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Abstract
Many physical phenomena are described by Hamiltonian
mechanics using an energy function (the Hamiltonian). Re-
cently, the Hamiltonian neural network, which approximates
the Hamiltonian as a neural network, and its extensions have
attracted much attention. This is a very powerful method, but
its use in theoretical studies remains limited. In this study, by
combining the statistical learning theory and Kolmogorov–
Arnold–Moser (KAM) theory, we provide a theoretical anal-
ysis of the behavior of Hamiltonian neural networks when the
learning error is not completely zero. A Hamiltonian neural
network with non-zero errors can be considered as a pertur-
bation from the true dynamics, and the perturbation theory of
the Hamilton equation is widely known as the KAM theory.
To apply the KAM theory, we provide a generalization error
bound for Hamiltonian neural networks by deriving an esti-
mate of the covering number of the gradient of the multi-layer
perceptron, which is the key ingredient of the model. This er-
ror bound gives a sup-norm bound on the Hamiltonian that is
required in the application of the KAM theory.

Introduction
Many physical phenomena are described by energy-based
theories, such as Hamiltonian mechanics (e.g., Furihata and
Matsuo (2010)). The governing equation of Hamiltonian
mechanics is

du

dt
= S

∂H

∂u
, (1)

where u : t ∈ R 7→ u(t) ∈ RN , H : u ∈ RN 7→ H(u) ∈ R,
and S is a skew-symmetric matrix. H represents the energy
function of the system. In recent years, there has been a lot
of research on predicting the corresponding physical phe-
nomena by learning the energy functionH in such equations
with a neural network HNN (e.g., Chen et al. (2020); Cran-
mer et al. (2020); Greydanus, Dzamba, and Yosinski (2019);
Matsubara, Ishikawa, and Yaguchi (2020); Zhong, Dey, and
Chakraborty (2020)); however, to the best of our knowledge,
theoretical analysis of such models has not been performed
sufficiently, except for SympNet (Jin et al. 2020b) for the
Hamilton equation, where the universal approximation the-
orems for discrete-time neural network models are provided.
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In this paper, we focus on theories of the properties of
the most fundamental model, comprising Hamiltonian neu-
ral networks (HNNs) (Greydanus, Dzamba, and Yosinski
2019)

du

dt
= S

∂HNN

∂u
(2)

and their extensions in practical situations, where the learn-
ing error is not completely zero. In this case, the trained
model can be regarded as a perturbed Hamiltonian system
due to the modeling error of the energy function. In addi-
tion, S is a general skew-symmetric matrix and hence (2)
can model Hamiltonian partial differential equations (Mat-
subara, Ishikawa, and Yaguchi 2020).

In mathematical physics, perturbed Hamiltonian systems
are well studied. For example, because whether the solar
system will continue to exist in the future is of fundamental
interest in astronomy, the stability of the solar system under
perturbations is a very important issue that has been stud-
ied for a long time (e.g., Féjoz (2013); Laskar (1996)). The
Kolmogorov–Arnold–Moser (KAM) theory gives an answer
to questions of this type; essentially, periodic motions of
such systems are stable under small perturbations. The sta-
bility of periodic motions is of particular importance in sci-
ence. In addition to the stability of celestial systems, the re-
cursive nature of physical phenomena is also of interest in
physics. For example, in the famous numerical experiments
using the Korteweg–De Vries (KdV) equation by Zabusky
and Kruskal (1965), it was confirmed that the waveform
given as the initial condition initially collapsed due to se-
vere oscillations, and then returned to its original shape after
a long time. Whether such phenomena can be reproduced by
deep learning models is an important problem that greatly
affects the usefulness of deep physical models.

