Learning Influence Adoption in Heterogeneous Networks

Vincent Conitzer1, Debmalya Panigrahi1, Hanrui Zhang2

1 Duke University
2 Carnegie Mellon University
conitzer@cs.duke.edu, debmalya@cs.duke.edu, hanrui1@cs.cmu.edu

Abstract

We study the problem of learning influence adoption in networks. In this problem, a communicable entity (such as an infectious disease, a computer virus, or a social media meme) propagates through a network, and the goal is to learn the state of each individual node by sampling only a small number of nodes and observing/testing their states. We study this problem in heterogeneous networks, in which each individual node has a set of distinct features that determine how it is affected by the propagating entity. We give an efficient algorithm with nearly optimal sample complexity for two variants of this learning problem, corresponding to symptomatic and asymptomatic spread. In each case, the optimal sample complexity naturally generalizes both the complexity of learning how nodes are affected in isolation, and the complexity of learning influence adoption in a homogeneous network.

1 Introduction

The spread of contagious entities such as biological infections, social media memes, or computer viruses in a population via network propagation is a central object of study in the field of network science. Consider, for example, the spread of an infectious disease. Quite often, a new disease originates by genetic mutation, and begins to propagate by first infecting a group of people in close contact with the original source of the disease. After the initial infections, the disease continues to propagate as carriers of the disease interact with others; each carrier exposes colleagues, family, and friends to the disease, who may contract the disease and become spreaders themselves.

While there is substantive research on how to control (or maximize, say in viral advertising) such spread (Kempe, Kleinberg, and Tardos 2003; Chen, Wang, and Yang 2009; Tang, Xiao, and Shi 2014), and to infer network parameters from it (Liben-Nowell and Kleinberg 2007; Chierichetti, Liben-nowell, and Kleinberg 2011; Du et al. 2012), much less is known about learning the state of individuals in the network based on the propagation process. In the latter problem, we observe the outcome of the propagation process for a sample of individuals in the network, and use these observations to train a learning algorithm that can then infer the outcome for an individual that we have not observed. For example, suppose a university is trying to identify individuals affected by an infectious disease in its student population. Due to limited resources, it might be infeasible to test every student, at least not frequently; instead, it can test a sample of students and use additional information such as shared dorm residency, class registration, etc., to identify the students who are at risk of contracting the disease. We call this the influence adoption phenomenon in a network, and seek to study its learnability.

Recently, Conitzer, Panigrahi, and Zhang (2020) introduced this problem and studied it in the homogeneous model, where any individual who comes in contact with an infected individual gets infected as well. The state of an individual is then determined by the initial set of infected individuals and the propagation network itself (which may be random). In practice, however, individuals differ in their characteristics, and have varying levels of susceptibility to a spreading contagion. For instance, some diseases infect only people of particular age groups, some computer viruses infect only computers with specific system configurations, and some memes are meaningful only to people in particular professions. In many cases, if an individual is not infected, she is not a spreader either.

Indeed, this heterogeneity significantly changes the learning task at hand. For instance, if a disease only infects adults, and the community we care about consists exclusively of children, then we only need to learn the fact that children are unaffected, rather than the status of any particular individual. Or, if a disease were to infect people of a particular blood group, the learning task becomes more challenging since the spread of the disease is now controlled by two sets of information – the initial set of infected individuals and the individual features of members of the population – in addition to the propagation network itself (which may again be random). This leads to the following fundamental question:

What is the impact of heterogeneity among individuals on the learnability of influence adoption in a network?

1.1 Our Contributions

Modeling heterogeneity. We model the community of interest as a network of heterogeneous nodes representing indi-
Figure 1: An example computer network, where the two computers on the left were exposed to, and therefore have been inspected for a new virus. Suppose the virus targets an unknown set of weaknesses, and suppose the presence of any one of these weaknesses allows the computer to be infected. Since the top left computer, with a weak OS and a weak password, is infected, the weaknesses targeted must include a weak OS, a weak password, or both (meaning that either would suffice for infection). On the other hand, the bottom left computer is not infected, which means the virus does not target a weak OS. So given the prior knowledge and the inspection results, we know for sure that the virus targets a weak password. Given this, we can infer the complete adoption pattern in the network — the top middle computer does not have a weak password, and therefore is invulnerable to the virus. The same is true for the bottom right computer. The bottom middle one, on the other hand, is vulnerable and in contact with the virus at the same time, so it must be infected. The top right computer is vulnerable, but the virus cannot reach it, since neither of its neighbors is infected. So the top right computer is not infected either.

1In network/graph mining, “heterogeneous networks” normally exhibit heterogeneity in both nodes and edges, and our model is more similar to “attributed networks” where edges are homogeneous.

as long as it received the entity itself, irrespective of whether it is susceptible (which roughly corresponds to an SI process where some nodes are asymptomatic). In this model, for the example in Figure 1, we would conclude that the top right node is also infected (i.e., shows symptoms), as it would be exposed and also must be susceptible. (This would correspond to the case where the virus spreads through all computers on the network but is only able to affect — say, encrypt the hard drive of — some of them. In our language, only the computers with encrypted hard drives would be infected.) We denote the corresponding hypothesis class for susceptibility of individual nodes \(\mathcal{H}_s \).

