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Abstract

An important problem across multiple disciplines is to in-
fer and understand meaningful latent variables. One strategy
commonly used is to model the measured variables in terms
of the latent variables under suitable assumptions on the con-
nectivity from the latents to the measured (known as mea-
surement model). Furthermore, it might be even more inter-
esting to discover the causal relations among the latent vari-
ables (known as structural model). Recently, some methods
have been proposed to estimate the structural model by as-
suming that the noise terms in the measured and latent vari-
ables are non-Gaussian. However, they are not suitable when
some of the noise terms become Gaussian. To bridge this gap,
we investigate the problem of identification of the structural
model with arbitrary noise distributions. We provide neces-
sary and sufficient condition under which the structural model
is identifiable: it is identifiable iff for each pair of adjacent la-
tent variables Lx, Ly , (1) at least one of Lx and Ly has non-
Gaussian noise, or (2) at least one of them has a non-Gaussian
ancestor and is not d-separated from the non-Gaussian com-
ponent of this ancestor by the common causes of Lx and Ly .
This identifiability result relaxes the non-Gaussianity require-
ments to only a (hopefully small) subset of variables, and
accordingly elegantly extends the application scope of the
structural model. Based on the above identifiability result, we
further propose a practical algorithm to learn the structural
model. We verify the correctness of the identifiability result
and the effectiveness of the proposed method through empir-
ical studies.

Introduction
Discovering causal relations among latent variables is im-
portant in many domains, such as social science, climate sci-
ence, and psychology. For example, to design a proper psy-
chotherapy program, we need to understand the causal rela-
tions among role conflict and depersonalization, emotional
exhaustion, and personal accomplishment (Byrne 2016).
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However, these variables of interest are usually unobserved,
and we can only make use of measured variables generated
by them, e.g., the response level from questionnaires for role
conflict factor.

To discover the causal relationship among the latent vari-
ables, the linear latent variable model is introduced. In the
linear latent variable model, researchers often use a two-
phase framework to address this issue (Spirtes, Glymour,
and Scheines 2000). It first finds the pure measurement
model of the causal relations between the measured vari-
ables and their corresponding latent variables, and then in-
fers the causal relationships between latent variables (struc-
tural model) by analyzing the measured variables. In the
literature of measurement model, Silva et al. (2006) have
shown that the pure measurement model can be fully iden-
tifiable under the purity assumption (each latent have at
least three pure measured variables), and proposed a BPC
algorithm to estimate it. Later, Kummerfeld et al. (2014)
proposed a more efficient method, called FOFC, to esti-
mate the pure measurement model. In the field of the struc-
tural model, there exist work such as (Silva et al. 2006),
which proposed a MIMBuild algorithm to estimate the
causal structure of latent variables given a pure measure-
ment model. However, it can only output structures up to
the Markov equivalence class for latent variables. Shimizu,
Hoyer, and Hyvärinen (2009) showed that the causal rela-
tionships among latent factors are identifiable when the data
are non-Gaussian. Following the non-Gaussian assumption,
Cai et al. (2019) recently designed the so-called Triad con-
straints and proposed a more efficient method to infer the
latent structure, and Xie et al. (2020) further proposed a
generalized independent noise condition to address the case
where there are multiple latent variables behind measured
variables. Recently, Zeng et al. (2021) proposed the MD-
LiNA to estimate the underlying causal structure among la-
tent factors for multi-domain data.

In many real-world scenarios, however, the full non-
Gaussianity assumption (all noise terms are non-Gaussian)
may be violated. For example, none of the existing meth-
ods is able to uniquely identify the causal direction between
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Figure 1: An example of linear latent variable model in-
volving 4 latent variables and 11 observed variables. Here,
the red edges form a measurement model, while the blue
edges form a structural model. Moreover, the rectangles rep-
resent node with non-Gaussian noise, while the circles rep-
resent the nodes with Gaussian noise, i.e., εL1

, εL2
are non-

Gaussian and, εL3
, εL4

are Gaussian.

the latent variables L3, L4 with Gaussian noise in Figure
1. However, we show that it is still possible to identify the
causal direction between L3, L4 in this causal structure, as
we will discuss in Section 4. Intuitively, although the noises
of L3, L4 are Gaussian, there still exist some non-Gaussian
contribution from L1 and L2, which might be helpful to fur-
ther identify the causal direction among the variables with
Gaussian noise. Moreover, it is still unclear whether the
causal relationship is uniquely identifiable between the vari-
ables with partial non-Gaussian noise, i.e., only a subset
of them have non-Gaussian noise. Therefore, to recover the
causal relations among latent variables, it is crucial to under-
stand when and where the causal relationship is identifiable,
in order to estimate the structural model.

