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Abstract

Classical matrix completion methods focus on data with sta-
tionary latent structure and hence are not effective in missing
value imputation when the latent structure changes with time.
This paper proposes a dynamic nonlinear matrix completion
(D-NLMC) method, which is able to recover the missing val-
ues of streaming data when the low-dimensional nonlinear
latent structure of the data changes with time. The paper pro-
vides an efficient approach to updating the nonlinear model
dynamically. D-NLMC incorporates the information of new
data and remove the information of earlier data recursively.
The paper shows that the missing data can be estimated if
the change of latent structure is slow enough. Different from
existing online or adaptive low-rank matrix completion meth-
ods, D-NLMC does not require the local low-rank assumption
and is able to adaptively recover high-rank matrices with low-
dimensional latent structures. Note that existing high-rank
matrix completion methods have high-computational costs
and are not applicable to streaming data with varying latent
structures, which fortunately can be handled by D-NLMC
efficiently and accurately. Numerical results show that D-
NLMC outperforms the baselines in real applications.

Introduction
Low-rank matrix completion (LRMC) aims to recover the
missing entries of a partially observed matrix of low rank
(Candès and Recht 2009). It has numerous real applications
such as image inpainting (Guillemot and Meur 2014), col-
laborative filtering (Su and Khoshgoftaar 2009), and classi-
fication (Goldberg et al. 2010). There are many LRMC al-
gorithms proposed in the past decade (Wen, Yin, and Zhang
2012; Hu et al. 2013; Nie, Huang, and Ding 2012; Gu et al.
2014; Lu et al. 2014; Wang et al. 2014; Xie et al. 2016; Fan
and Chow 2017; Fan et al. 2019). These algorithms are usu-
ally based on low-rank matrix factorization, nuclear norm
minimization (Candès and Recht 2009), Schatten-p quasi-
norm minimization (Nie, Huang, and Ding 2012), or their
extensions (Hu et al. 2013; Gu et al. 2014).

LRMC assumes that the matrix to be recovered is low-
rank or can be well approximated by a low-rank matrix. This
assumption does not hold in the cases that the data are drawn
from a nonlinear low-dimensional latent variable model or a
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union of low-dimensional subspaces (Fan 2021). To solve
the problem, recently, a few researchers proposed high-rank
matrix completion methods (Eriksson, Balzano, and Nowak
2011; Li and Vidal 2016; Alameda-Pineda et al. 2016; El-
hamifar 2016; Ongie et al. 2017; Fan and Chow 2018; Fan
and Cheng 2018; Fan, Zhang, and Udell 2020; Le Morvan
et al. 2020). For instance, Ongie et al. (2017) and Fan and
Chow (2018) proposed to minimize the rank of the matrix in
a feature space induced by kernel to recover the missing val-
ues in the data space. Fan and Udell (2019) proposed a ker-
nel factorization method for high-rank matrix completion,
which is more efficient than the methods of (Ongie et al.
2017) and (Fan and Chow 2018).

The aforementioned matrix completion methods focus
on the case that the latent structure of data is stationary.
In many real applications especially time series analysis
(Afrifa-Yamoah et al. 2020), the latent structure of data of-
ten changes with time. The problem is also closely related
to dynamic subspace tracking (Balzano, Nowak, and Recht
2010; Narayanamurthy and Vaswani 2018; Vaswani et al.
2018) and time series imputation (Yozgatligil et al. 2013; Yu,
Rao, and Dhillon 2015), which have been systematically dis-
cussed in the review paper of Vaswani and Narayanamurthy
(2018). One naive method for the case of changing latent
structure is performing static matrix completion on the data
segments selected by a sliding window with small width.
However, such a method is time-consuming because it has
to perform singular value decomposition (SVD), eigenvalue
decomposition (EVD), or matrix factorization for lt times,
where t denotes the total number of data samples currently
and l denotes the number of optimization iterations for the
matrix in the sliding window. For example, the nuclear min-
imization method has a time complexity of O(dw2lt) on a
streaming dataset of size d × t, where w is the width of the
sliding window and we have assumed w > d. When using
the NLMC method of (Fan and Chow 2018), the time com-
plexity is O(w3lt). Therefore, such a naive method is not
applicable to large datasets.