Optimal sample complexity bounds. Our main results in this paper are asymptotically tight bounds for the sample complexity (i.e., the number of random nodes that need to be inspected) of learning influence adoption in heterogeneous networks, for both the symptomatic spread and asymptomatic spread models.

In particular, we show the following bounds. In these bounds, \(\rho \) is the maximum width of the network, \(n \) is the number of nodes in it, and \(d_g \) and \(d_s \) are the VC dimensions of the generator and susceptibility hypothesis classes respectively (we will formally define the sample complexity and the width later).

- the sample complexity of learning in the symptomatic spread model is \(O(d_s \log n + \min(\rho, d_g \log n)) \).
- the sample complexity of learning in the asymptomatic spread model is \(O(d_s + \min(\rho, d_g \log n)) \).

To gain some intuition about these bounds, let us first compare them to the homogeneous setting studied by Conitzer, Panigrahi, and Zhang (2020). In that model, all nodes are susceptible, so that \(d_s = 0 \), and any subset of them can be generators, so that \(d_g = n \). Thus, the above bounds reduce to the width of the network \(\rho \), which is exactly the result in Conitzer, Panigrahi, and Zhang (2020). Next, suppose
every individual in a network is externally infected, so that \(d_g = 0 \). Then, the complexity of learning the state of each individual reduces to that of learning in the hypothesis class \(\mathcal{H}_s \), which demonstrates that the sample complexity bounds must depend on \(d_g \). Finally, suppose the network is an empty graph, so that \(\rho = n \), and everybody is susceptible, so that \(d_s = 0 \). In this case, an individual is infected if and only if that individual is externally exposed, which shows that the dependence on \(d_g \) is also necessary.

While the discussion above establishes that the sample complexity bounds must depend on \(d_s \), \(d_g \), and \(\rho \), we show further in later sections that the specific bounds given above are also asymptotically tight. For this purpose, we construct a set of “hard” instances of the problem, in which effective learning using fewer samples than these bounds can be ruled out from an information-theoretic perspective.

Random propagation. The propagation of communicable entities, such as the spread of disease between an infected and a healthy person who comes in contact, is often inherently a random event. In some cases, we may know who has come into contact with whom, but we generally still do not know for certain if there was transmission — though we may have a better idea of the probability thereof. In other cases, who came into contact with whom itself might only be known through a Bayesian process: it might not be known if two people came in contact with one another, but the probability of doing so can be inferred from their activities. We abstract from both these cases by considering a random propagation network, and give a generic reduction from sample complexity bounds for learning in deterministic environments to learning in random environments. Using this reduction and our sample complexity bounds for deterministic propagation, we obtain similar bounds for stable random networks. The stability condition assumes that the target error rate and failure probability of the learner are above the resolution of the random network, a condition that is necessary even for homogeneous networks (see (Conitzer, Panigrahi, and Zhang 2020)).

1.2 Further Related Work

Influence propagation. The phenomenon of influence propagation in a network was first studied by Kempe, Kleinberg, and Tardos (2003). Various models of influence propagation have been investigated (Gruhl et al. 2004; Chen, Wang, and Wang 2010; Chen et al. 2011; Myers, Zhu, and Leskovec 2012). Several aspects of influence propagation have been extensively studied, among which a topic particularly related to our work is learning from influence propagation, i.e., learning structures/parameters of networks. There, the goal is to learn parameters of the network in which the propagation happens given outcomes of the propagation procedure. As such, it can be regarded as an inverse problem of the one we study. Some representative results on the topic include (Liben-Nowell and Kleinberg 2007; Goyal, Bonchi, and Lakshmanan 2010; Chierichetti, Liben-Nowell, and Kleinberg 2011; Gomez Rodriguez, Balduzzi, and Schölkopf 2011; Saito et al. 2011; Du et al. 2012; Guille and Hacid 2012; Abrahao et al. 2013; Cheng et al. 2014; Daneshmand et al. 2014; Du et al. 2014; Narasimhan, Parkes, and Singer 2015; He et al. 2016; Kalimeris et al. 2018). A related and more recent line of work is on representation learning for influence propagation (Bourjault, Lamprier, and Gallinari 2016; Li et al. 2017; Wang et al. 2017). Being an inverse problem, our results are not directly comparable to all the above.

Epidemic estimation. There is a massive body of research on epidemic estimation, where the main focus is on macroscopic prediction tasks, e.g., whether a meme will go viral, or the number of infections over time (Myers, Zhu, and Leskovec 2012; Weng, Menczer, and Ahn 2013). In contrast, our results aim to recover the infection status of every single node, as opposed to aggregate statistics.

