
Learning by Competition of Self-Interested Reinforcement Learning Agents

Stephen Chung
Department of Computer Science, University of Massachusetts Amherst, USA

minghaychung@umass.edu

Abstract

An artificial neural network can be trained by uniformly
broadcasting a reward signal to units that implement a RE-
INFORCE learning rule. Though this presents a biologically
plausible alternative to backpropagation in training a net-
work, the high variance associated with it renders it impracti-
cal to train deep networks. The high variance arises from the
inefficient structural credit assignment since a single reward
signal is used to evaluate the collective action of all units.
To facilitate structural credit assignment, we propose replac-
ing the reward signal to hidden units with the change in the
L2 norm of the unit’s outgoing weight. As such, each hid-
den unit in the network is trying to maximize the norm of
its outgoing weight instead of the global reward, and thus we
call this learning method Weight Maximization. We prove that
Weight Maximization is approximately following the gradi-
ent of rewards in expectation. In contrast to backpropagation,
Weight Maximization can be used to train both continuous-
valued and discrete-valued units. Moreover, Weight Maxi-
mization solves several major issues of backpropagation re-
lating to biological plausibility. Our experiments show that
a network trained with Weight Maximization can learn sig-
nificantly faster than REINFORCE and slightly slower than
backpropagation. Weight Maximization illustrates an exam-
ple of cooperative behavior automatically arising from a pop-
ulation of self-interested agents in a competitive game with-
out any central coordination.

Introduction
The error backpropagation algorithm (backprop) efficiently
computes the gradient of an objective function with respect
to parameters by iterating backward from the last layer of a
multi-layer artificial neural network (ANN). However, back-
prop is generally regarded as being biologically implausible
(Crick 1989; Mazzoni, Andersen, and Jordan 1991; O’Reilly
1996; Bengio et al. 2015; Hassabis et al. 2017; Lillicrap
et al. 2020). First, the learning rule given by backprop is
non-local, as it relies on information other than input and
output of a neuron-like unit computed in the feedforward
phase. Second, backprop requires synaptic symmetry in the
forward and backward paths, which has not been observed in
biological systems. Third, backprop requires precise coordi-
nation between the feedforward and feedback phase because

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

the feedforward value has to be retained until the error signal
arrives.

Alternatively, REINFORCE (Williams 1992), a special
case of AR−λP when λ = 0 (Barto and Anandan 1985),
could be applied to all units as a more biologically plausi-
ble way of training a network. It is shown that the learn-
ing rule gives an unbiased estimate of the gradient of re-
turn (Williams 1992). Another interpretation of this relates
to viewing each unit as a reinforcement learning (RL) agent,
with each agent trying to maximize the same reward from
the environment. We can thus view an ANN as a team of
agents playing a cooperative game, a scenario where all
agents receive the same reward. Such a team of agents is
also known as coagent network (Thomas 2011). However,
coagent networks can only feasibly solve simple tasks due
to the high variance associated with this training method and
thus the low speed of learning. The high variance stems from
the lack of structural credit assignment, i.e. a single reward
signal is used to evaluate the collective action of all agents.

To address the lack of structural credit assignment in a
team of agents trained by REINFORCE, we consider deliv-
ering a different reward signal to each hidden unit instead of
the same global reward. Here hidden units refer to the units
that output to other units in the network instead of to the
environment. As such, each hidden unit is associated with
a vector of weights by which the unit’s actions influence
other units in the network, and we call this vector the out-
going weight. We propose to replace the global reward sig-
nal to each hidden unit with the change in the L2 norm of
its outgoing weight, such that each hidden unit in the net-
work is trying to maximize the norm of its outgoing weight.
We call this new learning method Weight Maximization. This
is based on the intuition that the norm of a unit’s outgoing
weight roughly reflects the contribution of the unit in the net-
work. This change of reward signals turns the original coop-
erative game into a competitive game since units no longer
receive the same reward.

We prove that Weight Maximization is approximately fol-
lowing the gradient of return in expectation, showing that ev-
ery hidden unit maximizing the norm of its outgoing weight
also approximately maximizes the network’s rewards. This
illustrates an example of cooperative behavior automatically
arising from a population of self-interested agents in a com-
petitive game and offers an alternative perspective of train-

The Thirty-Sixth AAAI Conference on Artificial Intelligence (AAAI-22)

6384

ing an ANN—each unit maximizing the norm of its outgo-
ing weight instead of a network maximizing its performance.
This alternative perspective localizes the optimization prob-
lem for each unit, yielding a wide range of RL solutions in
training a network. Our experiments show that a network
trained with Weight Maximization can learn much faster
than REINFORCE, such that its speed is slightly lower than
backprop.

One may question whether the change of synaptic
strength, analogous to the change of weights in ANNs, can
be used to guide plasticity in biological systems, since the
change of synaptic strength has a much slower timescale
compared to the activation of neurons. To address this is-
sue, we generalize Weight Maximization to use eligibility
traces, such that the network can still learn when the outgo-
ing weights change slowly. Weight Maximization with eligi-
bility traces also solves the three aforementioned problems
of backprop regarding biological plausibility. Nonetheless,
the biological plausibility of Weight Maximization remains
to be investigated. It is not yet clear if there exists a molec-
ular mechanism that uses the change of synaptic strength in
axons to guide the change of synaptic strength in dendrites.

In summary, our paper has the following main contribu-
tions:

• We propose a novel algorithm called Weight Maximiza-
tion that allows efficient structural credit assignment and
significantly lowers the variance associated with REIN-
FORCE when training a team of agents.

• We prove that Weight Maximization is approximately
following the gradient of return in expectation, establish-
ing the approximate equivalence of hidden units maxi-
mizing the norm of their outgoing weights and external
rewards, thus providing theoretical justification for algo-
rithms (Uhr and Vossler 1961; Klopf and Gose 1969; An-
derson 1986; Selfridge 1988) based on the norm of out-
going weights.