In this paper, we will discuss the problem of identifica-
tion of structural model with arbitrary distribution. First, we
prove that the causal direction between two latent variables
is fully identifiable if at least one of them has a non-Gaussian
noise term. Furthermore, inspired by the intuition about the
transitivity of non-Gaussian noise, interestingly, the causal
direction is actually identifiable if at least one of the two
latent variables cannot be d-separated from a non-Gaussian
ancestor of it by the common causes of the two latent vari-
ables. More details will be presented in section 4. Based
on the proposed theoretical results, we proposed an statis-
tically efficient algorithm for learning Linear Latent Causal
Structure with Arbitrary Distribution (LLCS-AD). The con-
tributions of this work are as follows. 1) We provide nec-
essary and sufficient identification conditions of the struc-
tural model with the arbitrary distribution. 2) We develop a
practical algorithm for learning the causal structure of latent
variables with the arbitrary distribution. 3) We demonstrate
that our algorithm, compared to existing ones, works clearly
better in high dimensions.

Related Works
Most causal discovery approaches focus on the situation
without latent variables (Spirtes, Glymour, and Scheines
2000; Pearl 2009; Peters, Janzing, and Schölkopf 2017).

Roughly speaking, they can be divided into the follow-
ing three categories: constraint-based methods, such as
PC (Spirtes, Glymour, and Scheines 2000), IC (Pearl
2009) and their variants; score-based methods, such as
GES (Chickering 2002); functional-based methods, such as,
LiNGAM (Shimizu et al. 2006), ANM (Hoyer et al. 2009;
Cai et al. 2018), PNL (Zhang and Hyvärinen 2009), and
IGCI (Janzing et al. 2012). Moreover, some approaches
investigate causal discovery under the mixed distribution
among observed variables (Hoyer et al. 2008a). However,
although these methods have been widely used in many
fields, they may fail to identify the correct causal structure in
cases with latent confounders. The reason is that they do not
properly take into account the latent variables in the proce-
dure, which could cause many practical issues (Zhang et al.
2018). Some methods generalize the traditional constraint-
based methods to allow the existence of latent variables,
including the FCI algorithm (Spirtes, Meek, and Richard-
son 1995; Colombo et al. 2012). By further introduce linear
non-Gaussian assumption, causal structure can be identified
in present of latent confounder by using overcomplete ICA
(Hoyer et al. 2008b).

Problem Definition
In this paper, we focus on linear acyclic latent variable
causal models. Here, we use V = X ∪ L to denote the to-
tal set of variables, where X = {X1, X2, ...Xm} denotes
the set of observed variables, and L = {L1, L2, ...Ln} de-
notes the set of latent variables. By incorporating a causal
Directed Acyclic Graph (DAG), we assume that all vari-
ables V satisfy the following generating process: Vi =

∑k(j)<k(i) bijVj + εVi
,i = {1, 2, .., n +m}, where k(i) de-

notes the k-th index in an arranged causal order in graph
G, such that no later variable causes any earlier variables,
bij represents the causal strength from Vj to Vi, and εVi

is the independent and identically distributed noise vari-
able such that p(εV1

, ..., εVn+m
) = ∏i pi(εVi

). We use
Pa(Vi) = {Vj∣Vj → Vi}, Ch(Vi) = {Vj∣Vi → Vj},
Anc(Vi) = {Vj∣Vj ↝ Vi}, Des(Vi) = {Vj∣Vi ↝ Vj},
Adj(Vi) = {Vj∣Vj − Vi} to denote the set of parents, chil-
dren, ancestors, descendants, and adjacent nodes of Vi, re-
spectively.

Without loss of generality, we assume that all variables
have a zero mean. Here we provide the definition of the Lin-
ear Latent Variable model as follows:

Definition 1 (Linear Latent Variable Model (LLVM)
(Shimizu et al. 2006; Spirtes, Glymour, and Scheines 2000)).
A model satisfying the following assumptions is a linear la-
tent variable measurement model. For brevity, we called it
LLVM.