Learning theory. Valiant (1984) introduced the probably approximately correct (PAC) framework for passive learning. The Vapnik-Chervonenkis (VC) theory (see (Vapnik 2013)) nicely characterizes the learnability of different concepts via the VC dimension, following which various measures of complexity have been considered (Alon et al. 1997; Bartlett and Mendelson 2002; Pollard 2012; Daniely et al. 2015), and tighter generalization bounds have also been developed (Talagrand 1994; Hanneke 2016). While these general results are powerful, as discussed in later sections, they cannot be directly applied to the specific problem we study.

2 Preliminaries

2.1 Useful Tools from Learning Theory

Definition 1 (VC Dimension). A set \(S \) is shattered by a family of sets \(\mathcal{F} \), if for any \(T \subseteq S \), there exists \(U \in \mathcal{F} \), such that \(S \cap U = T \). The VC dimension of a hypothesis class \(\mathcal{H} \) over a space \(\mathcal{X} \), denoted \(d(\mathcal{H}) \), is the cardinality of the largest set \(S \subseteq \mathcal{X} \) shattered by \(\mathcal{H} \).

The sample complexity of PAC learning is given by the following theorem:

Theorem 2 (VC Theorem (the realizable case)). Fix \(\mathcal{X} \) and \(\mathcal{H} \). Consider any distribution \(\mathcal{D} \) over \(\mathcal{X} \), \(f \in \mathcal{H} \), \(\delta > 0 \), and \(\varepsilon > 0 \). Now, given \(m = O((d(\mathcal{H}) \log(1/\varepsilon) + \log(1/\delta))/\varepsilon) \) i.i.d. samples from \(\mathcal{D} \), the following holds with probability at least \(1 - \delta \): any hypothesis \(h \in \mathcal{H} \) that is consistent with all the \(m \) samples (i.e., \(h(x_i) = y_i \) for all \(i \in [m] \)) satisfies

\[
\Pr_{x \sim \mathcal{D}}[h(x) \neq f(x)] \leq \varepsilon.
\]

Moreover, this bound is tight in the sense that any algorithm achieving this guarantee requires \(\Omega((d(\mathcal{H}) + \log(1/\delta))/\varepsilon) \) samples.

2.2 Learning Influence Propagation in Networks

Definition 3 (Implicit Hypothesis Class). Given a directed network \(G = (V,E) \), the implicit hypothesis class associated with \(G \), \(\mathcal{H}(G) \), is defined to be the family of all subsets \(S \) of \(V \), where for any two vertices \(u, v \in V \), if \(u \in S \) and \(u \) can reach \(v \) in \(G \) (i.e., \(u \rightarrow_G v \)), then \(v \in S \).

In words, the implicit hypothesis class is the family of all sets that are closed under reachability in \(G \).

Definition 4 (Width of Directed Networks). The width \(\rho(G) \) of a directed network \(G = (V,E) \) is the size of the maximum set \(S \subseteq V \) of vertices, such that for any \(u, v \in S \) where \(u \neq v \), there is no \(u \) to \(v \) path in \(G \), i.e., \(u \nRightarrow_G v \).
Lemma 5 (VC Dimension of Implicit Hypothesis Class (Conitzer, Panigrahi, and Zhang 2020)). Given a directed network \(G \), the VC dimension of the implicit hypothesis class \(\mathcal{H}(G) \) associated with \(G \) is \(d(\mathcal{H}(G)) = \rho(G) \).

3 Learning under Symptomatic Spread

The propagation model. In a directed network \(G = (V, E) \), each node \(u \in V \) has features \(x(u) \in X \) given by a feature mapping \(x : V \rightarrow X \). Given a generator concept \(f_g : X \rightarrow \{0, 1\} \) and a susceptibility concept \(f_s : X \rightarrow \{0, 1\} \), the final adoption pattern \(f_G : V \rightarrow \{0, 1\} \) induced by \(f_g \) and \(f_s \) is given by: \(f_G(v) = 1 \) iff there exists \(u \in V \), such that \(f_G(x(u)) = 1 \) and \(u \) can reach \(v \) in the sub-network \(G(x, f_s) \) induced by \(V(x, f_s) = \{w \in V | f_s(x(w)) = 1\} \), i.e., \(u \rightarrow_G(x, f_s, v) \). In the rest of the paper, we will abuse notation and let \(f_g(u) = f_g(x(u)) \), \(f_s(u) = f_s(x(u)) \), etc.

In words, a node \(u \) is initially in contact with the influence if it is assigned label \(f_g(u) = 1 \) by the generator concept \(f_g \). Moreover, if a node \(u \) has label \(f_s(u) = 1 \), then it is fully susceptible to the influence, meaning that if in contact with the contagious entity, \(u \) will adopt and subsequently spread the influence. Otherwise (i.e., when \(f_s(u) = 0 \)), \(u \) is fully immune to the influence, meaning \(u \) does not interact with the contagious entity in any way.