• Weight Maximization can be used to train both
continuous-valued and discrete-valued units, offering an
advantage over backprop.

• Weight Maximization represents a feasible alternative to
backprop given their comparable learning speed.

• We generalize Weight Maximization to use eligibility
traces, which solves several major issues of backprop re-
lating to biological plausibility.

The paper and the appendix are available at https://arxiv.
org/abs/2010.09770. The code is available at https://github.
com/stephen-chung-mh/weight max.

Notation
We consider a Markov Decision Process (MDP) defined by
a tuple (S,A, P,R, γ, d0), where S is a finite set of states
of an agent’s environment (although this work can be ex-
tended to the infinite state case), A is a finite set of ac-
tions, P : S × A × S → [0, 1] is a transition function giv-
ing the dynamics of the environment, R : S × A → R
is a reward function, γ ∈ [0, 1] is a discount factor, and
d0 : S → [0, 1] is an initial state distribution. Denoting the

state, action, and reward signal at time t by St, At, and Rt

respectively, P (s, a, s′) = Pr(St+1 = s′|St = s,At = a),
R(s, a) = E[Rt|St = s,At = a], and d0(s) = Pr(S0 = s),
where P and d0 are probability mass functions. An episode
is a sequence of states, actions, and rewards, starting from
t = 0 and continuing until reaching a terminal state. For
any learning method, we can measure its performance as it
improves over multiple episodes, which makes up a run.

Letting Gt =
∑∞

k=t γ
k−tRk denote the infinite-horizon

discounted return accrued after acting at time t, we are in-
terested in finding, or approximating, a policy π : S ×A →
[0, 1] such that for any time t > 0, selecting actions accord-
ing to π(s, a) = Pr(At = a|St = s) maximizes the ex-
pected return E[Gt]. The value function for policy π is V π

where for all s ∈ S , V π(s) = E[Gt|St = s, π], which can
be shown to be independent of t.

In this paper, we restrict attention to policies computed
by a network of L stochastic units. The following defini-
tions hold for any time t > 0. Let H(l)

t denote the activa-
tion value of the unit l ∈ {1, 2, ..., L} at time t, which is
a one-dimensional discrete or continuous random variable.
We also let H(0)

t = St and At = H
(L)
t . We call unit l,

where 1 ≤ l ≤ L − 1, a hidden unit and unit L the output
unit. For any 1 ≤ l ≤ L, the distribution of H(l)

t conditional
on H

(0:l−1)
t is given by πl : (S × Rl−1) × R → [0, 1],

such that Pr(H(l)
t = h(l)|H(0:l−1)

t = h(0:l−1);w(l)) =
πl(h

(0:l−1), h(l);w(l)), where w(l) is the parameter of unit l.
To sample an action At from the network given St, we itera-
tively sample H

(l)
t ∼ πl(H

(0:l−1)
t , ·;w(l)) from l = 1 to L.

In other words, the network is a feedforward network with
units ordered and connections restricted to higher-numbered
units. This formulation is a generalization of multi-layer
networks of stochastic units since multi-layer networks are
the special case of units being arranged in layers and con-
nections between non-adjacent layers being set to zero. We
mostly focus on multi-layer networks in this paper.

We assume that for all 1 ≤ l ≤ L, πl(h
(0:l−1), h(l);w(l))

can be expressed as a differentiable function fl(w
(l) ·

h(0:l−1), h(l)), where · denotes the dot product, and call the
vector w(l) the incoming weight of unit l. We denote the
weight connecting from unit k to l (where k < l) as w

(l)
(k),

and call the vector v(k) = [w
(k+1)
(k) ,w

(k+2)
(k) , ...,w

(L)
(k)]

T the
outgoing weight of unit k.

We denote ||x||pp as the p-norm of vector x to the power
of p, and x(m:n) as {xm, xm+1, ..., xn}.

Algorithm
The gradient of return at time t with respect to w(l), where
1 ≤ l ≤ L, can be estimated by REINFORCE, also known
as the likelihood ratio estimator:

∇w(l) E[Gt] =
∞∑
k=t

γ(k−t) E[Gk∇w(l) log Pr(Ak|Sk)]. (1)

We can show that each term of the summation also equals the
expectation of the update given by REINFORCE applied to
a hidden unit with the same reinforcement signal Gt:

6385

Environment

H(1)
�

(2)
�

(1)

H(2)S

1. Given state St sample H(1) and H(2),

 and pass action At = H(2) to the

 environment

2. Receive return Gt and pass reinforcement

signal G(2) = G to train the output unit

3. Pass reinforcement signal G(1) = �
(2)(�'(2) - �(2))

 to train the hidden unit

t

t t

t

t t

t

t t

Figure 1: Illustration of a network with two units trained by Weight Maximization. See text for explanation.

Theorem 1. Let the policy be a network of stochastic units
as defined above. For all t > 0 and 1 ≤ l ≤ L,

E[Gt∇w(l) logPr(At|St)]

=E[Gt∇w(l) log πl(H
(0:l−1)
t , H

(l)
t ;w(l))]. (2)

See Williams (1992) for the proof. This shows that we
can apply REINFORCE to each unit of the network, and the
learning rule still gives an unbiased estimate of the gradi-
ent of the return. Therefore, denoting α as the step size, we
can update parameters by the following stochastic gradient
ascent rule:

w(l) ← w(l)+αGt∇w(l) log πl(H
(0:l−1)
t , H

(l)
t ;w(l)). (3)

However, this learning rule suffers from high variance
since a single reinforcement signal (Gt) is used to eval-
uate the collective action of all units. In other words,
the signal Gt has a weak correlation with the gradient
∇w(l) log πl(H

(0:l−1)
t , H

(l)
t ;w(l)), making the multiplica-

tion of these two terms have a high variance. To reduce this
variance, we propose to replace this signal to each unit l by:

G
(l)
t =

{
v(l) ·∆v

(l)
t for l ∈ {1, 2, ..., L− 1},

Gt for l = L.
(4)

where · denotes the dot product, and ∆v
(l)
t is the change

of the outgoing weight, v(l), resulting from the update of
the outgoing weight at time t. For the output unit, we let
G

(L)
t = Gt; that is, the output unit is still maximizing the

return from the environment.
With the new reinforcement signal G(l)

t , each hidden unit
is approximately maximizing the L2 norm of its outgoing
weight. To see this, consider the change in the L2 norm of
the outgoing weight for hidden unit l at time t:

||v(l) +∆v
(l)
t ||22 − ||v(l)||22 (5)

=2v(l) ·∆v
(l)
t + ||∆v

(l)
t ||22. (6)

We observe that G(l)
t is proportional to (6) except for the

term ||∆v
(l)
t ||22. We choose to ignore this term in the re-

inforcement signal since this term is O(α2) while 2v(l) ·

∆v
(l)
t = O(α). If the step size α is very small as in typi-

cal experiments, then ||∆v
(l)
t ||22 is also negligible and does

not affect experimental results. However, by adjusting α, this
term can be made arbitrarily small or large, and so we choose
to remove it completely instead. This removal is necessary
to arrive Theorem 2.

The motivation for using the change in the norm of a unit’s
outgoing weight as a reinforcement signal in (4) is based on
the idea that the norm of a unit’s outgoing weight roughly
reflects the contribution of the unit in the network. For ex-
ample, if the hidden unit’s output is useful in guiding action,
then the output unit will learn a large weight associated with
it. Conversely, if the hidden unit is outputting random noise,
then the output unit will learn a zero weight associated with
it. With the new reinforcement signal, each unit gets a differ-
ent local reward that evaluates its own action instead of the
entire team’s action, thus allowing efficient structural credit
assignment. This idea of measuring the worth of a unit by its
outgoing weight’s norm has a long history as we discuss in
the Related Work section below.

With the new reinforcement signal, the learning rule at
time t becomes:

w(l) ← w(l) +∆w
(l)
t , (7)

∆w
(l)
t = αG

(l)
t ∇w(l) log πl(H

(0:l−1)
t , H

(l)
t ;w(l)), (8)

where 1 ≤ l ≤ L. Note that the only difference of the above
learning rule with (3) is the change of the reinforcement
signals to hidden units. We call this new learning method
Weight Maximization. To apply the learning rule, we com-
pute ∆w

(l)
t iteratively from l = L to 1. The pseudo-code can

be found in Algorithm 1 of Appendix B. The computational
cost of Weight Maximization is the same as backpropagation
since it is linear in the number of layers.

Though we restrict our attention to a network with a single
output unit in our formulation, Weight Maximization can be
generalized to a network with multiple output units easily by
only replacing the rewards to all hidden units by the change
in the norm of their outgoing weights in (4).

To illustrate the algorithm, we consider an example of a
simple network with only two units (one hidden unit and one
output unit), as shown in Figure 1. For every time step t, the
algorithm performs the following steps:

6386

1. Given state St, we sample the activation value of hid-
den unit H

(1)
t ∼ π1(St, ·;w(1)). For example, if the

unit is a Bernoulli-logistic unit and the state St is one-
dimensional, then Pr(H(1)

t = 1|St) = σ(w(1)St)

and Pr(H(1)
t = 0|St) = 1 − σ(w(1)St), where σ is

the sigmoid function. We sample output unit H
(2)
t ∼

π2(H
(1)
t , ·;w(2)) similarly, and pass action At = H

(2)
t

to the environment.
2. After receiving return Gt from the environment (which

is only known at the end of an episode, but can be
replaced with TD error for online learning), we use
it to train the output unit by REINFORCE: w′(2) =

w(2) +αG
(2)
t ∇w(2) log π2(H

(1)
t , H

(2)
t ;w(2)), where α is

the step size and G
(2)
t = Gt.

3. We compute the reinforcement signal to the hidden unit
by G

(1)
t = v(1)∆v(1) = w(2)(w′(2) − w(2)), which is

used to train the hidden unit by REINFORCE: w′(1) =

w(1) + αG
(1)
t ∇w(1) log π1(St, H

(1)
t ;w(1)).

In the following, we discuss the theoretical properties of
Weight Maximization.

Goal Alignment Condition
In this section, we address an important question: Under
which situations are the goals of the hidden units aligned
with the goal of the whole network? To simplify the discus-
sion, we only consider single-time-step MDPs in this section
and drop the subscript t, but the theorems here can be gen-
eralized to multiple-time-step MDPs.

To answer this question, we analyze the gradient followed
by the learning rule of the hidden units. First, the output unit
is maximizing the return G as a result of Theorem 1 and
REINFORCE:

E[∆w(L)] ∝ ∇w(L) E[G]. (9)

Then consider the learning rule of unit L− 1, which is max-
imizing G(L−1):

E[∆w(L−1)] ∝ ∇w(L−1) E[G(L−1)] (10)

= ∇w(L−1) E[v(L−1) ·∆v(L−1)·] (11)

∝ ∇w(L−1)(v(L−1) · ∇v(L−1) E[G]). (12)

The last line is due to the fact that ∆v(L−1) is an entry in the
vector ∆w(L), and so we can substitute the expectation of it
with (9). We can continue the same process to derive the for-
mulas of E[∆w(l)] for l = L−2, L−3, ..., 1. This shows that
the learning rule of hidden units is related to high-order cross
partial derivatives of E[G] instead of the first-order deriva-
tive. To have the goal of units and the network aligned, it is
sufficient and necessary that the cross partial derivatives are
the same as the first-order derivative. Formally,
Lemma 1. Let the policy be a network of stochastic units
as defined above, and ∆w(l) be defined by (8). Then
E[∆w(l)] ∝ ∇w(l) E[G] for all 1 ≤ l ≤ L− 1 if and only if
∇w(l)(v(l) ·∇v(l) E[G]) ∝ ∇w(l) E[G] for all 1 ≤ l ≤ L−1.