A1. [Causal Markov property] Any variable is indepen-
dent of its non-descendants in graph G conditional
on any values of its parents in G.

A2. [Causal faithfulness property] There are only im-
plied the condition independent constraints on the
causal graph G.

A3. [Linear acyclic additive noise assumption] Each
variable in V is a linear function of its parents plus
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Figure 2: Identification of the Linear Latent Variable Model

an additive error term of positive finite variance, and
the complete causal graph is acyclic.

One example of LLVM is given in Figure 1. To identify
such an LLVM model, we categorize the problem into two
folds as illustrated in Figure 2.

For the identification of the measurement model, recent
results have shown that it can be uniquely identified if
the measurement assumption and the 3-purity assumption
hold.Then, given the learned measurement model, one is
able to learn the causal structure among the latent vari-
ables, i.e., learning the structural model. In this work, we
mainly focus on the identification of structural model given
the known measurement model with arbitrary distribution.
Moreover, given the measurement model, we only require
the measurement assumption as well as a weaker 2-purity
assumption, which are listed below:

A4. [Measurement Assumption] There is no observed
variable being an ancestor of any latent variable.

A5. [2-Purity Assumption] Each latent variable L has at
least 2 pure measured variables as children.

Note that purity assumption might be justified by some
existing methods, e.g., an empty causal structure would oc-
cur by BPC algorithm if the purity assumption does not hold
(Silva et al. 2006).

Therefore, given the measurement, we aim to develop the
identification of structural model with A1-A5 holds.

Identification of Structural Model
In this section, we first briefly review the previous work on
the identification of structural model. Then we will show the
unsolved problem with arbitrary distributions, which is un-
derdeveloped. Finally, we present the necessary and suffi-
cient conditions that render the structural model identifiable.

Traditionally, Spirtes, Glymour, and Scheines (2000) and
Silva et al. (2006) have proved that the causal structure
among latent variables can be identified up to Markov equiv-
alence class. It has been shown that by further assuming that
each noise follows the non-Gaussian distribution, the struc-
tural model can be fully identifiable using the GIN condi-
tion (Xie et al. 2020). However, it is still unclear how to deal
with the arbitrary distribution that allows the existence of
both non-Gaussian and Gaussian noise. Thus, to complete
the identification of the structural model, we will discuss the
remaining two cases in this work, as given below.
• The causal direction between Lx and Ly in which only

one latent variable has non-Gaussian noise.
• The causal direction between Lx and Ly in which two of

the latent variables both have Gaussian noise.

Please note, that in these two cases, we mainly focus on the
non-Gaussianity of the latent variables, because the mea-
sured variables of the non-Gaussian latent variables are al-
ways non-Gaussian, according to the Crámer decomposition
theorem.

In the following, we assume that the Markov equivalence
class G of structural model has already been identified.

Before we give the fundamental identifiability theorem
about our work, we first need to introduce a Generalized In-
dependent Noise (GIN) mechanism in LLVM that is able to
capture the high order statistics in non-Gaussian data:
Definition 2 (GIN condition (Xie et al. 2020)). Let Y and
Z be two observed random vectors. Suppose the variables
follow the linear non-Gaussian acyclic causal model. Define
the surrogate-variable of Y relative to Z, as

EY∣∣Z ≔ ω
⊺
Y, (1)

where ω satisfies ω⊺E[YZ
⊺] = 0 and ω ≠ 0. We say that

(Z,Y) follows GIN condition if and only if EY∣∣Z is inde-
pendent from Z.
Remark 1. Let Y and Z be two observed random vec-
tors. Suppose the variables follow Gaussian distributions.
Then EY∣∣Z is always statistically independent from Z, i.e.,
(Z,Y) always follows GIN condition.