Given the propagation model, we are ready to define the learning problem. Roughly speaking, the learning problem asks to design an algorithm, which given access to a number of labeled sample nodes (where the label is whether the node has adopted the influence), predicts the label of a random node correctly with probability at least \(1 - \varepsilon \). Moreover, the algorithm is allowed to fail with probability \(\delta \), in which case it does not need to satisfy any requirements. Below we define the problem formally.

The learning problem. Fix a network \(G \), a feature mapping \(x \), a generator hypothesis class \(\mathcal{H}_g \) and a susceptibility hypothesis class \(\mathcal{H}_s \). The learning problem asks to design an algorithm, which for any generator concept \(f_g \in \mathcal{H}_g \) and susceptibility concept \(f_s \in \mathcal{H}_s \), distribution \(D \) over \(V \), \(\varepsilon > 0 \) and \(\delta > 0 \), with \(m = m(\varepsilon, \delta) \) labeled (i.e., adoption vs no adoption) samples from \(D \), outputs a hypothesis \(h : V \rightarrow \{0, 1\} \) satisfying: with probability at least \(1 - \delta \) over the samples and the algorithm’s internal randomness, \(\Pr_{V \sim D}[h(v) \neq f_s(v)] \leq \varepsilon \), where \(f_s \) is the adoption pattern induced by \(f_g \).

In the above definition, we assume that the algorithm has full access to the generator and susceptibility hypothesis classes. However, being families of subsets of the feature space \(X \), these hypothesis classes can be quite large or even infinite, and in fact, they may not even admit a succinct representation. To this end, throughout the paper, we assume oracle access to \(\mathcal{H}_g \) and \(\mathcal{H}_s \) for empirical risk minimization. More specifically, we assume the following can be done in polynomial time: for \(\mathcal{H} \in \{\mathcal{H}_g, \mathcal{H}_s\} \), given \(k \) labeled data points \(\{(x_i, y_i)\}_{i \in [k]} \), one can find a concept \(h \in \mathcal{H} \) that best fits the labels, i.e., \(h \in \arg\min_{h \in \mathcal{H}} \sum_{i \in [k]} |h(x_i) - y_i| \).

In homogeneous networks, as shown by Conitzer, Panigrahi, and Zhang (2020), the key parameter which controls the sample complexity of learning influence adoption is the width. However, in heterogeneous networks, the width by itself is no longer an effective measure of the complexity of the network. For example, the notion of the width does not capture the phenomenon that some members of the network may not be susceptible to the influence, making the network less well-connected than it appears to be. To this end, we instead use the maximum width, a generalization of the width to heterogeneous networks, to measure the complexity of a network.

Definition 6 (Maximum Width of Directed Networks). For a network \(G \), a feature mapping \(x \), and susceptibility hypothesis class \(\mathcal{H}_s \), the maximum width is defined to be \(\rho(G, x, \mathcal{H}_s) = \max_{f_g \in \mathcal{H}_g, f_s \in \mathcal{H}_s} \rho(G(x, f_s)) \).

We remark that the maximum width \(\rho(G, x, \mathcal{H}_s) \) can be either larger or smaller than \(\rho(G) \). For example, suppose we know there is precisely one susceptible node (but not which one). Then, when \(G \) has no edges, \(\rho(G, x, \mathcal{H}_s) = \rho(G) - 1 \), and when \(G \) is a chain, \(\rho(G, x, \mathcal{H}_s) = \rho(G) + 1 \).

Now we are ready to state our main result for the symptomatic spread model. The following theorem gives a sample complexity upper bound for the learning problem with deterministic networks — we will generalize this to random networks in Section 5.

Theorem 7. In the symptomatic spread model, for any \(G = (V, E) \), \(x \), \(\mathcal{H}_g \), and \(\mathcal{H}_s \), let \(\mathcal{H}_a \) be the class of all possible adoption patterns induced by generator concepts in \(\mathcal{H}_g \) and susceptibility concepts in \(\mathcal{H}_s \). Let \(n = |V| \), \(\rho = \rho(G, x, \mathcal{H}_s) \), \(d_a = d(\mathcal{H}_a) \) and \(d_s = d(\mathcal{H}_s) \). Then we have

\[
\mathcal{H}_a = O(d_a \log n + \min(\rho, d_s \log n))
\]

As a result, there is an algorithm that learns the adoption pattern with any error rate \(\varepsilon > 0 \) and failure probability \(\delta > 0 \) using

\[
O \left(\frac{(d_a \log n + \min(\rho, d_s \log n)) \cdot \log \varepsilon^{-1} + \log \delta^{-1}}{\varepsilon} \right)
\]

samples. Moreover, the algorithm runs in polynomial time when \(d_a \) is a constant.