The proof can be found in Appendix A.1. Therefore,
we define the goal alignment condition, which is a suffi-
cient condition that the hidden units are also maximizing the
global return when applying Weight Maximization, by:
Definition 1. Let the policy be a network of stochastic units
as defined above. We say that the network has satisfied the
goal alignment condition in an MDP if for all 1 ≤ l ≤ L−1,

∇w(l)(v(l) · ∇v(l) E[G]) ∝ ∇w(l) E[G].

Except in special cases like a piecewise linear network
with a piecewise linear reward function, this goal alignment
condition does not hold exactly. However, the goal align-
ment condition holds approximately for all networks with-
out extra assumptions:
Theorem 2. Let the policy be a network of stochastic units
as defined above. For all 1 ≤ l ≤ L− 1,

∇w(l)(v(l) · ∇v(l) E[G]) = ∇w(l) E[G] +O(||v(l)||22).
The proof can be found in Appendix A.2. Therefore, the

learning rule of hidden unit l is only approximately fol-
lowing the gradient of return in expectation with an error
of

∑L
k=l+1O(||w(k)||22), since the error accumulates across

units. In other words, the bias associated with the learning
rule scales with the L2 norm of the unit’s outgoing weight.
It is interesting to see that the more ‘successful’ a unit is
(measured by the norm of its outgoing weight), the more se-
vere is the problem of goal misalignment.

To combat the problem of goal misalignment, we sug-
gest adding L2 regularization, or weight decay, which can be
seen as a soft constraint on the L2 norm of weights (Goodfel-
low, Bengio, and Courville 2016) and thus prevents weights
from having a large magnitude.

By replacing the rewards to the hidden units with (4) and
adding weight regularization, the original cooperative game
is turned into a competitive game. A competitive game refers
to the scenario where each agent is receiving different re-
wards (Sutton and Barto 2018). With weight regularization,
the outgoing units have a ‘limited’ norm of weight to allo-
cate due to the soft constraint, and so the units connected
to the same downstream unit have to compete for the lim-
ited resources. In other words, units want to maximize their
outgoing weights’ norm, but the outgoing units want to min-
imize their incoming weights’ norm, and therefore competi-
tion exists between units.

Weight Maximization with Eligibility Traces
Though Weight Maximization does not require a separate
feedback pathway, the learning of a hidden unit needs to wait
for the outgoing weight to finish updating; in contrast, in bio-
logical neurons, the change of synaptic strength has a slower
timescale than the activation of neurons (Nicoll 2017), mak-
ing it difficult to be used as an immediate feedback signal.
Besides different timescales, the change in synaptic strength
of a biological neuron is the result of the neuron’s activ-
ity within a time interval instead of a single discrete time
step. For example, multiple pairs of spikes are required
to induce noticeable change in synaptic weights in spike-
timing-dependent plasticity (STDP) experiments (Citri and

6387

Multiplexer CartPole Acrobot LunarLander

Mean Std. Mean Std. Mean Std. Mean Std.

Weight Max 0.81 0.01 390.38 43.25 -97.05 2.90 111.23 16.58
Weight Max w/ traces n.a. n.a. 373.11 17.86 -105.00 4.38 39.04 14.39
REINFORCE 0.29 0.01 163.92 64.43 -134.15 8.87 -94.23 19.03
REINFORCE with Thomas (2011) 0.28 0.02 363.71 24.07 -112.26 8.85 -66.19 67.14
STE Backprop 0.76 0.01 420.73 18.30 -98.55 5.05 47.53 35.04
Backprop 0.84 0.01 411.82 25.98 -91.82 5.24 71.77 21.02

Table 1: Average return over all episodes.

Malenka 2008; Gerstner et al. 2014). In short, to be closer to
biologically-observed plasticity rules, the effect of a unit’s
action on the outgoing weight should be slow and long-
lasting instead of immediate and precise as assumed in
Weight Maximization. We propose to use eligibility traces
to solve both issues.

In the following discussion, we only consider a multi-
layer network of stochastic units consisting of M ≥ 1 lay-
ers. The L units in the network are arranged into a multi-
layer structure such that the weights connecting units in non-
adjacent layers are frozen to zero. We also denote d(l) as the
layer in which unit l resides and assume the last layer con-
tains only the output unit.

Assume each unit requires a single time step to compute
the weight update. That is, the weight update of unit l at time
t, denoted by ∆w

(l)
t , is based on G

(l)
t−1 (defined in (4)) and

H
(l)
t−1, the reward and action at the previous time step. Since

∆w
(l)
t does not depend on the weight change at the same

time step, we can compute it for all layers in parallel. How-
ever, the reward for the hidden layer m is lagging behind by
M −m time steps, as it takes a single time step for each of
the M − m upper layers to compute their weight updates.
Therefore, the first issue—the effect of a unit’s action on the
outgoing weight should be slow—can be seen as the prob-
lem of delayed reward; the action of a hidden unit on layer
m at time t affects its rewards at time t + M −m, but not
before.

For the second issue, consider the scenario where the ef-
fect of a unit’s action is long-lasting on the change of its
outgoing weight. For example, if the output unit learns with
decaying eligibility traces (Sutton and Barto 2018), then all
∆w

(L)
t+1,∆w

(L)
t+2, ... depends on the action of units on layer

M−1 at time t, though the dependence decays with time. In
other words, the action of layer M−1 at time t will affect the
change in its outgoing weight at and after time t+1. We can
continue the discussion for layer M − 2,M − 3, ..., 1. From
this perspective, the second issue—the effect of a unit’s ac-
tion on the outgoing weight should be long-lasting—can
again be seen as the problem of delayed reward; the action
of a hidden unit on layer m at time t affects all its rewards at
and after time t+M −m, but not before.