Interestingly, GIN condition allows us to further identify
the causal direction between latent variables in the equiva-
lence class, if there are two variables whose noises are non-
Gaussian. We provide the following example to show the
benefit that the GIN condition brings.
Example 1. As shown in Figure 1. The noise of L1 and L2

are non-Gaussian. Considering the causal direction L1 →
L2, we can construct the test E(X1,X3)∣∣X2

using X2 as the
surrogate variable ofL1. Then we haveE(X1,X3)∣∣X2

⫫ X2,
i.e., the GIN condition hold in the causal direction. Sim-
ilarly, in the reverse direction, we can construct the test
E(X1,X3)∣∣X4

by placing X2 with X4, but we will have
E(X1,X3)∣∣X4

/⫫ X4, i.e., the GIN condition does not hold in
the reverse direction. Based on such asymmetry of indepen-
dence, the causal direction can be identified. More details
will be provided in appendix regarding how such indepen-
dent property holds.

Given the GIN condition, we are able to answer the two
questions above. In answering the first question – identifica-
tion of causal relationship in which only one latent variable
has non-Gaussian noise, we decompose the question into
two typical structures as shown in Figure 3. We will prove
that the direction between any two adjacent latent variables
Lx, Ly in a given Markov equivalent class is identifiable if at
least one of them has non-Gaussian noise. To do so, we will
first provide identification of Figure 3 (a) and (b) in Lemma
1 and Lemma 2, respectively. Then we obtain the final result
in Theorem 1. All proofs are given in the Supplementary
Material.
Lemma 1. For each pair of adjacent latent variables Lx,
Ly in the Markov equivalence class G, if (1) there is no
confounder and (2) at least one of noises εLx

, εLy
is non-

Gaussian, then the causal direction between Lx and Ly is
identifiable.
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Figure 3: Three types of structure such that only one latent
variable has non-Gaussian noise (the rectangle one).

Lemma 1 prove that for each pair of adjacent latent vari-
ables that has no confounder is identifiable if there are at
least one of them has non-Gaussian noise as illustrated in
Figure 3(a). The proof is based on the GIN condition. Note
that the result still holds in the reverse direction. Next,
we will discuss the identification in the case that has con-
founders.
Lemma 2. For each pair of adjacent latent variables Lx,
Ly in the Markov equivalence class G with a confounder
set that influence Lx and Ly , the causal direction between
Lx and Ly is identifiable if at least one of εLx

and εLy
is

non-Gaussian.
Lemma 2 shows that even there exist confounders be-

tween the two directly connected nodes as illustrated in Fig-
ure 3(b), the causal direction is still identifiable. The key
difference from the Lemma 1 is that we need to consider
the confounders as a conditional set, which means that we
need to regress Lx, Ly against the confounders and then
apply Lemma 1 on the residual–we then obtain Lemma 2.
The remaining question is whether the confounder set can
be found as a condition and whether it is possible to learn
an incorrect causal direction. In the following theorem, we
will show that it can always search a proper conditional set
from Adj(Lx)∪Adj(Ly) such that the asymmetric of GIN
condition holds. Furthermore, we also find that if the cause
variable is non-Gaussian, we can not mistakenly identify the
causal direction as given in Proposition 1.
Proposition 1. For each pair of adjacent latent variables
Lx → Ly in the Markov equivalence class G, the reverse
direction will not be mistakenly identified as the causal di-
rection if εLx

is non-Gaussian.
In other words, we can always get rid of childen from non-

Gaussian node when searching the conditional set, which
will avoid some extreme cases (see more details in ap-
pendix). Thus, by combining Lemma 1 and 2, we have The-
orem 1.
Theorem 1. For each pair of adjacent latent variables
Lx, Ly in the Markov equivalence class G, if at least one
of the noise εLx

and εLy
is non-Gaussian, then the causal

direction between Lx and Ly is identifiable.
To further illustrate Theorem 1, we provide an example

below.
Example 2. Consider the causal relationship L2 → L3 in
Figure 1. Because there exists the confounder L1, we will
first need to search the conditional set to eliminate the influ-
ence of confounder. To do so, we first construct the adjacent

Lz

Lx Ly

Xi Xp Xj Xk

(a) Common
ancestor that has
non-Gaussian
noise.

LzLq

Lx Ly

Xi Xp Xj Xk

(b) Common par-
ent that has non-
Gaussian noise.

Lz

Lx Ly

Xi Xp Xj Xk

(c) Not common
ancestor.

