputs. Where these systems have been most successful
is when they pair a specialized domain-specific language
(DSL) to a domain-specific search algorithm for synthesiz-
ing programs in that DSL. A recent trend – both in indus-
try (Kalyan et al. 2018) and academia (Devlin et al. 2017) –
is to employ machine learning methods to learn to quickly
search for a program in the DSL (Balog et al. 2017; De-
vlin et al. 2017; Lee et al. 2018; Zhang et al. 2018; Polo-
sukhin and Skidanov 2018; Kalyan et al. 2018; Zohar and
Wolf 2018; Chen, Liu, and Song 2018). Many such recent
works have explored engineering better neural networks for
guiding program search, effectively by training the network

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

to act as a language model over source code that conditions
on input-outputs (Polosukhin and Skidanov 2018). Here, we
‘pop up’ a level and instead ask: given a neural net that
probabilistically generates source code, how can we most
efficiently deploy that model in order to find a program
consistent with some input-outputs? This concern arises be-
cause program synthesis requires solving a hard combinato-
rial search problem (exploring a possibly infinite space of
programs), so taming this combinatorial explosion makes
the difference between a practically useful system, and a
system which cannot scale to anything but the most trivial
of programs.

At a high-level the approaches we develop in this work
follow a 2-stage pipeline: in the first stage a learned model
predicts probabilistic weights, and in the second stage a
symbolic search algorithm uses those weights to explore the
space of source code. Our contributions target the second
stage of this pipeline, and we focus on theoretical analy-
sis of sampling-based search algorithms, new search algo-
rithms based on neurally-informed enumeration, and empir-
ical evaluations showing that recent neural program synthe-
sizers can compose well with our methods.

This 2-stage pipelined approach has several benefits. The
first is that the cost of querying the neural network is usually
very small compared to the cost of combinatorial search, yet
in practice the neural model learns to provide rough-and-
ready probabilistic predictions to guide the search. A second
benefit is that even if the probabilistic predictions are inac-
curate, our methods maintain soundness and completeness
(but may take longer to run). Another appeal is that it can
be naturally combined with other classical approaches for
program synthesis.

Our contributions:

• A theoretical framework called distribution-based search
for evaluating and comparing search algorithms in the
context of machine-learned predictions.

• Two new search algorithms: HEAP SEARCH, an enu-
merative method, and SQRT SAMPLING, a probabilistic
method. We prove a number of theoretical results about
them, in particular that they are both loss optimal.

• A generic method for parallelizing any search algorithm
that explores a space of (syntax) trees

The Thirty-Sixth AAAI Conference on Artificial Intelligence (AAAI-22)

6623



Figure 1: Pipeline for neural predictions for syntax guided program synthesis.

Distribution-Based Search
We work within the syntax guided program synthesis (Sy-
GuS) framework introduced by (Alur et al. 2013), see
also (Alur et al. 2018). In this setting, the DSL is given by a
set of primitives together with their (possibly polymorphic)
types and semantics.

We describe the machine learning pipeline for program
synthesis, illustrated in Figure 1 on a toy DSL describing
integer list manipulating programs.

The compilation phase constructs a context-free grammar
(CFG) from the DSL together with a set of syntactic con-
straints. The CFG may incorporate important information
about the program being generated, such as the n last prim-
itives (encompassing n-gram models) or semantic informa-
tion (e.g. non-zero integer, sorted list).

A prediction model (typically a neural network) takes
as inputs a set of I/O and outputs a probabilistic labelling
of the CFG, inducing a probabilistic context-free grammar
(PCFG). The network is trained so that most likely programs
(with respect to the PCFG) are the most likely to be solu-
tions, meaning map the inputs to corresponding outputs.

We refer to the long version (Fijalkow et al. 2021) for
an in-depth technical discussion on program representations
and on the compilation phase. In this work we focus on the
search phase and start with defining a theoretical framework
for analysing search algorithms.