Related work A few researchers have studied the miss-
ing data imputation problem in the case of time-varying la-
tent structures (Balzano, Nowak, and Recht 2010; Devooght,
Kourtellis, and Mantrach 2015; Xu and Davenport 2016;
Chouvardas et al. 2017; Balzano, Chi, and Lu 2018; Afrifa-
Yamoah et al. 2020). For instance, Brand (2003) proposed
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an online SVD method for recommendation system. Dhan-
jal, Gaudel, and Clémençon (2014) proposed to perform ran-
domized SVD (Halko, Martinsson, and Tropp 2011) succes-
sively for nuclear norm minimization based matrix comple-
tion. Guo (2015) proposed an online LRMC method based
on matrix factorization. In the method, an online data sam-
ple xt is reconstructed by U (t−1)vt and U is updated dy-
namically and hence is able to fit the changes of the sub-
space. One limitation of the method is that it is hard to
ensure that the subspace change at t is accurately encoded
by U (t). In other word, the performance of the imputation
heavily relies on how much U is updated. Motivated from
the least-mean square algorithm, Tripathi, Mohan, and Ra-
jawat (2017) provided an adaptive LRMC method for time-
varying scenarios. The method showed promising perfor-
mance in mobile network localization and streaming video
denoising. It should be pointed out that these methods are
not applicable to streaming data with time-varying nonlin-
ear latent structures, which widely exist in real problems.

Contributions In this work, we focus on the missing
value imputation for time-varying streaming data.
• The paper presents a dynamic nonlinear matrix comple-

tion method for streaming data with time-varying nonlin-
ear latent structures.

• The paper provides a fast rank-two modification method
of eigenvalue decomposition to improve the efficiency of
the proposed online imputation method.

• The paper provides theoretical analysis for the time-
varying nonlinear latent variable model and verifies the
effectiveness of the proposed method.

Numerical results on synthetic data and real data show that
the proposed method has state-of-the-art performance.

Proposed Method
Property of Time-Varying Nonlinear Model
First, we make the following assumption.
Assumption 1. Suppose the d-dimensional sequence
{x1,x2, . . . ,xt, . . . ,xT } is generated from

xt = gt(zt), (1)

where zt = Azt−1 + εt, A ∈ Rr×r, εt ∈ Rr is indepen-
dently drawn from a distribution Dε, gt : Rr → Rd is a
polynomial function with order at most θ and with parame-
ters relying on t, and ‖gt(z)− gt−1(z)‖ ≤ γ‖z‖, ∀z ∈ Rr.

More intuitively, we give an example of gt.
Example 1. Let r = 1, d = 3, and θ = 3. xt1 = zt,
xt2 = (1 + sin(0.01t))z2

t , xt3 = z3
t .

Assumption 1 defined a time-varying nonlinear latent
variable model in the form of a multivariate polynomial
function gt, in which z is generated from an auto regressive
model. Dε has many choices such as Gaussian distribution
or uniform distribution. When A = 0, zt reduces to εt and
{xt} are independent samples. The parameter γ quantifies
the rate of the change of the latent structure. When γ is large,
the latent structure of the data changes quickly, which will
make the missing value imputation problem more difficult.

We use polynomial assumption because it is universal to
approximate smooth functions (prevalent in real problems)
according to the Taylor series, provided that θ is sufficiently
large. For example, let h be an arbitrary smooth function,
then for any ε, there exists a polynomial function g such that
‖h(z) − g(z)‖ ≤ ε. Therefore, we can extend Assumption
1 to smooth functions via letting xt = ht(z) = gt(z) + εt,
where ht : Rr → Rd is a smooth function associated with t
and εt denotes the residuals.

With Assumption 1, we have
Theorem 1. Suppose Xt = [xt−w+1,xt−w+2, . . . ,xt]

is given by Assumption 1. Let φ : Rd → R(d+q
q )

be a q-order polynomial feature map1. Let ct =
max(‖zt−w+1‖, . . . , ‖zt‖). Then with probability 1, there
exists a matrix X̂t with rank at most min

{(
r+θ
θ

)
, d, w

}
such that ‖Xt − X̂t‖F ≤

γctw
1.5

3
and rank(φ(X̂t)) ≤

min
{(

r+θq
θq

)
,
(
d+q
q

)
, w
}
.

The theorem2 indicates that, althoughXt can be full-rank
(when θ is large enough), it can be approximated by a ma-
trix X̂t with error at most γctw1.5/3, where the polynomial
feature matrix φ(X̂t) is low-rank relatively provided that r
is much smaller than d and w is sufficiently large. When
γ = 0, φ(Xt) can be exactly low-rank. When γ is small
enough, namely, the change of the latent structure is slow
enough, we can well approximate Xt with X̂t. More intu-
itively, let δ be a sufficiently large constant, we have

‖φ(Xt)− φ(X̂t)‖F ≤ δ‖Xt − X̂t‖F ≤
δγctw

1.5

3
. (2)

It means that φ(Xt) is approximately low-rank provided
that γ is small enough. Therefore, we may recover the miss-
ing values of Xt by minimizing the rank, nuclear norm, or
Schatten-p quasi-norm of φ(Xt).