Figure 4: Three types of non-Gaussian transitivity struc-
tures. Rectangles indicate the nodes with non-Gaussian
noise, while the circles represent the nodes with Gaussian
noise.

set Adj(L2) ∪ Adj(L3) = {L1, L4}. Then we can find a
conditional set S = {L1} such that E(X7,X3,X1)∣∣(X4,X2) ⫫
(X4, X2), E(X7,X3,X1)∣∣(X8,X2) /⫫ (X8, X2) (Lemma 2)
andE(X3,X1)∣∣X2

⫫ X2. Note thatL4 will not be considered
in the conditional set because E(X3,X1)∣∣X7

/⫫ X7 (propo-
sition 1). Then, based on the above asymmetry, we conclude
L2 → L3.

Theorem 1 has shown that if there are at least one of the
latent variables has non-Gaussian noise, the edges around
such a variable will be identifiable. However, we may ask
whether two latent variables both of which have Gaussian
noise enjoy a similar property. Thanks to the transitivity of
non-Gaussianity in linear causal relations, we can use the
information from the non-Gaussian ancestor to identify the
causal direction.

Roughly speaking, the reason why we can identify the
causal direction is that a non-Gaussian component trans-
mits to its descendent. Thus, we categorize it into two cases:
(1) common non-Gaussian ancestor, or (2) not common
non-Gaussian ancestor as shown in Figure 4. Take Figure
4(a) as an example, in this common non-Gaussian ances-
tor structure, the non-Gaussainity from Lz can be absorbed
by Lx such that the noise term of Lx can be rewritten as
ε̂Lx

= εLx
+ βεLz

. Then based on Lemma 1, such causal
direction is identifiable. We conclude the above analysis in
Lemma 3.

Lemma 3. For each pair of adjacent latent variablesLx,Ly

in the Markov equivalence class G, the causal direction be-
tween Lx and Ly is identifiable, if (1) Lx, Ly have one com-
mon non-Gaussian ancestor Lz ∈ {Anc(Lx) ∩ Anc(Ly)},
(2) and there are no confounder between Lx, Ly .

Note that such result is similar to Lemma 1 as we can
reduce to the previous cases thank to the transitivity. Next,
in Lemma 4 we will further show that the causal direction is
still identifiable if there exists confounder.

Lemma 4. For each pair of adjacent latent variables Lx,
Ly in the Markov equivalence class G with confounder set
S that influence Lx and Ly , the causal direction between
Lx and Ly is identifiable, if Lx, Ly has one common non-
Gaussian ancestor Lz ∈ {Anc(Lx)∩Anc(Ly)}, and Lz is
not conditional independent of Lx, Ly given its confounder
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set S = {Pa(Lx) ∩ Pa(Ly)}, i.e., Lz /⫫ (Lx, Ly)∣S.
The result in Lemma 4 is also similar to Lemma 2. That

is, we will also need to find a proper conditional set from
Adj(Lx)∪Adj(Ly) in order to identify the causal direction.

Next, in Lemma 5, we will discuss the cases that has com-
mon parent that has non-Gaussian noise, which is slightly
different compared with the previous results as we require an
additional confounder Lq on between Lx and Lz as shown
in Figure 4(b).
Lemma 5. For each pair of causal relationship Lx → Ly in
the Markov equivalence class G, the causal direction Lx →
Ly is identifiable, if (1) there exist one latent variable Lz

with non-Gaussian noise such that Lz ∈ Pa(Lx)∩Pa(Ly)
and there exist a confounder Lq of Lx, Ly such that Lq ∈

Pa(Lx) ∩ Pa(Lz).
In summary, we have investigated the cases that have

common non-Gaussian ancestor. In the following Lemma 6,
we will further discuss the cases that only one variables is
affected by variables that have non-Gaussian noise.
Lemma 6. For each pair of adjacent latent variables Lx,
Ly in the Markov equivalence class G, the causal direction
between Lx and Ly is identifiable, if there exists one latent
variable Lz with non-Gaussian noise such that (1) Lz ∈

Anc(Lx), Lz /∈ Anc(Ly), or (2) Lz ∈ Anc(Ly), Lz /∈
Anc(Lx).

An example of Lemma 6 is illustrated in Figure 4(c), in
which Lz ∈ Anc(Lx) and Lz /∈ Anc(Ly), i.e., only Lz is
affected byLz . Then based on Lemma 6, the causal direction
between Lx and Ly is identifiable.