The problem of delayed reward is well studied in RL, and
one prominent and one biologically plausible solution is to
use eligibility traces. We suggest using the following decay

function λl(t) : Z→ [0, 1] for the unit l:

λl(t) =

{
0 for t ≤M − d(l)− 1,

(1− λ)λt−(M−d(l)) else,
(13)

where λ ∈ [0, 1] is the decay rate and d(l) is the layer in
which unit l resides. Therefore, λl(t) is the exponentially
decaying trace but shifted by M − d(l) time steps, since the
action of unit l does not affect the reward in the next M−d(l)
time steps.

With this decay function, we can generalize Weight Maxi-
mization to use eligibility traces. The learning rule of Weight
Maximization with eligibility traces for a multi-layer net-
work of stochastic units at time t is given by :

w(l) ←w(l) +∆w
(l)
t , (14)

∆w
(l)
t =αδ

(l)
t−1z

(l)
t−1, (15)

δ
(l)
t =

{
v(l) ·∆v

(l)
t for l ≤ L− 1,

Rt + γV π(St+1)− V π(St) for l = L,

(16)

z
(l)
t =

t−1∑
k=0

λl(k)γk−(M−d(l))

∇w(l) log πl(H
(0:l−1)
t−k , H

(l)
t−k;w

(l)), (17)

where α denotes the step size and 1 ≤ l ≤ L, V π(s) denotes
the state value E[Gt|St = s, π]. (17) computes the eligibility
traces z(l)t by summing over the gradients of the log proba-
bility of the selected action multiplied by both the decay rate
λl(k) and the discount rate γk−(M−d(l)). (16) computes the
reinforcement signal δ(l)t delivered to the units on layer l,
which equals the TD error Rt + γV π(St+1)− V π(St) (we
replace Gt in (4) with TD error to make the algorithm on-
line) for the last layer and the change in the norm of outgoing
weights for hidden layers. Lastly, the weight update (15) is
given by the product between the eligibility traces and the
reinforcement signal scaled by the step size α.

In practice, the state values V π(St) is generally unknown,
but we can estimate the state values by another network im-
plementing a TD algorithm, which is called a critic network
(Sutton and Barto 2018). The pseudo-code can be found in
Algorithm 2 of Appendix B.

6388

With the above modification, the effect of a unit’s ac-
tion on its outgoing weight is slow and long-lasting, in ac-
cordance with biologically-observed plasticity rules. Weight
Maximization with eligibility traces also solves the three
problems of backprop discussed in the introduction. Its
learning rule is local and does not require any separate feed-
back pathways. The algorithm can be implemented in paral-
lel for all layers, and there are no distinct feedforward and
feedback phases for the whole network.

It should be noted that the feedback signal in backprop
can also be computed based on the change of a unit’s out-
going weight in some cases, eliminating the need for a sep-
arate feedback pathway. However, as discussed earlier, it is
not biologically plausible to use the change of a unit’s out-
going weight as an immediate feedback signal. The solu-
tion presented in this section, namely eligibility traces, can
only be applied to Weight Maximization but not to backprop,
since backprop requires the activation values to be precisely
matched with the feedback signals at the same time step.
This underlines one major difference between the two algo-
rithms.

Related Work
Research on solving tasks by a team of RL agents has a long
history. Tsetlin et al. (1973) described learning automata
in team and game problems, followed by stochastic learn-
ing automata (Narendra and Thathachar 1974, 2012). Klopf
(1972, 1982) proposed the hedonistic neuron hypothesis,
which conjectured that individual neurons seek to maximize
their own pleasure, and the collective behavior of these neu-
rons can yield powerful adaptive systems. This idea was fur-
ther developed by Seung (2003) in spiking neural networks.
Barto and Anandan (1985), Barto (1985) and Barto and Jor-
dan (1992) introduced the AR−λP algorithm and showed
that a team of AR−λP units could learn with a globally-
broadcast reward signal. Extending this class of learning
rule, Williams (1992) introduced REINFORCE, a special
case of AR−λP when λ = 0, and proved that a team of
agents trained with REINFORCE ascends the average re-
ward gradient. Such a team of agents is recently called co-
agent networks (Thomas 2011). Theories relating to train-
ing coagent networks have been investigated (Thomas 2011;
Kostas, Nota, and Thomas 2020; Thomas and Barto 2011),
and Thomas (2011) proposed a variance reduction method
for training coagent networks with REINFORCE by dis-
abling exploration randomly. Chung (2021) proposed the
MAP propagation algorithm, which minimizes the energy
of the network before applying REINFORCE, to reduce the
variance efficiently. However, in these papers, each agent in
the team receives the same reward signal. In contrast, here
we propose that each agent works to maximize the norm
of its outgoing weight instead of a common reward sig-
nal, which transforms the problem from a cooperative game
into a competitive game. Zhang, Yang, and Başar (2021) re-
viewed recent development in the wider field of multi-agent
RL.

Measuring the worth of a unit by the norm of its outgo-
ing weight has been proposed (Uhr and Vossler 1961; Klopf
and Gose 1969; Selfridge 1988). In these papers, hidden

units with small outgoing weights are replaced by new hid-
den units with random incoming weights. These methods
are thus based on an evolutionary approach instead of the
RL approach as in Weight Maximization. Anderson (1986)
proposed AR−P algorithm with Penalty Prediction, which
pushes units with small outgoing weights to match the in-
coming values.

In addition, there is a large literature on methods for train-
ing networks of stochastic units, and a review can be found
in Weber et al. (2019). STE backprop (Bengio, Léonard, and
Courville 2013) is a practical method of training a network
of stochastic discrete units. Though STE backprop does
not follow the gradient of the loss function, it is arguably
the most effective way of training quantized ANN (Cour-
bariaux, Bengio, and David 2015; Rastegari et al. 2016) and
Yin et al. (2018) provides some theoretical justification for
STE backprop. However, STE backprop suffers the same
problem with backprop regarding biological plausibility.