The PCFG obtained through the predictions of the neu-
ral network defines a probabilistic distribution D over pro-
grams. We make the theoretical assumption that the program
we are looking for is actually sampled fromD, and construct
algorithms searching through programs which find programs
sampled fromD as quickly as possible. Formally, the goal is
to minimise the expected number of programs the algorithm
outputs before finding the right program.

We write A(n) for the nth program chosen by the algo-
rithm A; since A may be a randomised algorithm A(n) is a
random variable. The performanceL(A,D) of the algorithm
A, which we call its loss, is the expected number of tries it
makes before finding x:

L(A,D) = Ex∼D [inf {n ∈ N : A(n) = x}] .

An algorithm A∗ is ‘loss optimal’ if L(A∗,D) =
infA L(A,D). Let us state a simple fact: an algorithm is
loss optimal if it generates each program once and in non-
increasing order of probabilities. Depending onD construct-
ing an efficient loss optimal algorithm may be challenging,
pointing to a trade off between quantity and quality: is it
worth outputting a lot of possibly unlikely programs quickly,
or rather invest more resources into outputting fewer but
more likely programs?

An example. To illustrate the definitions let us consider
the distribution D over the natural numbers such that
D(n) = 1

2n+1 ; it is generated by the following PCFG:

S →.5 f(S) ; S →.5 x,

when identifying n with the program fn(x). Let us analyse
a few algorithms.
• The algorithm A1 enumerates in a deterministic fashion

the natural numbers starting from 0: A1(n) = n. Then
L(A1,D) =

∑
n≥0

n+1
2n+1 = 2. This enumeration algo-

rithm A1 is loss optimal.
• The algorithm A2 samples the natural numbers us-

ing the distribution D. For n ≥ 0, the value of
E [inf {n′ : A2(n

′) = n}] is 2n+1: this is the expectation
of the geometric distribution with parameter 1

2n+1 . Then
L(A2,D) =

∑
n≥0

2n+1

2n+1 = ∞. Hence the naive sam-
pling algorithm using D has infinite loss.

6624



Figure 2: Illustration of the tree of leftmost derivations.

• The algorithm A3 samples the natural numbers using
a distribution that we call

√
D defined1 by

√
D(n) =

1
1+
√
2

1

2
n+1
2

.

For n ≥ 0, the value of E [inf {n′ : A3(n
′) = n}] is

(1 +
√
2)2

n+1
2 : this is the expectation of the geometric

distribution with parameter 1
1+
√
2

1

2
n+1
2

. Then

L(A3,D) =
∑

n≥0
(1+
√
2)2

n+1
2

2n+1

= (1 +
√
2)
∑

n≥0
1

2
n+1
2

= (1 +
√
2)2 ≈ 5.83.

As we will prove in a more general statement (Theo-
rem 2), the algorithmA3 is loss optimal among sampling
algorithms. Suprisingly it is not much worse than the loss
optimal algorithm, yet offers many advantages: it is much
easier to implement, and requires O(1) memory.

The next two sections are devoted to the two natural
classes of algorithms for distribution-based search: enumer-
ation and sampling. We then study how they can run at scale
accross parallel compute environments.

Enumerative Methods and
the HEAP SEARCH Algorithm

A number of enumerative methods have been investigated in
previous works (Menon et al. 2013; Balog et al. 2017; Feng
et al. 2018; Zohar and Wolf 2018). They proceed in a top-
down fashion, and can be understood as ways of exploring
the tree of leftmost derivations of the grammar as illustrated
in Figure 2.

We present a new efficient and loss optimal algorithm
called HEAP SEARCH and following a bottom-up approach.

1For the normalisation factor, note that
∑

n≥0
1

2
n+1
2

= 1+
√
2.

It uses a data structure based on heaps to efficiently enumer-
ate all programs in non-increasing order of the probabilities
in the PCFG.

Let us write D for the distribution induced by a PCFG.
For a program x, we say that x′ is the ‘successor of x’ if it is
the most likely program after x, meaningD(x) > D(x′) and
there are no programs x′′ such thatD(x) > D(x′′) > D(x′).
For a non-terminal T in the grammar, the ‘successor of x
from T ’ is the most likely program after x among those gen-
erated from T . We define ‘predecessor of x’ and ‘predeces-
sor of x from T ’ in a similar way.