The proof of the theorem, as well as all other proofs, are deferred to the appendices. Here we provide some intuition for the essence of the theorem: the upper bound on the VC dimension of the adoption hypothesis class \(\mathcal{H}_a \). Since each member of \(\mathcal{H}_a \) is generated by a member of \(\mathcal{H}_g \) and a member of \(\mathcal{H}_s \), if we can show that the numbers of “effectively different” members in \(\mathcal{H}_g \) and \(\mathcal{H}_s \) (i.e., members which can induce different adoption patterns) are both reasonably small, then the cardinality of \(\mathcal{H}_a \), upper bounded by the product of the two numbers, must be small too. This would imply an upper bound on the VC dimension, since in order to shatter a set of size \(d_a \), \(\mathcal{H}_a \) must have at least \(2^d \) members. Given the above observations, a weaker version of the bound can be derived immediately from the Sauer-Shelah lemma, stated below.

Lemma 8 (Sauer-Shelah Lemma (rephrased)). Let \(F \) be a family of sets with VC dimension \(d(F) = d \). Then for any set \(S \) with cardinality \(|S| = n \), \(|F^{\cap S}| \leq (2en/d)^d \), where \(F^{\cap S} = \{T \cap S \mid T \in F\} \).
Applying the above lemma to \(H_g \) and \(H_s \) restricted to the nodes \(V \), we have that \(|H_g^{RV}| \leq (2en/d_g)^d\) and \(|H_s^{RV}| \leq (2en/d_s)^d\). So \(|H_a| \leq |H_g^{RV}|\cdot|H_s^{RV}| = O(n^{d_s+d_g})\), which implies \(d(H_a) = O(\log |H_a|) = O((d_s + d_g)\log n) \).

In order to obtain the full bound in Theorem 7, we also need to show that \(d(H_a) = O(d_s \log n + \rho) \), which requires more effort. To prove this bound, we consider the susceptibility hypothesis class \(H_s \), and the implicit hypothesis class associated with the sub-network induced by susceptible nodes, i.e., \(H(G(x, f_s))\), for each \(f_s \in H_s \). Then, a similar counting argument to the one above gives \(d(H_a) = O((d_s + \rho)\log n) \). However, it turns out one can do better via a refined argument, formalized in the following key lemma.

Lemma 9. For any integer \(k > 0 \) and \(k \) families of sets \(\mathcal{F}_1, \ldots, \mathcal{F}_k \), if for any \(i \in [k] \), \(d(\mathcal{F}_i) \leq d \), then
\[
d \left(\bigcup_{i \in [k]} \mathcal{F}_i \right) = O(d + \log k).
\]

Applying the lemma to \(H(G(x, f_s)) \) for all “effectively different” \(f_s \in H_s \) then gives \(d(H_a) = O(d_s \log n + \rho) \), thereby finishing the proof of Theorem 7. One may suspect that with a further improved analysis, one can actually remove the \(\log n \) factor from all terms in the upper bound. Next we show that this logarithmic dependency on \(n \) is unavoidable — and in fact, all terms in our upper bound are tight up to constant factors — even when restricted to undirected networks. See Appendix A for proof sketches.

Theorem 10. In the symptomatic spread model, there exist families of hard instances of the learning problem in the symptomatic spread model, on which achieving constant target error rate \(\varepsilon \) and failure probability \(\delta \) requires \((1) \Omega(d_s \log n) \) samples, when \(d_s \) and \(\rho \) are constant, \((2) \Omega(d_g \log n) \) samples, when \(d_g \) is constant, or \((3) \Omega(\rho) \) samples, when \(d_g \) is constant. In other words, all terms in Theorem 7 are necessary. Moreover, all hard instances only involve undirected networks.

Finally, we show that when the learning algorithm cannot access the feature mapping, no nontrivial bound is possible.

Theorem 11. In the symptomatic spread model, when the feature mapping \(x \) is unknown (but the features of labeled sample nodes and nodes to make predictions for are known), there is a family of instances where \(d_g, d_s, \) and \(\rho \) are all constant, but the number of samples required to achieve constant error rate \(\varepsilon \) and failure probability \(\delta \) is \(\Omega(n) \).

4 Learning Under Asymptomatic Spread

The propagation model. In a directed network \(G = (V, E) \), each node \(v \in V \) has features \(x(v) \in \mathcal{X} \) given by a feature mapping \(x : V \rightarrow \mathcal{X} \). Given a generator concept \(f_g : \mathcal{X} \rightarrow \{0, 1\} \) and a susceptibility concept \(f_s : \mathcal{X} \rightarrow \{0, 1\} \), the final adoption pattern \(f_a : V \rightarrow \{0, 1\} \) induced by \(f_g \) and \(f_s \) is given by: \(f_a(v) = 1 \) iff there exists \(u \in V \) such that \(f_g(x(u)) = 1 \) and \(u \) can reach \(v \) in \(G \), and \(f_a(x(v)) = 1 \). Again, we will abuse notation and let
\[
f_g(u) = f_g(x(u)), \quad f_s(u) = f_s(x(u)), \quad etc.
\]

The asymptomatic spread model is similar to the symptomatic spread model discussed in Section 3, except that here, a node that is not susceptible cannot adopt, but can still spread, the influence. Given the propagation model, we can define the learning problem in a similar way.