Besides a team of agents trained by REINFORCE, many
biologically plausible alternatives to backprop have been
proposed. Biologically plausible learning rules based on re-
ward prediction errors and attentional feedback have been
proposed (Pozzi, Bohte, and Roelfsema 2020; Roelfsema
and Ooyen 2005; Rombouts, Bohte, and Roelfsema 2015);
but these learning rules mostly require a non-local feedback
signal. Moreover, local learning rules based on contrastive
divergence or nudging the values of output units have been
proposed (Movellan 1991; Hinton 2002; Scellier and Ben-
gio 2017). See Lillicrap et al. (2020) for a comprehensive
review of algorithms that approximate backprop with local
learning rules based on the differences in units’ values. Con-
trary to these papers, Weight Maximization does not require
any separate feedback pathways or distinct phases in learn-
ing. Also, most of these algorithms are applied in supervised
or unsupervised learning tasks, while Weight Maximization
is applied in both RL tasks and supervised learning tasks1.

Experiments
We applied our algorithms to four RL tasks: multiplexer,
CartPole, Acrobot, and LunarLander. The multiplexer task is
a simple toy task with a single time step, where the agent is
rewarded +1 if it outputs the correct answer and−1 if it out-
puts the incorrect answer2. Details of the tasks can be found
in Appendix C. We tested two variants of Weight Maximiza-
tion: i. Weight Maximization, ii. Weight Maximization with
Eligibility Traces. For both variants, we used Algorithm 2
in Appendix B (i. corresponds to the case λ = 0). We did
not test Weight Maximization with Eligibility Traces on the
multiplexer task since the task only has a single time step.

All networks considered have the same architecture:
a three-layer network of stochastic units, with the first
hidden layer having 64 units, the second hidden layer

1Any supervised learning tasks can be converted to RL tasks,
though it may not be optimal since the knowledge of the loss func-
tion is not utilized.

2We assume the reward function to be unknown to the agent, so
this task is considered an RL task instead of a supervised learning
task.

6389

0 200000 400000 600000 800000

Episode

0.0

0.2

0.4

0.6

0.8

1.0

E
p
is

o
d
e
 R

e
tu

rn

Multiplexer

200 400 600 800 1000

Episode

0

100

200

300

400

500

E
p
is

o
d
e
 R

e
tu

rn

CartPole

200 400 600 800 1000

Episode

−300

−200

−100

E
p
is

o
d
e
 R

e
tu

rn

Acrobot

0 500 1000 1500 2000 2500 3000

Episode

−300

−200

−100

0

100

200

E
p
is

o
d
e
 R

e
tu

rn

LunarLander

Weight Max

REINFORCE with Thomas (2011)

Weight Max with traces

STE Backprop

REINFORCE

Backprop

Figure 2: Episode returns in different RL tasks. Results are averaged over 10 independent runs, and shaded areas represent stan-
dard deviation over the runs. Curves are smoothed with a running average of 100 episodes (10,000 episodes for the multiplexer
task).

having 32 units, and the output layer being a softmax
layer. All hidden units are Bernoulli-logistic units, i.e.
πl(h

(0:l−1), h(l),w(l)) = σ(w(l) · h(0:l−1))h
(l)

(1− σ(w(l) ·
h(0:l−1)))1−h(l)

, where σ is the sigmoid function.
We consider four baselines to train hidden units: i. RE-

INFORCE, ii. REINFORCE with the variance reduction
method proposed by Thomas (2011), iii. STE backprop
(Bengio, Léonard, and Courville 2013) and iv. backprop.
For i. to iii., the networks are the same as the one used in
Weight Maximization. For iv., the Bernoulli-logistic units
are replaced with deterministic rectified linear units (Re-
LUs) so the hidden units can be trained by backprop. In
all baselines, the output unit was trained by REINFORCE,
and we used eligibility traces. Thus, all learning methods in
the experiments are variants of Actor-Critic with Eligibil-
ity Traces (episodic) (Sutton and Barto 2018) with different
methods of accumulating trace (for the baselines) or differ-
ent reward signals to each unit (for Weight Maximization).
For the critic networks in all experiments, we used a three-
layer ANN trained by backprop. Other experiments’ details
can be found in Appendix C.

The average return over ten independent runs is shown
in Fig 2. The mean and standard deviation of the average
return can be found in Table 1. We observe that both vari-
ants of Weight Maximization have a significantly better per-
formance than REINFORCE, suggesting that Weight Maxi-
mization allows effective structural credit assignment. Also,
Weight Maximization has a similar performance compared

to STE backprop, indicating that it is an effective method for
training discrete units.

However, compared to a network of continuous-valued
units trained by backprop, Weight Maximization performed
slightly worse (except for the LunarLander). This is likely
due to the limitation of discrete-valued units—units can
communicate only by means of binary values instead of
real values. This view is supported by the observation that
discrete-valued units trained by STE backprop also per-
formed worse than backprop. However, discrete units have
the advantages of low memory and communication costs;
thus the slower learning may be compensated by a more ef-
ficient computation.

We notice that adding traces to Weight Maximization does
not improve the performance. This is likely due to the more
difficult credit assignment problem introduced by this ap-
proach. By using traces, the change in a unit’s outgoing
weight at time t is affected by the unit’s action at times
t, t − 1, t − 2, ... instead of only time t, making temporal
credit assignment more difficult and thus learning slower.