We create a procedure Query(T, x) which for any pro-
gram x generated from a non-terminal T outputs the succes-
sor of x from T . Note that once this is defined, the algorithm
performs successive calls to Query(S, x) with S the initial
non-terminal and x the latest generated program, yielding all
programs in non-increasing order of the probabilities.

To explain how Query(T, x) works, we first define the
data structure. For each non-terminal T we have a hash table
SUCCT which stores the successors of all previously seen
programs generated from T , and a heap HEAPT which con-
tains candidate programs, ordered by non-increasing proba-
bility. The key invariant is the following: the successor of
T from x has either already been computed, hence is in
SUCCT , or is the maximum program in HEAPT . This means
that implementing Query(T, x) is very simple: it checks
whether the successor has already been computed and re-
turns it in that case, and if not it pops the heap. The diffi-
culty is in maintaining the invariant; for this we need to add
a number of candidate programs to the heaps. They are ob-
tained by substituting one argument from the returned suc-
cessor, and propagate this recursively to the corresponding
non-terminals.
Theorem 1. The HEAP SEARCH algorithm is loss opti-
mal: it enumerates every program exactly once and in non-
increasing order of probabilities.

We refer to the long version (Fijalkow et al. 2021) for a
complete description of the algorithm with a pseudocode, a
proof of Theorem 1, and a computational complexity analy-
sis.

HEAP SEARCH is related to A∗ from (Feng et al. 2018):
they are both loss optimal algorithms, meaning that they
both enumerate programs in non-increasing order of proba-
bilities. As we will see in the experiments HEAP SEARCH
is better in two aspects: it is faster, and it is bottom-up,
implying that program evaluations can be computed along
with the programs and avoiding evaluating twice the same
(sub)program.

Sampling Methods and
the SQRT SAMPLING Algorithm

A sampling algorithm takes random samples from a distri-
bution D′; what is both a strength and a weakness is that
a sampling algorithm is memoryless: a weakness because
the algorithm does not remember the previous draws, which
means that it may draw them again, but also a strength be-
cause it uses very little space and can be very easily imple-
mented.

6625



In the case of sampling algorithms, we identify algo-
rithms with distributions. The following theorem shows a
dichotomy: either there exists a loss optimal sampling al-
gorithm among sampling algorithms, and then it is charac-
terised as the ‘square root’ of the distribution, or all sampling
algorithms have infinite loss.

Theorem 2. Let D a distribution over a set X . If∑
x∈X

√
D(x) <∞, the distribution

√
D defined by

√
D(x) =

√
D(x)∑

y∈X
√
D(y)

is loss optimal among all sampling algorithms. If∑
x∈X

√
D(x) = ∞, for all sampling algorithms D′ we

have L(D′,D) =∞.

Proof. LetD′ be a distribution. For an element x, the expec-
tation of the number of tries for D′ to draw x is 1

D′(x) : this
is the expectation of success for the geometric distribution
with parameter D′(x). It follows that

L(D′,D) = Ex∼D

[
1

D′(x)

]
=
∑
x∈X

D(x)
D′(x)

.

Let us assume that
∑

x∈X
√
D(x) < ∞. Thanks to

Cauchy-Schwarz inequality we have:(∑
x∈X

√
D(x)

)2
=

(∑
x∈X

√
D(x)
D′(x)

√
D′(x)

)2
≤

(∑
x∈X

D(x)
D′(x)

)
·

(∑
x∈X
D′(x)

)
︸ ︷︷ ︸

=1

=
∑

x∈X
D(x)
D′(x) .

We note that L(
√
D,D) =

(∑
x∈X

√
D(x)

)2
, so the pre-

vious inequality reads L(D′,D) ≥ L(
√
D,D). Thus

√
D

is loss optimal among sampling algorithms, and if it is not
defined, then for any D′ we have L(D′,D) =∞.