In this paper, we give an answer to this question by com-
bining the KAM theory and statistical learning theory. Be-
cause trained models are also perturbed Hamiltonian sys-
tems, it is expected that the periodic behaviors of the sys-
tems are preserved even if the loss function does not vanish
completely provided it is sufficiently small. However, this
expectation cannot be proved in a straightforward way, be-
cause the application of the KAM theory requires that the
energy function be close enough to that of the true dynam-
ics in the whole phase space. Noticing that the error of the
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Figure 1: Outline of our main theorem. The first main result is the generalization error of the energy function, which is proved
by the statistical learning theory. By combining the first result and the KAM theorem, we prove that the quasi-periodic behaviors
of target systems are preserved.

energy function in the whole space is essentially the gen-
eralization error, we overcome this difficulty by combining
the KAM theory with statistical learning theory. This illus-
trates that combinations of statistical learning theory and dy-
namical systems theory can lead to powerful results. Indeed,
combinations of this kind may be applicable to other stabil-
ity results in dynamical system contexts, for example, the
stability of solitary wave solutions.

Importantly, for the neural network models to be close to
the true dynamics, we need a universal approximation theo-
rem and also a generalization error bound. In this paper, we
also provide such results for HNNs.

Regarding the generalization error bound, because the
derivative of a multi-layer perceptron is used in HNNs, a
bound for the derivative is required. To this end, we esti-
mated the covering number of the derivative of multi-layer
perceptrons. AnL∞ bound on the error in the Hamiltonian is
also provided, which is required for application of the KAM
theory.

In addition, we show a universal approximation theorem
for a model with the coordinate transformation

dx

dt
= (

∂u

∂x
)−1S(

∂u

∂x
)−>

∂H

∂x
. (3)

This model is indispensable in practice; to apply HNNs, the
data are given in the canonical coordinate system because
the equation of motion is in the form of the Hamilton equa-
tion (1) only when the state variables are represented by the
canonical coordinate system. However, this coordinate sys-
tem depends on an unknown Lagrangian and hence the en-

ergy function. Hence, the coordinate system must be also
learned from data by using, for example, neural networks.
In addition, this model can be extended to represent other
energy-based physical models beyond the Hamilton equa-
tion (Matsubara, Ishikawa, and Yaguchi 2020).

The main contributions of this paper are as follows.

1. Combination of the KAM theory and statistical learn-
ing theory for HNNs with non-zero training loss to
prove the existence of quasi-periodic behaviors (see
Figure 1).

2. Derivation of a generalization error bound for HNNs.
3. Development of a universal approximation theorem

for HNNs and other energy-based physical models
with coordinate transformations.

Related Work
Many studies of neural network models for phenomena that
can be modeled by energy-based equation (1) have been put
forward. Among them, the most basic studies are neural or-
dinary differential equations (Chen et al. 2018) and HNNs
(Greydanus, Dzamba, and Yosinski 2019). In particular, ex-
tensions of HNNs have been intensively developed.

Describing them all is beyond the scope of this paper, but
some examples are given here. In Toth et al. (2019) HNNs
were extended to latent variable models. Other studies, such
as DiPietro, Xiong, and Zhu (2020); Xiong et al. (2021);
Zhong, Dey, and Chakraborty (2020), focused on the sym-
plectic structure of the Hamilton equation. For Noether’s
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theorem, which is a fundamental theorem in classical me-
chanics, several studies (Bharadwaj, Li, and Demanet 2020;
Bondesan and Lamacraft 2019; Finzi et al. 2020) developed
methods related to symmetry and conservation laws. In addi-
tion, a discrete-time model that preserves the energy behav-
iors was constructed in Matsubara, Ishikawa, and Yaguchi
(2020). In Galioto and Gorodetsky (2020), HNNs were com-
bined with a Bayesian approach.