To conclude, we provide a general condition for the iden-
tification of transitivity of non-Gaussian noise in the follow-
ing theorem.
Theorem 2 (Transitivity of non-Gaussian noise). For each
pair of adjacent latent variables Lx, Ly in the Markov
equivalence class G, the causal direction between Lx and
Ly is identifiable, if there exists a latent variable Lz that has
non-Gaussian component ε such that (1) Lz ∈ Anc(Lx) ∪
Anc(Ly), and (2) ε is not conditional independent from
{Lx, Ly} given the confounder set S ≔ Pa(Lx)∩Pa(Ly),
i.e., ε /⫫ (Lx, Ly)∣S.

Intuitively, Theorem 2 shows that if we ensure the “tran-
sitivity” holds, i.e., ε /⫫ (Lx, Ly)∣S, where S is the con-
founder set of Lx, Ly , then the causal direction between
Lx, Ly is identifiable. Moreover, we only require that there
exists a latent variable Lz that has non-Gaussian component
which means that εLz

could be Gaussian if it has a non-
Gaussian ancestor. We give an example to illustrate Theorem
2 using the graph in Figure 1.
Example 3. For L3 → L4, we found that the common
ancestor set of L3, L4, contains {L1, L2} while the con-
founder set contains {L2}. Because εL1

/⫫ (Lx, Ly)∣L2,
based on Theorem 2, we have the causal direction L3 →
L4 is identifiable. Specifically, we can search a sub-
set from the common adjacent set S = Adj(L3) ∩
Adj(L4) = {L2} such that in causal direction, we have
E(X7,X3,X5)∣∣(X4,X6) ⫫ (X4, X6) while in the reverse di-
rection, we have E(X5,X7,X3)∣∣(X4,X8) /⫫ (X4, X8) because

of E(X5,X7,X3)∣∣(X4,X8) /⫫ εL1
. According to this asymme-

try, the causal direction between L3 and L4 is identifiable.
To sum up the above theoretical results, we develop nec-

essary and sufficient condition for the identifiability of the
structural model in the following theorem.
Theorem 3 (Identification of Structural Model). Suppose
that assumptions A1–A5 hold, for each pair of adjacent la-
tent variables Lx, Ly in the Markov equivalence class G,
the causal direction between Lx and Ly is identifiable if and
only if (1) at least one of latent variables Lx, Ly has non-
Gaussian noise or (2) there exists a latent variable Lz ∈

{Anc(Lx) ∪ Anc(Ly)} that has non-Gaussian component
ε such that ε is not conditional independent from {Lx, Ly}
given the confounder set S = {Pa(Lx) ∩ Pa(Ly)}, i.e.,
ε /⫫ (Lx, Ly)∣S.

An Algorithm for Learning Casual Structural
with Arbitrary Distribution

In this section, we extend the above results to estimate
the causal structure of latent variables. To this end, we
propose a fusion algorithm to learn Linear Latent Causal
Structure with Arbitrary Distributions (LLCS-AD). For
notational convenience, we use notation GIN(Lx, Ly)
to show that ({X2}, {X1, Y1}) satisfy GIN condition,
i.e., E(X1,Y1)∣∣(X2) ⫫ X2, where {X1, X2} and Y1
are the children of Lx and Ly , respectively. Fur-
thermore, we use notation GIN(Lx, Ly∣Lz) to show
that ({X2, Z2}, {X1, Y1, Z1}) satisfy GIN condition, i.e.,
E(X1,Y1,Z1)∣∣(X2,Z2) ⫫ {X2, Z2}, whereZ1, Z2 are the chil-
dren of Lz .

Our method is outlined in Algorithm 1. We first learn
the measurement model using the existing method, such as
BPC (Line 1). Then, we construct the causal skeleton by
employing PC-MIMBuild (Silva et al. 2006) (Line 2). The
above procedures output a pattern (or Markov equivalence
class) of the latent variable, namely the skeleton of latent
variable. Next, we orient the undirected edges according to
the Lemma 1 (Lines 3-9). Note that we can orient the non-
Gaussian node and transitive non-Gaussian node if there do
not exist any confounder.