Theorem 2 characterises the loss optimal sampling algo-
rithm, but does not explain how to implement it. The follow-
ing result answers that question.

Theorem 3. If D is defined by a PCFG and
√
D is well

defined, then we can effectively construct a PCFG defin-
ing
√
D.

The PCFG for
√
D is obtained from the PCFG for D

by taking the square root of each transition probability, and
then globally renormalising. Details of this procedure can be
found in the long version (Fijalkow et al. 2021).

Parallel Implementations
Harnessing parallel compute environments is necessary for
scalable, future-proof search algorithms, because combina-
torial search bottlenecks on compute, and both the present

Figure 3: The grammar splitter: a balanced partition with
imbalance α = .3

.25 = 1.2.

and likely future of massive compute is a parallel one. Ac-
cordingly, we have taken care to design and evaluate exten-
sions of our algorithms which can metabolize these compute
resources through multiprocessing.

Our key idea is to see the grammar as a tree and that
to split the work we have to split the tree. We introduce a
new algorithm called the grammar splitter, which partitions
a PCFG into a balanced family of k sub-PCFGs. Each of the
k threads is assigned a sub-PCFG and simply runs a search
algorithm on it. Two key advantages of our approach are that
any search algorithm can be used in this very simple parallel
architecture, and that the theoretical gain of using k threads
is linear in k. The output of the grammar splitter is illustrated
in Figure 3: the white PCFG is split into 4 sub-PCFGs.

The two crucial properties of the grammar splitter are:

• the space of programs is partitioned into k subspaces.
This implies that the threads do not carry out redundant
work and that all programs are generated,

• the k program subspaces are balanced, meaning that their
mass probabilities are (approximately) equal. This im-
plies that all threads contribute equally to the search ef-
fort.

A split is a collection of partial programs, for instance
map (* 2) HOLE and fold + HOLE HOLE are two
such partial programs where HOLE is to be replaced by a
program. A partial program induces a sub-PCFG. A split
simply combines this collection of sub-PCFG according to
the probabilities of the partial programs.

A set of k disjoint splits yields a partition of the PCFG.
The probability mass of a split is the sum of probabilities
of all programs that can be generated from a split. Let us
write α for the imbalance of a partition, defined as the ratio
between the maximum and the minimum probability mass
of a split. We are looking for a balanced partition, i.e. one
for which the imbalance α is close to 1.

Our algorithm finds a balanced partition through a
hill climbing process: at each point the algorithm either
looks for an improving swap or a refinement. In the first
case, the action of an improving swap is to transfer a
partial program from one split to another, and its goal is

6626



to lower the imbalance coefficient. In the second case, we
consider the partial program with maximal probability in
a split and refine it: for example map (* 2) HOLE
could be replaced by map (* 2) var0 and
map (* 2) (filter HOLE HOLE), thus obtain-
ing more partial programs with smaller probability mass
enabling new improving swaps.

Experiments
We study a range of search algorithms – both our new ones
and prior work – across list processing and string manip-
ulation domains, with the goal of answering the following
questions:

• HEAP SEARCH and A∗ are both loss optimal enumera-
tive algorithms; beyond these theoretical guarantees, how
do the two algorithms compare in practice?

• How effective are our search algorithms for solving com-
plex program synthesis benchmarks using neural guid-
ance?

• How do our algorithms scale with parallel compute?

We use a generic program synthesizer written from
scratch in Python (see the long version (Fijalkow et al.
2021)), studying random PCFGs (more controlled) and
machine-learned PCFGs (more naturalistic).

We report results on DSLs from DeepCoder (Balog et al.
2017) and DreamCoder (Ellis et al. 2021). Both target the
classic program synthesis challenge of integer list process-
ing programs, but with different properties. DeepCoder’s
DSL is larger and more specialized, with around 40 high-
level primitives, and does not use polymorphic types, while
DreamCoder’s is smaller and more generic, with basic func-
tional programming primitives such as map, fold, unfold,
car, cons, and cdr, etc., for a total of around 20 primitives.
Both DSLs are compiled into a CFG with minimal syntactic
constraints generating programs of depth 6.