Note that in Assumption 1, if the coefficients of the
polynomial function g are randomly generated, the equali-
ties for the rank of X̂t and φ(X̂t) in Theorem 1 hold al-
most surely, namely, rank(X̂t) = min

{(
r+θ
θ

)
, d, w

}
and

rank(φ(X̂t)) = min
{(

r+θq
θq

)
,
(
d+q
q

)
, w
}

. Therefore, The-

orem 1 is a general case of the rank property of X̂t and
φ(X̂t). The worst or most difficult case happens when the
equalities hold.

Dynamic Nonlinear Matrix Completion
In this study, we aims to recover the missing values of the
sequence {x1,x2, . . . ,xt, . . . } generated from Assumption
1 without knowing gt, εt, A, and zt. Inspired by (Ongie
et al. 2017) and (Fan and Chow 2018), we here propose to
solve

minimize
[Xt]Ω̄t

‖φ(Xt)‖pSp , t = 1, 2, . . . (3)

1An example for φ: let d = 2 and q = 2. φ(xt) =
[1, xt1, xt2, x

2
t1, x

2
t2, xt1xt2]

>.
2The proof is in the appendix.
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Figure 1: Dynamic nonlinear matrix completion (the white
squares denote missing values)

where Xt = [xt−w+1,xt−w+2, . . . ,xt]. Ωt (Ω̄t) denotes
the set of locations of the observed (missing) entries of
Xt. ‖Y ‖Sp denotes the Schatten-p quasi-norm of Y , i.e.,
‖Y ‖Sp = (

∑
i σ

p
i (Y ))

1/p, where σi(Y ) denotes the i-th
singular value of Y and 0 < p < 1. Suppose φ is the feature
map given by a kernel function k(·, ·), then problem (3) can
be reformulated as

minimize
[Xt]Ω̄t

trace
(
K
p/2
t

)
, t = 1, 2, . . . (4)

where Kt = φ(Xt)
>φ(Xt) ∈ Rw×w. The feature map φ

of a polynomial kernel k(xi,xj) = (x>i xj + a)q is exactly
a q-order polynomial feature map, which matches the con-
dition in Theorem 1. The feature map of a Gaussian kernel
k(xi,xj) = exp

(
−‖xi−xj‖

2

2σ2

)
is an infinite-order polyno-

mial feature map but the weight of high-order terms decrease
quickly especially when σ is large (Fan, Zhang, and Udell
2020). Hence a Gaussian kernel with a large enough σ can be
well approximated by low-order polynomial kernels. It indi-
cates that when we use a Gaussian kernel, φ(Xt)

>φ(Xt) is
still approximately low-rank, and (4) is useful to recover the
missing entries ofXt, which will be further justified later.

Suppose we have recovered the missing values of
x1,x2, . . . ,xw using (4), forXw+1, there is no need to esti-
mate the missing values of x2, . . . ,xw again. Then in stead
of (4), we proposed to solve the following problem

minimize
[xt]ω̄t

trace
(
K
p/2
t

)
, t = 1, 2, . . . (5)

where ω̄t denotes the locations of the missing entries of xt.
The scheme is shown in Figure 1. The method is called dy-
namic nonlinear matrix completion (D-NLMC).

Since problem (5) is nonconvex and the number of deci-
sion variables is not large, we propose to use L-BFGS (Liu
and Nocedal 1989) to solve the optimization. Denote by Lt
the objective function in (5). We can get the gradient by

∂Lt
∂Kt

=
p

2
K

p
2−1
t =

p

2
VtΛ

p
2−1
t Vt

>, (6)

where Vt and diag(Λt) are the eigenvectors and eigenvalues
of Kt respectively. For convenience, suppose we are using
the Gaussian kernel. We have

∂Lt
∂[xt]ω̄

=
w∑
i=1

w∑
j=1

∂Lt
∂[Kt]ij

∂[Kt]ij
∂[xt]ω̄

=

 2

σ2

Xtα−
w∑
j=1

αixt


ω̄

,

(7)

where α =

[
∂Lt
∂Kt

]
:w

� [Kt]:w. The gradient involving

polynomial kernels is in the appendix.
When using the Gaussian kernel, we have the following

theoretical result.
Theorem 2. Let Kt be the Gaussian kernel matrix with
parameter σ. There exists a matrix K̃t with rank at most
min

{(
r+θq
θq

)
,
(
d+q
q

)
, w
}

such that

‖Kt − K̃t‖F ≤
Ctγw

2

2σ2
+

C ′tw

σ2(q+1)(q + 1)!
, (8)

where Ct and C ′t are positive values relying on θ, q, and
max(‖zt−w+1‖, . . . , ‖zt‖).

The specific values of Ct and C ′t are in the appendix. The
theorem indicates that the Gaussian kernel matrix Kt is ap-
proximately low-rank provided that w is much larger than
r, which explained the effectiveness of (5) when we use
the Gaussian kernel. In (8), larger σ leads to tighter upper
bound. When q increases, the rank of K̃t becomes higher
but the upper bound becomes tighter. Since the diagonal el-
ements of Kt are all ones, the nuclear norm of Kt is a con-
stant w. Hence, using p/2 instead of 1 in (5) is reasonable.