The learning problem. Fix a network \(G \), a feature mapping \(x \), a generator hypothesis class \(H_g \) and a susceptibility hypothesis class \(H_s \). The learning problem asks to design an algorithm, which for any generator concept \(f_g \in H_g \), susceptibility concept \(f_s \in H_s \), distribution \(D \) over \(V \), \(\varepsilon > 0 \) and \(\delta > 0 \), with \(m = m(\varepsilon, \delta) \) labeled (i.e., adoption vs no adoption) samples from \(D \), outputs a hypothesis \(h : V \rightarrow \{0, 1\} \) satisfying: with probability at least \(1 - \delta \) (over the samples and the algorithm’s internal randomness), \(Pr_{v \sim D}[h(v) \neq f_a(v)] \leq \varepsilon \), where \(f_a \) is the adoption pattern induced by \(f_g \) and \(f_s \).

The following theorem establishes our sample complexity upper bound for the asymptomatic spread model. The proof techniques are similar to those used to establish Theorem 7.

Theorem 12. In the asymptomatic spread model, for any \(G = (V, E) \), \(x \), \(H_g \) and \(H_s \), let \(H_a \) be the class of all possible adoption patterns induced by generator concepts in \(H_g \) and susceptibility concepts in \(H_s \). Let \(n = |V| \), \(\rho = \rho(G) \), \(d_g = d(H_g) \) and \(d_s = d(H_s) \). Then we have \(d(H_a) = O(d_s + \min(\rho, d_g \log n)) \). As a result, there is an algorithm that learns the adoption pattern with any error rate \(\varepsilon > 0 \) and failure probability \(\delta > 0 \) using
\[
O \left(\frac{d_s + \min(\rho, d_g \log n)}{\varepsilon} \cdot \log \varepsilon^{-1} + \log \delta^{-1} \right)
\]
samples. Moreover, the algorithm runs in polynomial time when \(d_g \) and \(d_s \) are constant.

The following theorem shows that all terms in our sample complexity upper bound are necessary. The hard instances are similar to those in the symptomatic spread model.

Theorem 13. In the asymptomatic spread model, there exist families of hard instances of the learning problem in the asymptomatic spread model, on which achieving constant target error rate \(\varepsilon \) and failure probability \(\delta \) requires \((1) \Omega(d_s \log n) \) samples, when \(d_s \) and \(\rho \) are constant, \((2) \Omega(d_g \log n) \) samples, when \(d_g \) is constant, or \((3) \Omega(\rho) \) samples, when \(d_g \) is constant. In other words, all terms in Theorem 12 are necessary. All hard instances only involve undirected networks.

We remark that the above bound has weaker dependency on \(n \) than the one in Theorems 7 and 10. This suggests that with the same amount of prior knowledge, it is easier to learn under asymptomatic than under symptomatic spread.

5 Random Networks

In this section, we discuss how our sample complexity bounds can be generalized to random networks. We first present a general reduction for PAC learning with random hypothesis classes, and then show how the reduction can be applied to the problem of learning influence adoption, which yields sample complexity bounds in random networks.

The random hypothesis class model. Let \(S \) be the set of possible states of the world. Each \(s \in S \) corresponds to a random concept \(f_{s,r} \) over a feature space \(\mathcal{X} \), given by a random mapping \(r \sim \mathcal{R} \) (in other words, \(f_{s,r} = r(s) \) is a
random subset of \mathcal{X}). Moreover, r also maps S to a random hypothesis class $\mathcal{H}_r = \{ f_s \mid s \in S \}$.

Learning with random hypothesis classes. Fix a state space S, a feature space \mathcal{X}, and a distribution \mathcal{R} over mappings from S to $2^\mathcal{X}$. The learning problem asks to design an algorithm, which for any state $s \in S$, distribution \mathcal{D} over \mathcal{X}, $\varepsilon > 0$ and $\delta > 0$, when $r \sim \mathcal{R}$ is an unobservable random mapping drawn from \mathcal{R}, with $m = m(\varepsilon, \delta)$ labeled samples from \mathcal{D} (i.e., $\{(x_i, y_i)\}_{i \in [m]}$ where $y_i = f_s(x_i)$ for each i), outputs a hypothesis $h : \mathcal{X} \rightarrow \{0, 1\}$ satisfying: with probability at least $1 - \delta$ (over the randomness in r, the labeled samples, and the learning algorithm), $Pr_{x \sim \mathcal{D}}[h(x) \neq f_s(x)] \leq \varepsilon$. We say such an algorithm (ε, δ)-learns the random hypothesis class \mathcal{H}_r.

Below we generalize the notion of stable networks by Conitzer, Panigrahi, and Zhang (2020) to PAC learning with random hypothesis classes, and show that stability enables efficient learning in the more general problem that we study.