The search algorithms under consideration are:

• THRESHOLD from (Menon et al. 2013): iterative-
deepening-search, where the threshold that is iteratively
deepened is a bound on program description length (i.e.
negative log probability),

• SORT AND ADD from (Balog et al. 2017): an inner loop
of depth-first-search, with an outer loop that sorts pro-
ductions by probability and runs depth-first-search with
the top k productions for increasing values of k,

• A∗ from (Feng et al. 2018): best-first-search on the graph
of (log probabilities of) tree derivations,

• BEAM SEARCH from (Zhang et al. 2018): breadth-first-
search with bounded width that is iteratively increased.

As well as our new algorithms: HEAP SEARCH and SQRT
SAMPLING. We refer to the long version (Fijalkow et al.
2021) for a description of the algorithms and their imple-
mentations.

Our implementation of SQRT SAMPLING uses the Alias
method (Walker 1977), which is an efficient data structure
for sampling from a categorical distribution. We associate to

each non-terminal an Alias table, reducing the task of sam-
pling a derivation rule with n choices to sampling uniformly
in [1, n] and in [0, 1].

All algorithms have been reimplemented and optimised in
the codebase to provide a fair and uniform comparison. We
also report on parallel implementations using our grammar
splitter.

Random PCFGs
In this first set of experiments we run all search algorithms
on random PCFGs until a timeout, and compare the number
of programs they output and the cumulative probability of
all programs output.

To obtain random PCFGs from the CFGs we sample a
probabilistic labeling with an exponential decrease (this is
justified by the fact that machine-learned PCFGs feature ex-
ponential decrease in transition probabilities). In this exper-
iment the initialization cost of each algorithm is ignored.
The results presented here are averaged over 50 samples of
random PCFGs, the solid lines represent the average and a
lighter color indicates the standard deviation. Details on the
sampling procedure can be found in the long version (Fi-
jalkow et al. 2021).

Figure 4 shows the results for all algorithms in a non-
parallel implementation. On the lhs we see that HEAP
SEARCH (almost always) has the highest cumulative prob-
ability against both time and number of distinct programs.
Note that since A∗ and HEAP SEARCH enumerate the same
programs in the same order they produce the same curve in
the rhs of Figure 4 so we did not include A∗.

To compare A∗ and HEAP SEARCH we refer to Figure 5,
showing that HEAP SEARCH generates 2.35 times more pro-
grams than A∗, consistently over time. The larger variations
for A∗ are due to the manipulation of a single heap of grow-
ing size, requiring frequent memory reallocations. The dif-
ference in performance can be explained by the fact that
A∗ uses a single heap for storing past computations, while
HEAP SEARCH distributes this information in a family of
connected heaps and hash tables.

We then turn to parallel implementation and perform the
same experiments using a variable number of CPUs for
HEAP SEARCH and SQRT SAMPLING using the grammar
splitter. We do not report on a baseline parallel implementa-
tion of SQRT SAMPLING which would simply sample us-
ing the same PCFG on multiple CPUs. Indeed this naive ap-
proach performs poorly in comparison, since thanks to the
grammar splitter two CPUs cannot generate the same pro-
gram.

The results are shown in Figure 6, where we count pro-
grams with repetitions. We see that for SQRT SAMPLING
the scale-up is linear, and it is mostly linear for HEAP
SEARCH with an acceleration from the 0.2s mark. This ac-
celeration can be explained in two ways: first, each sub-
PCFG is shallower since it is split thus it is faster to enu-
merate program from it, second, once all the successors have
been computed HEAP SEARCH is a simple lookup table. At
the end of the experiment, SQRT SAMPLING has generated
2.8 times more programs with 6 CPUs than with 2 CPUs,

6627



(a) Cumulative probability against time in log-scale (b) Cumulative probability against number of programs
output

Figure 4: Comparing all search algorithms on random PCFGs

Figure 5: Comparing HEAP SEARCH and A∗

whereas HEAP SEARCH has generated 7.6 times more pro-
grams with 6 CPUs than with 2 CPUs.