Note that in (6), we need to compute the EVD
of Kt, which is time-consuming. Let K ′t−1 :=

φ(X ′t−1)>φ(X ′t−1), where X ′t−1 = [xt−w+1, . . . ,xt−1].
Suppose we have already got the eigenvalues and eigen-
vectors of K ′t−1, we propose to compute the EVD
of Kt by exploiting the EVD of K ′t−1. In this study,
we take advantage of the fast low-rank modification
method proposed by (Brand 2006). Specifically, denoting
k′t = [k(xt−w+1,xt), . . . , k(xt−1,xt)]

>, we have

Kt =

[
K ′t−1 k′t
k′>t k(xt,xt)

]
. (9)

Suppose the truncated EVD of K ′t−1 is K ′t−1 ≈
V ′t−1Λ

′
t−1V

′>
t−1, where V ′t−1 ∈ R(w−1)×R. According to

Theorem 1, we have R ≤
(
r+θq
θq

)
provided that w/r is suffi-

ciently large. We rewrite (9) as

Kt = V̄t−1Λ̄t−1V̄
>
t−1 +GtH

>
t (10)

where V̄t−1 = [V ′>t−1 0]>, Λ̄t−1 = Λ′t−1, Gt = [ew k̄
′],

and Ht = [k̃′t ew]. ew = [0, 0, . . . , 0, 1]>, k̄′ = [k′> 0]>,
and k̃′ = [k′> k(xt,xt)]

>. Then according to (Brand
2006), the EVD of Kt can be efficiently computed from
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Algorithm 1: Fast EVD forKt

Input: V̄t−1, Λ̄t−1,Gt,Ht

1:
[
V̄t−1 P

] [I V̄ >t−1Gt

0 RG

]
QR decomp.←−−−−−−

[
V̄t−1 Gt

]
2:
[
V̄t−1 Q

] [I V̄ >t−1Ht

0 RH

]
QR decomp.←−−−−−−

[
V̄t−1 Ht

]
3: C ←−

[
Λ̄t−1 0

0 0

]
+

[
V̄ >t−1Gt

RG

] [
V̄ >t−1Ht

RH

]
4: C = VCSCV

>
C

5: Vt ←−
[
V̄t−1 Q

]
VC , Λt ←− SC

Output: Kt = VtΛtV
>
t .

Algorithm 2: Fast EVD forK ′t
Input: Vt, Λt,Gt−w+1,Ht−w+1

1: Follow the procedures 1–5 of Algorithm 1
2: Remove the smallest two eigenvalues and the corre-

sponding eigenvectors
Output: K ′t = V ′t Λ′tV

′>
t .

{V̄t−1, Λ̄t−1,Gt,Ht}, which is detailed in Algorithm 1.
Note that we can reformulate Algorithm 1 as two rank-one
modifications to obtain further acceleration, which is de-
tailed in the appendix.

After we complete xt using (5), we need to compute the
EVD of K ′t so as to compute the EVD of Kt+1 efficiently,
where K ′t = φ(X ′t)

>φ(X ′t) and X ′t = [xt−w+2, . . . ,xt].
We can get the EVD of K ′t efficiently from Kt which we
have obtained after solving (5). Specifically, let Gt−w+1 =

[e1 − k̄t−w+1] and Ht−w+1 = [−k̃t−w+1 e1], where
e1 = [1, 0, . . . , 0, 0]>, k̄t−w+1 = [0 k>t−w+1]>,
k̃t−w+1 = [k(xt−w+1,xt−w+1) k>t−w+1]>, and kt−w+1 =

[k(xt−w+1,xt−w+2), . . . , k(xt−w+1,xt)]
>. We have[

0 0

0 K ′t

]
= Kt +Gt−w+1H

>
t−w+1. (11)

Then the EVD of K ′t is computed by Algorithm 2. It is
nearly the same as Algorithm 1 except for the step of the re-
duction of eigenvalues and eigenvectors, because Algorithm
1 raised the number of eigenvalues and eigenvectors by two.

The entire algorithm is shown in Algorithm 3. At time
point t, the algorithm uses {xt−w+1, . . . ,xt−1} to recover
the missing values of xt and hence can adapt to the changes
of the latent structure. In addition, since we have used Algo-
rithm 1 and Algorithm 2, D-NLMC is efficient and applica-
ble to large datasets. Specifically, the time complexity (per
iteration) of solving (5) without using Algorithm 1 and Al-
gorithm 2 is O(w3). By using Algorithm 1 and Algorithm
2, the time complexity is reduced to O(w2R + R3), where
w > R. Note that the improvement is actually much larger
than w/R times because the omitted constant in O(w3)
(from EVD) is much larger than the omitted constant in
O(w2R) (from matrix multiplication), which will be veri-
fied by the right plot of Figure 2 in Section .