In Line 10-18, we first enumerate all equivalence classes
of partial DAG output by step 8. Then, we verify the GIN
conditions according to Theorem 1 for each edge in every
equivalence graph and reject the graph which does not sat-
isfy the GIN conditions. In fact, the structure of the equiv-
alence graph would be rejected if there exists non-Gaussian
noise. Consequently, we could merge the equivalence class
that can not be rejected. That is, for each equivalence Gi, if
the direction of one edge in each equivalence class is con-
sistent, we accept the direction. Otherwise, we reject the di-
rection of the edge. In Line 19, we further orient the undi-
rected edges according to Theorem 2 using the function
TransOrient(G,X). Lastly, in Line 20, we further orient
the undirected edges by Meek rules if such edges exist.

The details of the function TransOrient(G,X) are pro-
vided in Algorithm 2. As shown in algorithm, firstly, Lines
2-7 record all the unoriented edges with a non-Gaussian an-
cestor by testing the GIN condition violating; Secondly, in
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Algorithm 1: LLCS-AD

Require: Data set X = {X1, . . . , Xm}
Ensure: A partial DAG G for latent variable

1: G← measurement model by BPC algorithm on X;
2: G ← skeleton of latent variables by PC-MIMBuild al-

gorithm on X,G;
3: for each adjacent pair Lx − Ly ∈ G do
4: if GIN(Lx, Ly) then
5: orient Lx → Ly in G;
6: else if GIN(Ly, Lx) then
7: orient Ly → Lx in G;
8: end if
9: end for

10: G← all equivalence classes of G;
11: for each Gi ∈ G do
12: for each Lx ∈ Gi do
13: if ¬GIN(Lx, Pa(Lx)) then
14: remove Gi from G;
15: end if
16: end for
17: end for
18: merge the equivalence classes G to partial DAG G
19: G← TransOrient(G,X);
20: Orient the undirected edges by Meek rules (Meek 1995);
21: return G;

Lines 8-18, we select the candidate confounder set for each
edge and test the asymmetry of the GIN condition to make
the causal direction identifiable.

Theorem 4. Suppose that assumptions A1–A5 hold. Given
the large enough sample size, LLCS-AD asymptotically out-
puts the correct causal structure G.

Complexity analysis: Given the learned skeleton, the
worst case time complexity in Algorithm 1 (Line 3-21) is
O(P +N ⋅N ! + P ), where N is the number of latent vari-
ables, and P is the number of edges of the latent variable
skeleton graph. In such a case, the noises are all Gaussian,
requiring to enumerate all d-separated equivalent classes,
which is an extreme case. Thus, we also analyzed the case
that all noises are non-Gaussian, and its worst case time
complexity is O(P + N−1

2
(N − 1)!), which is much faster

than the case that all noises are Gaussian.

Experiments
In this section, we verify the effectiveness of our proposed in
both synthetic data and real-world data. In synthetic data, we
will verify the theoretical results in terms of some noises are
non-Gaussian in causal structure and the transitivity struc-
ture in the structural model. We further verify our method in
a teacher’s burnout study real-world dataset.

Synthetic Data
In the simulation studies, we conducted three different con-
trol experiments: (1) the sensitivity of sample size, (2) the
ratio of non-Gaussian noise, and (3) the performance in the

Algorithm 2: Orient by transitivity of non-Gaussian noise
(ONG)

1: Function TransOrient(G, X)
2: E ← Φ;
3: for each undirected edge Lx − Ly ∈ G do
4: if ¬GIN(Lx, Ly) and ¬GIN(Ly, Lx) then
5: E ← E ∪ {Lx − Ly}
6: end if
7: end for
8: for each Lx − Ly ∈ E do
9: L← Adj(Lx) ∩Adj(Ly);

10: for each L
′
⊂ L do

11: if GIN(Lx, Ly∣L′) and ¬GIN(Ly, Lx∣L′) then
12: orient Lx → Ly;
13: else if ¬GIN(Lx, Ly∣L′) and GIN(Ly, Lx∣L′)

then
14: orient Ly → Lx;
15: break;
16: end if
17: end for
18: end for
19: return G
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Figure 5: Sensitivity to sample size.

non-Gaussian transitivity case. And we controlled the exper-
iments by traversing the controlled parameter while keep-
ing other setting fixed as default. All data were generated
from a random causal structure. For experiments (1) and
(2), we controlled different levels of sample size, and ra-
tio of non-Gaussian noise, ranging from {500, 1000,2000},
{10%, 30%, 50%,80%}, respectively. The default setting is
marked as bold, and the number of latent variables was set to
8. For experiment (3), we fixed a non-Gaussian variable as
the root of the causal structure, then randomly generated its
Gaussian descendent, in which we controlled the number of
latent variables range from {2, 4, 8, 12}. All non-Gaussian
noises were following Uniform distribution U(−2, 2).