This experiment suggests that the grammar splitter en-
ables us to scale our search on multiple CPUs with a linear
speed up in the number of CPUs.

Machine-learned PCFGs
In this second set of experiments we consider the benchmark
suites of hand-picked problems and sets of I/O. We extracted
218 problems from DreamCoder’s dataset (Ellis et al. 2021).
(The experiments can be easily replicated on DeepCoder’s
dataset (Balog et al. 2017) but we do not report on the results
here.)

We train a neural network to make predictions from a
set of I/O. Our neural network is composed of a one layer
GRU (Cho et al. 2014) and a 3-layer MLP with sigmoid
activation functions, and trained on synthetic data gener-
ated from the DSL. The details of the architecture and
the training can be found in the long version (Fijalkow

Figure 6: Parallel implementations of HEAP SEARCH and
SQRT SAMPLING using the grammar splitter

et al. 2021). Our network architecture induces some re-
strictions, for instance the types of the programs must be
int list -> int list; we removed tasks that did
not fit our restrictions and obtained a filtered dataset of 137
tasks. For each task we run every search algorithm on the
PCFG induced by the neural predictions with a timeout of
100s and a maximum of 1M programs. Unlike in the previ-
ous experiments the initialization costs of algorithms are not
ignored.

Figure 7 shows the number of tasks solved within a time
budget. HEAP SEARCH solves the largest number of tasks
for any time budget, and in particular 97 tasks out of 137 be-
fore timeout. The comparison between THRESHOLD andA∗
is insightful: A∗ solves a bit more tasks than THRESHOLD
(85 vs 83) but in twice the time. SQRT SAMPLING performs
just a bit worse than A∗ despite being a sampling algorithm.

Table 1 shows for each algorithm how many programs
were generated per second. Recall that HEAP SEARCH and

6628



Figure 7: Comparing all search algorithms on the Dream-
Coder reduced dataset with machine-learned PCFGs

Algorithm Number of programs generated

SORT & ADD 75031 prog/s
HEAP SEARCH 38735 prog/s
THRESHOLD 25381 prog/s

BFS 20980 prog/s
SQRT SAMPLING 14020 prog/s

A∗ 6071 prog/s

Table 1: Number of programs generated

A∗ generate the same programs in the same order. Overall in
these experiments HEAP SEARCH is 6 times faster than A∗.

Since HEAP SEARCH follows a bottom-up approach we
save on program evaluations in two ways: partial programs
are evaluated along the search, and the results are cached.
On the other hand A∗ is a top-down enumeration method so
every new program has to be evaluated from scratch.

It is interesting to compare the rates of SQRT SAMPLING
and A∗: although SQRT SAMPLING generates over two
times more programs, their overall performances are similar.
This can be explained in two ways: SQRT SAMPLING may
sample the same programs many times, while A∗ enumer-
ates each program once and starts with the most promising
ones according to the predictions.

SORT & ADD despite being the fastest only solves 4 tasks,
showing that it does not generate relevant programs for the
task at hand.

Discussion
Related Work
The idea of guiding program search via probabilities is an
old one (Solomonoff 1989) but which recently has fast be-
come a standard practice in the AI and program synthesis
communities. To the best of our knowledge, practical pro-
gram synthesizers that learn to use probabilistic predictions
originated in (Menon et al. 2013), which was first extended