In addition, we found that the representation learned by
Weight Maximization is more statistically independent than
backprop. For example, after training an agent to solve Cart-
Pole by Weight Maximization (STE backprop), the absolute
correlation across units on the first and the second layer is
0.690 (0.888) and 0.640 (0.830) respectively on average.
This may be explained by the dynamics of Weight Maxi-
mization—units compete with each other to be more ‘useful’

6390

0 200000 400000 600000 800000

Episode

0.25

0.50

0.75

1.00

E
p
is

o
d
e
 R

e
tu

rn

Weight Max

0 200000 400000 600000 800000

Episode

0.25

0.50

0.75

1.00

E
p
is

o
d
e
 R

e
tu

rn

Backprop

0 200000 400000 600000 800000

Episode

0.0

0.2

0.4

0.6

E
p
is

o
d
e
 R

e
tu

rn

REINFORCE

M=1/8 M=1/4 M=1/2 M=1 M=2 M=4 M=8

Figure 3: Episode returns in the multiplexer task with a varying number of units in the network. Results are averaged over 10
independent runs, and shaded areas represent standard deviation over the runs. Curves are smoothed with a running average of
10,000 episodes.

1/8 1/4 1/2 1 2 4 8

M

0.0

0.2

0.4

0.6

0.8

1.0

A
v
e
ra

g
e
 R

e
tu

rn

Varying Number of Units

Weight Max

Backprop

REINFORCE

Thomas (2011)

1/8 1/4 1/2 1 2 4 8

p

0.0

0.2

0.4

0.6

0.8

1.0
A
v
e
ra

g
e
 R

e
tu

rn
Varying p-norm

Weight Max

0 1e-5 1e-4 1e-3 1e-2 1e-1 1e-0

c

0.0

0.2

0.4

0.6

0.8

1.0

A
v
e
ra

g
e
 R

e
tu

rn

Varying Regularization

Weight Max

Figure 4: Average returns of all episodes in the multiplexer task with different hyperparameters. Results are averaged over 10
independent runs.

and so have to learn different signals.
To better understand how different learning rules scale

with the number of units in a network, we repeated the ex-
periments on the multiplexer task with varying numbers of
units in the network. Let the network have 64M and 32M
units in the first and the second layer of the network re-
spectively. The experimental results with different M can
be found in Figure 3 and Figure 4.

We observe that the performance of both Weight Maxi-
mization and backprop improve with a larger M , while the
performance of REINFORCE peaks at M = 1/4. This illus-
trates a critical issue of REINFORCE that renders it imprac-
tical to training large networks—as all units are indepen-
dently exploring and a single reward signal is used to evalu-
ate the collective exploration of all units, it is more difficult
to assign credit to each unit with a larger network. Thus, a
larger network leads to a higher variance of parameter up-
dates and slower learning. This issue is alleviated in Weight
Maximization since each unit receives a different reward sig-
nal that is strongly correlated with the unit’s own action.

In Weight Maximization we replace the reward to each
unit by the change in the L2 norm of the outgoing weight as
shown in (4). It is also possible to use Lp norm instead of L2

norm by generalizing (4) (see details in Appendix C). The
experimental results on the multiplexer tasks with varying p
can be found in Figure 4. The results show that the network
is also able to learn with a similar performance when using
other Lp norms.

We tested the effects of L2 weight regularization, with

c ≥ 0 being the strength of weight regularization. That is,
we add −2cw(l) to the learning rule (7). The experimen-
tal results on the multiplexer tasks with varying c can be
found in Figure 4. We observe that the performance peaks at
c = 0.01, suggesting that a small weight regularization can
improve performance. This is in line with our analysis of the
goal alignment condition.

Future Work and Conclusion
The approximate equivalence of every unit maximizing the
global return and every unit maximizing the norm of its out-
going weight offers a wide range of possible methods to
train ANNs besides backprop. Since each hidden unit faces
a local optimization problem when trying to maximize the
norm of its outgoing weight, learning rules apart from RE-
INFORCE can also be applied to train hidden units. The
lack of central coordination in Weight Maximization also
leads to the possibility of implementing the algorithm asyn-
chronously and efficiently with neuromorphic circuits (Indi-
veri et al. 2011).

In conclusion, we propose a novel algorithm that reduces
the variance associated with training a team of agents with
REINFORCE and thus significantly increases the learning
speed. The proposed algorithm solves several major prob-
lems of backprop relating to biological plausibility. We also
analyze the theoretical properties of the proposed algorithm
and establish that training hidden units to maximize their
norm of outgoing weights is approximately equivalent to
training them to maximize a global external reward signal.

6391

Acknowledgments
We would like to thank Andrew G. Barto, who inspired this
research and provided valuable insights and comments.

References
Anderson, C. W. 1986. Learning and problem solving with
multilayer connectionist systems. Ph.D. thesis, Citeseer.
Barto, A. G. 1985. Learning by statistical cooperation of
self-interested neuron-like computing elements. Human
Neurobiology, 4(4): 229–256.
Barto, A. G.; and Anandan, P. 1985. Pattern-recognizing
stochastic learning automata. IEEE Transactions on Sys-
tems, Man, and Cybernetics, (3): 360–375.
Barto, A. G.; and Jordan, M. I. 1992. Gradient following
without back-propagation in layered networks. et-al. Fron-
tiers in cognitive neuroscience, 443–449.
Bengio, Y.; Lee, D.-H.; Bornschein, J.; Mesnard, T.; and Lin,
Z. 2015. Towards biologically plausible deep learning. arXiv
preprint arXiv:1502.04156.
Bengio, Y.; Léonard, N.; and Courville, A. 2013. Estimat-
ing or propagating gradients through stochastic neurons for
conditional computation. arXiv preprint arXiv:1308.3432.
Chung, S. 2021. MAP Propagation Algorithm: Faster Learn-
ing with a Team of Reinforcement Learning Agents. Ad-
vances in Neural Information Processing Systems, 34.
Citri, A.; and Malenka, R. C. 2008. Synaptic plasticity: mul-
tiple forms, functions, and mechanisms. Neuropsychophar-
macology, 33(1): 18–41.
Courbariaux, M.; Bengio, Y.; and David, J.-P. 2015. Bi-
naryconnect: Training deep neural networks with binary
weights during propagations. In Advances in neural infor-
mation processing systems, 3123–3131.
Crick, F. 1989. The recent excitement about neural net-
works. Nature, 337(6203): 129–132.
Gerstner, W.; Kistler, W. M.; Naud, R.; and Paninski, L.
2014. Neuronal dynamics: From single neurons to networks
and models of cognition. Cambridge University Press.
Goodfellow, I.; Bengio, Y.; and Courville, A. 2016. Deep
learning. MIT press.
Hassabis, D.; Kumaran, D.; Summerfield, C.; and Botvinick,
M. 2017. Neuroscience-inspired artificial intelligence. Neu-
ron, 95(2): 245–258.
Hinton, G. E. 2002. Training products of experts by mini-
mizing contrastive divergence. Neural computation, 14(8):
1771–1800.
Indiveri, G.; Linares-Barranco, B.; Hamilton, T. J.;
Van Schaik, A.; Etienne-Cummings, R.; Delbruck, T.; Liu,
S.-C.; Dudek, P.; Häfliger, P.; Renaud, S.; et al. 2011. Neuro-
morphic silicon neuron circuits. Frontiers in neuroscience,
5: 73.
Klopf, A. H. 1972. Brain function and adaptive systems:
a heterostatic theory. 133. Air Force Cambridge Research
Laboratories, Air Force Systems Command, United States
Air Force.