Definition 14 $(\varepsilon_0, \delta_0)$-Stability. Fix a state space S, a feature space \mathcal{X}, and a distribution \mathcal{R} over mappings from S to $2^\mathcal{X}$. Let r and r' be two independent sample mappings drawn from \mathcal{R}. We say $(S, \mathcal{X}, \mathcal{R})$ is $(\varepsilon_0, \delta_0)$-stable with respect to a distribution \mathcal{D} over \mathcal{X}, if for any $s \in S$, the following is true: with probability at least $1 - \delta_0$ over r, $Pr_{x \sim \mathcal{D}}[f_s(x) \neq f_{s'}(x)] \leq \varepsilon_0$.

Theorem 15. Fix a state space S, a feature space \mathcal{X}, and a distribution \mathcal{R} over mappings from S to $2^\mathcal{X}$. Suppose $(S, \mathcal{X}, \mathcal{R})$ is $(\varepsilon_0, \delta_0)$-stable with respect to some distribution \mathcal{D} over \mathcal{X}. Then there is an algorithm that, for any $\varepsilon > C_1 \cdot \varepsilon_0$ and $\delta > C_2 \cdot \delta_0$, (ε, δ)-learns the random hypothesis class \mathcal{H}_r using $m = O\left(\frac{d \log(1/\varepsilon) + \log(1/\delta)}{\varepsilon}\right)$ samples, where $d = \mathbb{E}_r[d(\mathcal{H}_r)]$ is the expected VC dimension of the random hypothesis class \mathcal{H}_r.

We note that the stability condition is necessary, since Conitzer, Panigrahi, and Zhang (2020) show (in Proposition 4.1) that it is statistically hard to learn anything nontrivial even in their simpler model without any assumptions on the stability of the network. Intuitively, this is because the learning procedure can be viewed as inferring the seed set given the outcome of the propagation, and if the outcome and the seed set are not correlated well enough, then information-theoretically there is no hope for inference.

Below we define the problem of learning influence adoption in random networks, and apply Theorem 15 to obtain sample complexity bounds. We start with the case of symptomatic spread; the case of asymptomatic spread is similar.

Let \mathcal{G} be a distribution over directed networks defined over vertices V (also known as a random live-edge graph in the context of influence propagation). Each node v has features $x(v)$ given by a feature mapping x. Given a generator concept f_g and a susceptibility concept f_s, the random adoption pattern f_a induced by f_g and f_s is given by the following procedure: first draw a random network $G \sim \mathcal{G}$. Then, $f_a(v) = 1$ iff there exists $u \in V$ such that $f_g(x(u)) = 1$, and u can reach v in the sub-network $G(x, f_a)$ induced by $V(x, f_a) = \{ w \in V \mid f_a(x(w)) = 1 \}$, i.e., $u \rightarrow_{G(x,f_a)} v$. That is, f_a is the induced adoption pattern by f_g and f_s in a random network $G \sim \mathcal{G}$.

Observe that the random network G induces a random mapping r_G from $\mathcal{H}_g \times \mathcal{H}_s$ to $2^\mathcal{X}$, where $r_G(f_g, f_s)$ is the adoption pattern induced by f_g and f_s in G. We say this is the implicit mapping induced by the distribution \mathcal{G}, and let $\mathcal{R}(\mathcal{G})$ denote the distribution of this mapping. Moreover, let $\mathcal{H}_G = r_G(\mathcal{H}_g \times \mathcal{H}_s)$ be the class of possible adoption patterns induced by \mathcal{H}_g and \mathcal{H}_s in G.

Fix a distribution over networks \mathcal{G}, a feature mapping x, a generator hypothesis class \mathcal{H}_g and a susceptibility hypothesis class \mathcal{H}_s. The learning problem asks to design an algorithm, which for any generator concept $f_g \in \mathcal{H}_g$, susceptibility concept $f_s \in \mathcal{H}_s$, distribution \mathcal{D} over V, $\varepsilon > 0$ and $\delta > 0$, with $m = m(\varepsilon, \delta)$ labeled samples from \mathcal{D}, outputs a hypothesis $h : V \rightarrow \{0, 1\}$ satisfying: with probability at least $1 - \delta$, $Pr_{x \sim \mathcal{D}}[h(x) \neq f_s(x)] \leq \varepsilon$, where f_a is the random adoption pattern induced by f_g and f_s in an unobservable random network $G \sim \mathcal{G}$.

Corollary 16. In the symptomatic spread model with random networks, fix \mathcal{G}, \mathcal{X}, \mathcal{H}_g, \mathcal{H}_s, and x. Suppose for a distribution \mathcal{D} over \mathcal{X}, $(\mathcal{H}_g \times \mathcal{H}_s, \mathcal{X}, \mathcal{R}(\mathcal{G}))$ is $(\varepsilon_0, \delta_0)$-stable with respect to \mathcal{D}. Then the random hypothesis class \mathcal{H}_G is (ε, δ)-learnable for any $\varepsilon > C_1 \cdot \varepsilon_0$, $\delta > C_2 \cdot \delta_0$ using $O\left(\frac{(d_2 \log n + \min(\rho, d_2 \log n)) \cdot \log \varepsilon^{-1} + \log \delta^{-1}}{\varepsilon}\right)$ samples, where $\rho = \mathbb{E}_{G \sim \mathcal{G}}[\rho(G, x, \mathcal{H}_s)]$.