with deep learning in (Balog et al. 2017), and such meth-
ods are now winning program synthesis competitions (Lee
et al. 2018). To first approximation, such recent progress
has drawn on advances in neural network architecture: e.g.,
early learned FlashFill-like systems (Parisotto et al. 2017)
benefited from sophisticated attention mechanisms (Devlin
et al. 2017), and procedural planning programs (Bunel et al.
2018) benefited from feeding execution traces into the neu-
ral net (Chen, Liu, and Song 2018). While prior works have
explored novel test-time strategies, from Sequential Monte
Carlo (Ellis et al. 2019) to ensembling methods (Chen, Liu,
and Song 2018), here we sought a systematic empirical/the-
oretical study of two different families of inference strate-
gies, which we intend to mesh well with the larger body of
work on neural program synthesis. While the algorithms in-
troduced here do not straightforwardly extend to neural au-
toregressive models (e.g. RobustFill (Devlin et al. 2017)),
methods such as SQRT SAMPLING in principle apply to
this setting too. We hope that our work here spurs the de-
velopment of the right tricks to get the theoretical benefits
of SQRT SAMPLING for these more flexible model classes,
just as DeepCoder paved the way for RobustFill.

Shi, Bieber, and Sutton (2020) introduced Unique Ran-
domizer in order to sample without replacement: it is a gen-
eral technique effectively turning a sampling method into
an enumerative one by updating the probabilistic weights
along the search. It is further improved through batching
via Stochastic Beam Search (Kool, Van Hoof, and Welling
2019). It is possible to combine the SQRT SAMPLING al-
gorithm with the Unique Randomizer and Stochastic Beam
Search. Our experiments did not yield interesting results in
that direction, possibly because of memory allocation issues.
We leave for future work to optimise this approach.

Contributions and Outlook
Learning to synthesize programs is a canonical neural-
symbolic learning problem: training high capacity statistical
models to guide the construction of richly structured com-
binatorial objects, such as programs. Yet while the neural
side of this problem has received much deserved attention,
the symbolic component is sometimes taken for granted–
after all, symbolic program synthesis has received decades
of attention. But the entrance of powerful neural networks
for synthesizing programs forces us to reconsider how we
deploy symbolic methods for program synthesis. We have
considered both systematic and stochastic methods, from
both theoretical angles (obtaining guarantees) and also en-
gineering perspectives (such as how to parallelize our new
techniques). We hope this work helps contribute to thinking
through the symbolic search back-end in this more modern
context.

References
Alur, R.; Bodı́k, R.; Juniwal, G.; Martin, M. M. K.;
Raghothaman, M.; Seshia, S. A.; Singh, R.; Solar-Lezama,
A.; Torlak, E.; and Udupa, A. 2013. Syntax-guided synthe-
sis. In Formal Methods in Computer-Aided Design, FM-
CAD.