Klopf, A. H. 1982. The hedonistic neuron: a theory of mem-
ory, learning, and intelligence. Toxicology-Sci.
Klopf, A. H.; and Gose, E. 1969. An evolutionary pattern
recognition network. IEEE Transactions on Systems Science
and Cybernetics, 5(3): 247–250.
Kostas, J.; Nota, C.; and Thomas, P. 2020. Asynchronous
Coagent Networks. In International Conference on Machine
Learning, 5426–5435. PMLR.
Lillicrap, T. P.; Santoro, A.; Marris, L.; Akerman, C. J.; and
Hinton, G. 2020. Backpropagation and the brain. Nature
Reviews Neuroscience, 21(6): 335–346.
Mazzoni, P.; Andersen, R. A.; and Jordan, M. I. 1991. A
more biologically plausible learning rule for neural net-
works. Proceedings of the National Academy of Sciences,
88(10): 4433–4437.
Movellan, J. R. 1991. Contrastive Hebbian learning in the
continuous Hopfield model. In Connectionist models, 10–
17. Elsevier.
Narendra, K. S.; and Thathachar, M. A. 1974. Learning
automata-a survey. IEEE Transactions on systems, man, and
cybernetics, (4): 323–334.
Narendra, K. S.; and Thathachar, M. A. 2012. Learning au-
tomata: an introduction. Courier corporation.
Nicoll, R. A. 2017. A brief history of long-term potentiation.
Neuron, 93(2): 281–290.
O’Reilly, R. C. 1996. Biologically plausible error-driven
learning using local activation differences: The generalized
recirculation algorithm. Neural computation, 8(5): 895–938.
Pozzi, I.; Bohte, S.; and Roelfsema, P. 2020. Attention-
Gated Brain Propagation: How the brain can implement
reward-based error backpropagation. Advances in Neural
Information Processing Systems, 33.
Rastegari, M.; Ordonez, V.; Redmon, J.; and Farhadi, A.
2016. Xnor-net: Imagenet classification using binary convo-
lutional neural networks. In European conference on com-
puter vision, 525–542. Springer.
Roelfsema, P. R.; and Ooyen, A. v. 2005. Attention-gated
reinforcement learning of internal representations for classi-
fication. Neural computation, 17(10): 2176–2214.
Rombouts, J. O.; Bohte, S. M.; and Roelfsema, P. R. 2015.
How attention can create synaptic tags for the learning of
working memories in sequential tasks. PLoS Comput Biol,
11(3): e1004060.
Scellier, B.; and Bengio, Y. 2017. Equilibrium propagation:
Bridging the gap between energy-based models and back-
propagation. Frontiers in computational neuroscience, 11:
24.
Selfridge, O. G. 1988. Pandemonium: A paradigm for learn-
ing. In Neurocomputing: Foundations of research, 115–122.
A Bradford Book.
Seung, H. S. 2003. Learning in spiking neural networks by
reinforcement of stochastic synaptic transmission. Neuron,
40(6): 1063–1073.
Sutton, R. S.; and Barto, A. G. 2018. Reinforcement learn-
ing: An introduction. MIT press.

6392

Thomas, P. S. 2011. Policy gradient coagent networks. In
Advances in Neural Information Processing Systems, 1944–
1952.
Thomas, P. S.; and Barto, A. G. 2011. Conjugate Markov
Decision Processes. In International Conference on Ma-
chine Learning, 137–144.
Tsetlin, M. L.; et al. 1973. Automaton theory and modeling
of biological systems, volume 102. Academic Press New
York.
Uhr, L.; and Vossler, C. 1961. A pattern recognition program
that generates, evaluates, and adjusts its own operators. In
Papers presented at the May 9-11, 1961, western joint IRE-
AIEE-ACM computer conference, 555–569.
Weber, T.; Heess, N.; Buesing, L.; and Silver, D. 2019.
Credit assignment techniques in stochastic computation
graphs. In The 22nd International Conference on Artificial
Intelligence and Statistics, 2650–2660. PMLR.
Williams, R. J. 1992. Simple statistical gradient-following
algorithms for connectionist reinforcement learning. Ma-
chine learning, 8(3-4): 229–256.
Yin, P.; Lyu, J.; Zhang, S.; Osher, S.; Qi, Y.; and Xin, J. 2018.
Understanding Straight-Through Estimator in Training Ac-
tivation Quantized Neural Nets. In International Conference
on Learning Representations.
Zhang, K.; Yang, Z.; and Başar, T. 2021. Multi-agent re-
inforcement learning: A selective overview of theories and
algorithms. Handbook of Reinforcement Learning and Con-
trol, 321–384.

6393