Algorithm 3: D-NLMC

Input: X0, R.
1: Recover the missing entries ofX0 via solving (4)
2: Compute partial (R) EVD ofK ′0, i.e.,K ′0 ≈ V ′0 Λ′0V

>
0

3: for t = 1, 2, 3, . . . do
4: Complete xt via solving (5) (L-BFGS incorporating

(7) and Algorithm 1)
5: Compute the EVD ofK ′t by Algorithm 2
6: end for

Output: Completed x1,x2, . . . ,xt, . . .

Experiments
Synthetic Data
We consider the following data generating model

x1(t) = z(t),

x2(t) = z(t)2 × α(t),

x3(t) = z(t)3,

(12)

where t = 1, 2, . . . , T , z(t) is drawn from U(0, 1) indepen-
dently, and α(t) = 1+sin(βt). The parameter β controls the
change rate of the nonlinear latent structure. When β = 0,
the model is static. Suppose we get a data matrix X of size
3 × ∆t from (12) and ∆t = t2 − t1 ≥ 3, the rank of X
is 3, though the latent dimension is only 1. In this study, we
let T = 2020 and get a matrix X ∈ R3×2020. We randomly
remove a fraction of entries in the last 2000 columns of X
to test the performance of the proposed method. The first 20
columns of X do not have missing values. We compare our
D-NLMC with the following baselines:

• NNM nuclear norm minimization based low-rank matrix
completion method (Candès and Recht 2009)

• NNM+ perform NNM in a sliding window of data con-
tinuously

• OL-LRMC the online low-rank matrix completion
method proposed by (Guo 2015)

• VMC the algebraic variety method proposed by (Ongie
et al. 2017)

• PMC-T the polynomial matrix completion method pro-
posed by (Fan, Zhang, and Udell 2020)

• NLMC+ perform NLMC (Fan and Chow 2018) in a slid-
ing window of data continuously

We tune the hyper-parameters of all algorithms carefully
to provide their best performance as much as possible. In
D-NLMC, we set w = 20, R = 15, and use Gaussian ker-
nel with σ = µw−2

∑w
i=1

∑w
j=1 ‖xi−xj‖ (similar to (Fan,

Zhang, and Udell 2020)), where µ is a constant such as 1
or 3. In this case, we use µ = 1. Note that through out this
paper, we let the w in OL-LRMC be the same as the w in
D-NLMC. We evaluate the performance of missing data im-
putation using the following relative error:

RE =

√ ∑
(i,j)∈Ω̄

(xij − x̂ij)2
/
∑

(i,j)∈Ω̄

x2
ij , (13)
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Figure 2: Recovery error and time cost on the synthetic data with different β (ρ = 0.5)

Figure 3: Examples of Chlorine level data imputation (variables 1, 10, 30, and 50) in the case of random missing pattern

where Ω̄ denotes the locations of the missing values. We
report the average recovery error of 20 repeated trials in
the left of Figure 2. The low-rank matrix completion meth-
ods NNM, NNM+, and OL-LRMC have very high recov-
ery error because the data were drawn from a nonlinear
model, namely, (12). The recovery errors of VMC and PMC-
T increase quickly when β is large because they are static
methods and are not able to adapt to the changes of latent
structure. Our method D-NLMC is more accurate than other
methods in all cases. The right of Figure 2 compares the time
costs of the nonlinear methods. D-NLMC is more efficient

than VMC, PMC, and NLMC+.

Chlorine Level Dataset

We test the proposed method on the Chlorine level dataset
used in (Papadimitriou, Sun, and Faloutsos 2005; Balzano,
Nowak, and Recht 2010). The dataset has 166 variables
and 4610 samples. Since the number of the samples is too
large for NNM+, VMC, PMC-T and NLMC+, we only con-
sider NNM and OL-LRMC. We also compare the GROUSE
method of (Balzano, Nowak, and Recht 2010) and the
KFMC method of (Fan and Udell 2019), which are scalable
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NNM GROUSE OL-LRMC KFMC D-NLMC

missing
randomly

ρ=0.1 8.18±0.05 7.57±0.12 2.21±0.01 3.61±0.04 0.17±0.01
ρ=0.3 9.14±0.04 7.86±0.12 3.06±0.02 4.04±0.05 0.78±0.04
ρ=0.5 10.51±0.46 9.12±0.71 4.55±0.01 4.43±0.04 2.78±0.06

missing
non-randomly

κ=100 8.92±0.27 8.63±0.45 6.73±0.46 5.23±0.38 2.29±0.41
κ=500 9.25±0.18 8.77±0.25 6.91±0.29 5.41±0.28 2.96±0.33
κ=1000 9.84±0.34 8.95±0.44 8.27±0.52 5.69±0.22 3.63±0.29