All data were generated from the linear latent variable
model in which each latent variable has three measured vari-
ables. The connection strength at each edge was sampled
uniformly from [−2,−0.5] ∪ [0.5, 2]. Because the data are
non-Gaussian, the Hilbert-Schmidt Independence Criterion
(HSIC) test (Gretton et al. 2005) was used as the indepen-
dence test tool, and we set the significance level as α = 0.01.
Each experiment was repeated 10 times with randomly gen-
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Figure 6: The ratio of non-Gaussianity.
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Figure 7: The performance of Transitivity.

erated data, and the results were averaged.
We compared our method with PC-MIMBuild (Silva et al.

2006) and GIN (Xie et al. 2020). Precision, Recall, and F1
score were used to evaluate the algorithms with a known
ground truth containing all pure measured variable and la-
tent variables. The sparseness of the generating DAG is
s = 2/(k − 1), where k is the number of latent variables,
such that the average indegree for each latent variable is two
(Cui et al. 2018).

The simulation results are given in Figure 5, 6, and 7.
Overall, our method, LLCS-AD, achieves the best perfor-
mance in all cases. We can also see that GIN is better than
MIMBuild. The reason is that GIN further utilize the non-
Gaussianity. But GIN and MIMBuild still do not perform
well as they can not deal with the arbitrary distribution. In
addition, the precision of LLCS-AD is much higher than
others. The reason is that LLCS-AD can tell whether an edge
is identifiable or not in the arbitrary distribution while other
methods can not.

Specifically, as shown in Figure 5, all methods are sensi-
tives to the sample size, and we can see that the 1000 sam-
ple size is enough to obtain a good result. In Figure 6, as
the ratio of non-Gaussianity variables increase, the perfor-
mance of our method and GIN also increase. At the same
time, MIMBuild is not sensitive to the ratio non-Gaussianity.
The reason is that MINBuild does not consider the infor-
mation from non-Gaussian. As shown in Figure 7, interest-
ingly, GIN and LLCS-AD both correct when there has 2 la-
tent variables. Recall that the root is non-Gaussian, so GIN
can also identify the partial non-Gaussian noise cases. How-
ever, as the number of latent variables increase GIN become
worse compared with our method, which show the effec-
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PA1PA2PA3

Figure 8: Result from LLCS-AD in the teacher’s burnout
study.

tiveness of LLCS-AD. Moreover, due to the randomly gen-
erated structure, there could exists more unidentifiable struc-
ture as the number of latent variables increase. Thus the per-
formance could decrease as the number of latent variable
increase, which also verify Theorem 2. However, the pre-
cision of our method is 1, which verifies the effectiveness
of our method regarding the identifiability of the transitivity
non-Gaussian component.

Real-World Data

In this section, we applied our method on a real-world
dataset collected by Byrne (2016) that investigates the im-
pact of organizational (self-esteem, classroom climate) and
personality (self-esteem, external locus of control) on three
facets of burnout in full-time elementary teachers. There are
five latent variables with more than three pure measured
variables for each latent variable. Figure 8, shows the output
from LLCS-AD. We can see that the learned causal stricture
is reasonable and is consistent with the conclusion given by
Byrne (2016); Maslach, Jackson, and Leiter (1997).

Compared with the baseline methods, MIMBuild only ob-
tain an Markov equivalence class if not using the meek rule
while GIN outputted one incorrect causal order. To con-
clude, we have a more robustness results, which shows the
effectiveness of our method.

Conclusion

We provided necessary and sufficient conditions for the
identifiability of the structural model in linear latent vari-
able model with arbitrary distribution. Based on the pro-
posed theoretical results, we developed an algorithm for
learning the linear latent variable model that allows the ar-
bitrary distribution. Experimental results on simulation data
and real-world data further verified the effectiveness of our
algorithm. Future research along this line includes relaxing
the purity assumptions in learning the measurement model
in our algorithm and proposing more efficient learning algo-
rithms for the linear latent variable model.
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