6629



Alur, R.; Singh, R.; Fisman, D.; and Solar-Lezama, A. 2018.
Search-based program synthesis. Communications of the
ACM, 61(12).
Balog, M.; Gaunt, A. L.; Brockschmidt, M.; Nowozin, S.;
and Tarlow, D. 2017. DeepCoder: Learning to Write Pro-
grams. In International Conference on Learning Represen-
tations, ICLR.
Bunel, R.; Hausknecht, M. J.; Devlin, J.; Singh, R.; and
Kohli, P. 2018. Leveraging Grammar and Reinforcement
Learning for Neural Program Synthesis. In International
Conference on Learning Representations, ICLR.
Chen, X.; Liu, C.; and Song, D. 2018. Execution-guided
neural program synthesis. In International Conference on
Learning Representations, ICLR.
Cho, K.; van Merriënboer, B.; Gulcehre, C.; Bahdanau, D.;
Bougares, F.; Schwenk, H.; and Bengio, Y. 2014. Learn-
ing Phrase Representations using RNN Encoder–Decoder
for Statistical Machine Translation. In Conference on Em-
pirical Methods in Natural Language Processing, EMNLP.
Clymo, J.; Gascón, A.; Paige, B.; Fijalkow, N.; and
Manukian, H. 2020. Data Generation for Neural Program-
ming by Example. In International Conference on Artificial
Intelligence and Statistics, AI&STATS.
Devlin, J.; Uesato, J.; Bhupatiraju, S.; Singh, R.; Mohamed,
A.; and Kohli, P. 2017. RobustFill: Neural Program Learn-
ing under Noisy I/O. In International Conference on Ma-
chine Learning, ICML, volume 70 of Proceedings of Ma-
chine Learning Research.
Ellis, K.; Nye, M.; Pu, Y.; Sosa, F.; Tenenbaum, J.; and
Solar-Lezama, A. 2019. Write, Execute, Assess: Program
Synthesis with a REPL. In Neural Information Processing
Systems, NeurIPS.
Ellis, K.; Wong, C.; Nye, M. I.; Sablé-Meyer, M.; Morales,
L.; Hewitt, L. B.; Cary, L.; Solar-Lezama, A.; and Tenen-
baum, J. B. 2021. DreamCoder: bootstrapping inductive
program synthesis with wake-sleep library learning. In In-
ternational Conference on Programming Language Design
and Implementation, PLDI.
Feng, Y.; Martins, R.; Bastani, O.; and Dillig, I. 2018. Pro-
gram synthesis using conflict-driven learning. In ACM SIG-
PLAN Conference on Programming Language Design and
Implementation, PLDI.
Fijalkow, N.; Lagarde, G.; Matricon, T.; Ellis, K.; Ohlmann,
P.; and Potta, A. 2021. Scaling Neural Program Synthesis
with Distribution-based Search. CoRR, abs/2110.12485.
Gulwani, S.; Polozov, O.; and Singh, R. 2017. Program Syn-
thesis. Foundations and Trends in Programming Languages,
4(1-2).
Kalyan, A.; Mohta, A.; Polozov, O.; Batra, D.; Jain, P.; and
Gulwani, S. 2018. Neural-Guided Deductive Search for
Real-Time Program Synthesis from Examples. In Interna-
tional Conference on Learning Representations, ICLR.
Kool, W.; Van Hoof, H.; and Welling, M. 2019. Stochastic
beams and where to find them: The gumbel-top-k trick for
sampling sequences without replacement. In International
Conference on Machine Learning, ICML.

Lee, W.; Heo, K.; Alur, R.; and Naik, M. 2018. Accelerating
search-based program synthesis using learned probabilistic
models. In ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI.
Menon, A. K.; Tamuz, O.; Gulwani, S.; Lampson, B. W.;
and Kalai, A. 2013. A Machine Learning Framework for
Programming by Example. In International Conference on
Machine Learning, ICML.
Parisotto, E.; Mohamed, A.; Singh, R.; Li, L.; Zhou, D.; and
Kohli, P. 2017. Neuro-Symbolic Program Synthesis. In In-
ternational Conference on Learning Representations, ICLR.
Polosukhin, I.; and Skidanov, A. 2018. Neural Program
Search: Solving Programming Tasks from Description and
Examples. In International Conference on Learning Repre-
sentations, ICLR.
Shi, K.; Bieber, D.; and Singh, R. 2020. TF-Coder: Pro-
gram Synthesis for Tensor Manipulations. In Workshop on
Computer-Assisted Programming, CAP.
Shi, K.; Bieber, D.; and Sutton, C. 2020. Incremental Sam-
pling Without Replacement for Sequence Models. In Inter-
national Conference on Machine Learning, ICML.
Solomonoff, R. 1989. A system for incremental learning
based on algorithmic probability. In Israeli Conference on
Artificial Intelligence, Computer Vision and Pattern Recog-
nition.
Walker, A. J. 1977. An Efficient Method for Generating Dis-
crete Random Variables with General Distributions. ACM
Transactions on Mathematical Software, 3(3).
Zhang, L.; Rosenblatt, G.; Fetaya, E.; Liao, R.; Byrd, W. E.;
Urtasun, R.; and Zemel, R. S. 2018. Leveraging Constraint
Logic Programming for Neural Guided Program Synthesis.
In International Conference on Learning Representations,
ICLR.
Zohar, A.; and Wolf, L. 2018. Automatic Program Synthesis
of Long Programs with a Learned Garbage Collector. In
Neural Information Processing Systems, NeurIPS.

6630