Table 1: Recovery error (%) on the Chlorine level dataset (20 repeated trials; ρ denotes the missing rate in the random missing
pattern and κ denotes the number of missing blocks in the non-random missing pattern)

NNM GROUSE OL-LRMC KFMC D-NLMC

missing
randomly

ρ=0.1 10..06±0.35 15.18±0.26 6.68±0.29 8.04±0.51 5.10±0.38
ρ=0.3 13.54±0.36 17.59±0.38 8.02±0.35 10.51±0.52 7.19±0.63
ρ=0.5 18.34±0.29 21.22±0.94 17.93±1.38 15.69±1.07 12.07±1.14

missing
non-randomly

κ=100 20.51±2.05 24.66±3.46 12.93±1.92 13.51±2.67 11.25±3.06
κ=500 22.43±1.44 27.09±2.36 18.78±3.97 17.62±2.68 14.07±1.64
κ=1000 27.91±1.32 29.56±2.01 33.68±4.34 19.82±1.98 17.64±1.56

Table 2: Recovery error (%) on the SML2010 indoor temperature data (20 repeated trials)

NNM GROUSE OL-LRMC KFMC D-NLMC

missing
randomly

ρ=0.1 27.09±0.43 35.49±0.57 17.83±0.31 20.44±0.96 14.65±0.72
ρ=0.3 31.11±0.21 38.22±0.85 22.05±0.20 21.96±0.67 17.63±0.59
ρ=0.5 39.69±0.51 44.61±1.38 33.46±0.35 27.18±0.54 28.53±0.37

missing
non-randomly

κ=100 27.49±1.87 36.93±1.63 20.64±1.94 19.75±2.63 14.85±2.57
κ=500 26.58±1.48 39.20±0.92 21.52±0.76 19.92±2.32 18.93±2.29
κ=1000 28.34±0.86 40.17±1.05 23.26±1.37 21.02±1.27 19.89±2.36

Table 3: Recovery error (%) on the Air Quality data (20 repeated trials)

Figure 4: Examples of Chlorine level data imputation (vari-
able 50) in the case of non-random missing pattern

to large datasets. In D-NLMC, we set w = 100, R = 50,
and µ = 1.

We consider two different patterns of missing data. The
first one is randomly missing. We randomly remove 10%,

30%, or 50% entries of the data matrix. In the second pat-
tern, we randomly remove 100, 500, or 1000 squares of size
10 × 10 from the data matrix. Figure 3 shows an example
of completion performance in the case of randomly missing,
where the missing rate ρ is 0.3. We see that the data recov-
ered by our D-NLMC are nearly the same as the ground truth
while other methods especially LRMC and GROUSE have
much higher recovery errors. Figure 4 presents an example
when the missing values emerge in random blocks. Since
LRMC is a linear and static method, it cannot handle the
nonlinearity and nonstationarity. The proposed method D-
NLMC can adapt to the changes of the latent structure and
explore the nonlinearity, which makes it have better recov-
ery performance visually. We report the average results of
20 repeated trials in Table 1. It can be seen that our method
D-NLMC outperformed other methods significantly.

SML2010 Indoor Temperature Data
We test the proposed method on the SML2010 indoor tem-
perature dataset3 from the UCI machine learning repository.
The dataset consists of 2764 samples of 24 variables such as

3https://archive.ics.uci.edu/ml/datasets/SML2010
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Figure 5: Examples of SML2010 imputation (variables 1 and
10) in the case of non-random missing pattern (κ = 500)

Figure 6: Examples of Air Quality data imputation (variables
1 and 3) in the case of random missing pattern (ρ = 0.3)

indoor temperature, relative humidity, and lightning. Since
the variables have very different scales, we standardize them
to have unit variances. Similar to Section , we also consider

the random missing pattern and non-random missing pat-
tern. One difference is that in the non-random case, the size
of the missing blocks is reduced to 5 × 5 because the di-
mension of the data is much lower than the previous case. In
D-NLMC, we set w = 50, R = 25, and µ = 1.

Table 2 shows the recovery errors in the cases of differ-
ent missing rate ρ and different block numbers κ. We see
that the proposed method D-NLMC has much lower recov-
ery error than other methods in all cases. The superiority of
D-NLMC over OL-LRMC becomes more significant when
the problem is harder. In addition, Figure 5 shows an exam-
ple of the recovery performance in the case of non-randomly
missing (κ = 500). The performance of D-NLMC is better
than other methods visually. Additionally, Figure 5 indicates
that part of the latent structure (related to x10) of the data
changes abruptly instead of smoothly, which is beyond the
assumption made in this paper.