Corollary 17. In the asymptomatic spread model with random networks, fix \mathcal{G}, \mathcal{X}, \mathcal{H}_g, \mathcal{H}_s, and x. Suppose for a distribution \mathcal{D} over \mathcal{X}, $(\mathcal{H}_g \times \mathcal{H}_s, \mathcal{X}, \mathcal{R}(\mathcal{G}))$ is $(\varepsilon_0, \delta_0)$-stable with respect to \mathcal{D}. Then the random hypothesis class \mathcal{H}_G is (ε, δ)-learnable for any $\varepsilon > C_1 \cdot \varepsilon_0$, $\delta > C_2 \cdot \delta_0$ using $O\left(\frac{(d_2 + \min(\rho, d_2 \log n)) \cdot \log \varepsilon^{-1} + \log \delta^{-1}}{\varepsilon}\right)$ samples, where $\rho = \mathbb{E}_{G \sim \mathcal{G}}[\rho(G)]$.

6 Experimental Evaluation

In this section, we instantiate our algorithms in a concrete setup with random networks. Arguably the simplest class of random networks is Erdős-Rényi random graphs. However, such networks are infeasible for illustrating the efficacy of our approach: since all nodes are symmetric, these networks (before realizing) carry almost no structural information that can be utilized in learning. In order to make the learning problem as nontrivial as possible, we instead consider the following setup. Fixing the number of nodes n, each edge (u, v) realizes independently with probability p_{uv}. These probabilities satisfy: for any $u, v \in [n]$, $p_{uv} = 1/|u - v|$ if $|u - v| \leq C$, and 0 otherwise. Intuitively, this models the case where all nodes are located on a line, and nodes closer to each other interact more frequently. This is a one-dimensional instance of the small-world model by Kleinberg (2000), except that we truncate the probabilities at distance C to make the learning problem harder. In our experiments,
we choose $C = 30$. For the generator and susceptibility hypothesis classes, we consider the setting discussed in our introductory example (Figure 1): there are k potential weaknesses, and each susceptibility hypothesis (corresponding to a virus) is induced by a subset of the k weaknesses, corresponding to those the virus targets. Recall that a node is susceptible as long as it has some weakness that the virus targets. For simplicity, we assume the generator hypothesis class is singletons of nodes, meaning that exactly one (unknown) computer has been initially exposed to the virus. In our experiments, we choose the ground truth generator node uniformly at random, and the ground truth susceptibility hypothesis by adding each weakness to the set targeted independently with probability $3/k$ (so in expectation the virus targets 3 weaknesses). Then we generate the set of weaknesses of each node by adding each weakness with probability 0.2. All these numbers are chosen specifically to make the instance rich and the learning problem nontrivial.

Our results are shown in Figure 2. First note that the hypothesis classes we choose satisfy $d(H_g) = 1$ and $d(H_s) = k$. So applying Corollary 16, up to the resolution ε_0, given m labeled samples, the error rate of our learner is $O((\log n + k)/m)$. This roughly aligns with our experimental observations: as m grows, the error rate drops roughly as the bound indicates, and tends to plateau as it approaches the stability parameter ε_0 of the network, which appears to be quite small in this setup. For all 4 values of n the curves are very similar, which corresponds to the logarithmic dependence on n. The dependence on k is more significant, as suggested by the theoretical results. For comparison, we also include the error rates of the feature-oblivious baseline algorithm given in (Conitzer, Panigrahi, and Zhang 2020), which ignores the sets of weaknesses and simply assume all nodes are susceptible (there are two curves because the networks are generated differently for different values of k). As the figure shows, the baseline algorithm fails to exploit the heterogeneity of the network, and suffers significantly higher error rates.

7 Conclusion

In this paper, we studied the problem of influence adoption in the context of heterogeneous networks. There are several interesting follow-up directions from this study. First, there are situations, particularly in the context of infectious diseases, where the state of being infected or healthy is transient. In this case, can the state of individual nodes be learned over time, by periodically sampling nodes for their current state? It is also important to study the practical implications of this learning problem, since it has immediate applications to fields like epidemiology. For instance, do the sample complexity bounds shown in this paper lead to practical algorithms that can be used in field studies? Finally, while we assumed that the nodes we inspect are a random sample from an underlying distribution (in the spirit of PAC learning), a different direction is to consider an active learning approach in which the algorithm can choose the nodes it wants to inspect. It is plausible that this additional selectivity can help reduce the size of the training set significantly in some situations. In fact, in, for example, epidemiological applications, we often see a combination of the two approaches: inspect a random sample but also inspect some selected nodes, such as those that are at high risk of contracting the disease because they neighbor infected nodes from the random sample. Such hybrid models of practical significance constitute an interesting direction for future research.
References