Air Quality Data
We consider the air quality dataset (De Vito et al. 2008) from
the UCI machine learning repository4. The dataset contains
9358 samples of hourly averaged responses from an array of
5 metal oxide chemical sensors embedded in an Air Quality
Chemical Multisensor Device. There are 13 variables, fur-
ther standardized to have unit variances. In D-NLMC, we
set w = 50, R = 25, and µ = 3.

Similar to Section and Section , we also consider the
random missing pattern and non-random missing pattern
(with block size 3 × 5). Figure 6 shows an example of
the imputation performance in the case of random miss-
ing (ρ = 0.3). We see that, many data points recovered by
LRMC, GROUSE, OL-LRMC, and KFMC are far from the
ground truth. Compared to these methods, our D-NLMC has
better recovery performance intuitively. The average recov-
ery errors over 20 repeated trials are reported in Table 3. The
proposed method D-NLMC outperformed other methods in
almost all cases. These results are consistent with the results
in Table 1 and Table 2.

Conclusion
This paper has proposed a new method called D-NLMC for
the missing value imputation of data with time-varying non-
linear latent structures. Compared to online low-rank matrix
completion methods such as (Balzano, Nowak, and Recht
2010; Guo 2015), D-NLMC has much higher recovery accu-
racy in recovering the missing values of data with nonlinear
structures. Compared to existing nonlinear matrix comple-
tion methods such as (Ongie et al. 2017; Fan, Zhang, and
Udell 2020), D-NLMC can adapt to the changes of the la-
tent structure of online data and has much higher recovery
accuracy and much lower time cost.

In this study, although we focused only on missing value
imputation, it is possible to extend D-NLMC to robust and
dynamic subspace tracking (Vaswani et al. 2018), which can
be a future work.

4https://archive.ics.uci.edu/ml/datasets/Air+Quality
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Proof for Theorem 1
Proof. Without loss of generality, we assume that w is an
odd number. We obtain
‖gt(zt)− gt−w−1

2
(zt)‖

≤‖gt(zt)− gt−1(zt)‖+ ‖gt−1(zt)− gt−2(zt)‖+ · · ·
+ ‖gt−w−1

2 +1(zt)− gt−w−1
2

(zt)‖

≤w−1
2 γ‖zt‖.

(14)
Similarly, for s = t− w−1

2 , . . . , t, we have
‖gs(zs)− gt−w−1

2
(zs)‖ ≤ (w−1

2 + s− t)γ‖zs‖, (15)

and for s = t− w + 1, . . . , t− w−1
2 − 1, we have

‖gs(zs)− gt−w−1
2

(zs)‖ ≤ (t− s− w−1
2 )γ‖zs‖. (16)

Putting (15) and (16) together, we get
t∑

s=t−w+1

∥∥∥gs(zs)− gt−w−1
2

(zs)
∥∥∥2

≤
t−w−1

2 −1∑
s=t−w+1

(t− s− w−1
2 )2γ2‖zs‖2

+
t∑

s=t−w−1
2 +1

(w−1
2 + s− t)2γ2‖zs‖2

≤2

(w−1)/2∑
v=1

v2γ2c2t

=γ2c2t (w − 1)w(w + 1)/12

≤γ2c2tw
3/12,

(17)

where ct = max(‖zt−w+1‖, . . . , ‖zt‖). Let

X̂t = (x̂t−w+1, x̂t−w+2, . . . , x̂t) ,

where x̂s = gt−w−1
2

(zs), s = t−w+1, . . . , t. According to
Lemma 1 of (Fan, Zhang, and Udell 2020), with probability
1, we have

rank(X̂t) ≤ min
{(

r + θ

θ

)
, d, w

}
. (18)

On the other hand, according to (17) and the definition of
X̂t, we have

‖Xt − X̂t‖F ≤
γctw

1.5

3
. (19)

Now combining (18) and (19), we conclude that Xt

can be approximated by a matrix X̂t with rank at most
min

{(
r+θ
θ

)
, d, w

}
and the approximation error is at most

γctw
1.5/3. This finished the proof for the first part of the

theorem.
Let φ be a q-order polynomial feature map. According to

Lemma 1 of (Fan, Zhang, and Udell 2020), we have

rank(φ(X̂t)) ≤ min

{(
r + θq

θq

)
,

(
d+ q

q

)
, w

}
. (20)

Then we conclude that Xt can be approximated by a ma-
trix X̂t satisfying rank(φ(X̂t)) ≤ min

{(
r+θq
θq

)
,
(
d+q
q

)
, w
}

.
This finished the proof.

Gradient Related to Polynomial Kernels
Denote by Lt the objective function in (5) of the main paper.
We have

∂Lt
∂Kt

=
p

2
K

p
2−1
t =

p

2
VtΛ

p
2−1
t Vt

>, (21)

where Vt and diag(Λt) are the eigenvectors and eigenvalues
of Kt respectively. When Kt is computed by a polynomial
kernel k(xi,xj) = (x>i xj + a)q , we have

∂Lt
∂[xt]ω̄

=
w∑
i=1

w∑
j=1

∂Lt
∂[Kt]ij

∂[Kt]ij
∂[xt]ω̄

=
[
2qXt

(
α�

(
X>t xt + a

)�(q−1)
)]

ω̄

(22)

where α =

[
∂Lt
∂Kt

]
:w

. Invoking (21) into (22), we arrive at

∂Lt
∂[xt]ω̄

[
2qXt

((p
2
VtΛ

p
2−1
t vt

)
�
(
X>t xt + a

)�(q−1)
)]

ω̄

(23)
where vt denotes the last column of V >t .

Proof for Theorem 2
Proof. According to Corollary 1 of (Fan, Zhang, and Udell
2020), there exists a matrix K̃ ∈ Rw×w with rank at most(
r+θq
θq

)
such that ∥∥∥K̂σ − K̃

∥∥∥
F
≤ C1, (24)

where C1 = w exp
(
− mini ‖x̂i‖2

σ2

)maxi ‖x̂i‖q+1

σ2(q+1)(q+1)!
, provided

that w/r is large enough. On the other hand, using the local
Lipschitz continuity of exponential function, we have

‖Kσ − K̂σ‖2F

≤ 1

4σ4

∑
ij

(
‖xi − xj‖2 − ‖x̂i − x̂j‖2

)2
≤ 1

4σ4

∑
ij

Cij (‖xi − x̂i‖+ ‖xj − x̂j‖)2

≤maxij Cij
4σ4

∑
ij

(
w − 1

2
γ‖zi‖+

w − 1

2
γ‖zj‖

)2

≤γ
2w2(w − 1)2 maxij Cij maxi ‖zi‖2

4σ4
,

(25)

where Cij = 2 max(‖xi‖, ‖xj‖, ‖x̂i‖, ‖x̂j‖). Combining
(24) with (25), we obtain

‖Kσ − K̃‖F

≤‖Kσ − K̂σ‖F +
∥∥∥K̂σ − K̃

∥∥∥
F

≤γw
2CxCz
2σ2

+
wC ′x(C2

x/2)q+1

σ2(q+1)(q + 1)!
,

(26)

where C ′x = exp
(
− mini ‖x̂i‖2

σ2

)
, Cx =√

2 max(‖xi‖, ‖xj‖, ‖x̂i‖, ‖x̂j‖), and Cz = maxi ‖zi‖.

6594



Since gt is polynomial, there exists a constant Cθ large
enough such that maxi ‖x̂i‖ ≤ Cθ maxi ‖zi‖, where
i = t − w + 1, . . . , t. Letting Ct =

√
2Cθ (maxi ‖zi‖)3/2

and C ′t = exp(−C
2
θ (maxi ‖zi‖)2

σ2 ) (2Cθ maxi ‖zi‖)q+1. It
follows from (26) that

‖Kσ − K̃‖F ≤
Ctγw

2

2σ2
+

C ′tw

σ2(q+1)(q + 1)!
. (27)

This finished the proof.

Rank-One Modification for Fast EVD
Here we show how to perform rank-one modification (Brand
2006) twice to compute the eigenvalue decomposition of
Kt. Let ew = [0, 0, . . . , 0, 1]> and k̃′ = [k′> k(xt,xt)]

>.
The method is detailed in Algorithm 4.

Algorithm 4: Rank-one modification for fast EVD ofKt

Input: V ′t−1, Λ′t−1, ew, k′, k̃′

1: U ← V ′t−1, V ← [V ′>t−1 0]>, a← k̄′, b← ew
2: m = U>a, p = a−Um, p̄ = p/‖p‖.
3: n = V >b, q = b− V n, q̄ = q/‖q‖.

4: W :=

[
Λ′t−1 0

0 0

]
+

[
m

‖p‖

] [
n

‖q‖

]>
.

5: W = U ′Σ′V ′>.
6: Ū ← U p̄]U ′, V̄ ← V q̄]V ′.
7: U ← [Ū> 0]>, V ← V̄ , a← ew, b← k̃′

8: m = U>a, p = a−Um, p̄ = p/‖p‖.
9: n = V >b, q = b− V n, q̄ = q/‖q‖.

10: W :=

[
Σ′ 0

0 0

]
+

[
m

‖p‖

] [
n

‖q‖

]>
.

11: W = U ′Σ′V ′>.
12: Ut ← [U p̄]U ′, Λt ← Σ′, Vt ← [V q̄]V ′.
Output: Kt ≈ VtΛtV

>
t .
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