Methods applied to the framework of classical mechanics
other than Hamiltonian mechanics include those in Cran-
mer et al. (2020); Desai and Roberts (2020); Sæmundsson
et al. (2019), which are methods for Lagrangian formalism.
In Jin, Lin, and Li (2020), reinforcement learning was ap-
plied to the variational principle. A simplified model formed
by introducing constraints was proposed in Finzi, Wang, and
Wilson (2020). In Jin et al. (2020a), HNNs were extended to
the Poisson system, which is a wider class of mechanical
equations. There are also a number of proposals that inte-
grate them with more advanced deep learning techniques,
namely, graph networks (Sanchez-Gonzalez et al. 2019), re-
current neural networks (Chen et al. 2020), and normalizing
flows (Li et al. 2020). As an application-oriented approach,
Feng et al. (2020) designed a microscopic model for struc-
tural analysis.

However, as far as the authors know, there is no theoretical
research other than the universal approximation theorems
for Hamiltonian mechanics in SympNet (Jin et al. 2020b), in
which a certain kind of neural network is shown to have uni-
versal approximation properties for symplectic maps. The
difference between their results and ours is that (1) we an-
alyze the behaviors of a HNN with non-zero training loss
by a combination of the KAM theory and statistical learn-
ing theory, (2) we provide a generalization error bound for
NHHs, and (3) the universal approximation theorems in Jin
et al. (2020b) are for discrete-time models, while ours are
for continuous-time models.

Meanwhile, as an existing energy-based model, Hopfield
neural network is known. Both Hopfield neural network and
Hamiltonian network are derived from energy-based theo-
ries, and their dynamics are described by (1). Hamiltonian
neural network is associated with a skew-symmetric matrix
S and is a model of an energy-preserving, continuous-time,
and deterministic physics phenomenon. Its output is the
time-series of the state. Hopfield network is associated with
a negative definite matrix S and exhibits a dynamics which
is often energy-dissipating, discrete-time, and stochastic. It
is a machine learning tool rather than a physical model, and
its equilibrium point is treated as its output. Because their
outputs are different, their theoretical properties should be
discussed separately.

Brief Introduction to Hamiltonian Systems
and the KAM Theory

We briefly introduce some properties of Hamiltonian sys-
tems.

Theorem 1 (Darboux). By an appropriate coordinate trans-

formation, the matrix S is transformed into the normal form(
O I
−I O

)
.

Definition 1. The function ω : (v, w) ∈ RN × RN 7→
ω(v, w) ∈ R

ω(v, w) = v>S−1w

is called the symplectic form. Using the symplectic form as-
sociates a vector field XF with each function F : RN → R
by requiring

ω(XF , w) =
∂F

∂u
· w for all w.

For two functions F,G, the following operation is called the
Poisson bracket:

{F,G} = ω(XF , XG). (4)

Definition 2. A Hamiltonian system for which the state
variable is N = 2M dimensional is integrable in the
sense of Liouville if this Hamiltonian system has the first
integrals (i.e., conserved quantities) F1, F2, . . . , FM with
∇F1(u),∇F2(u), . . . ,∇FM (u) independent at each u and
for all i, j:

{Fi, Fj} = 0.

For integrable systems, Theorem 2 is known.
Theorem 2 (Liouville–Arnold). Suppose that for an inte-
grable Hamiltonian system, constants c1, . . . , cM exist such
that K = ∩Mi=1F

−1
i (ci) is connected and compact. Then,

there exists a neighborhood N comprising K, U ⊂ Rn and
a coordinate transform

φ : (θ, J) ∈ Tn × U → φ(θ, J) ∈ N (5)

such that the transformed system is the Hamilton equation
of which Hamiltonian H ◦ φ depends only on J .

The variables J and θ are called action-angle variables.
Theorems 1 and 2 roughly mean that integrable Hamiltonian
systems can be written in the following form:

d

dt

(
θ
J

)
=

(
O I
−I O

)(∂H̃
∂θ
∂H̃
∂J

)
.

Further, because H̃ = H ◦φ depends on I only, it holds that

d

dt

(
θ
J

)
=

(
O I
−I O

)(
0
∂H̃
∂J

)
=

(
∂H̃
∂J
0

)
.

This shows that J is constant, and hence θ moves on the
torus at a constant velocity. Because the velocities are typi-
cally not co-related to each other, the dynamics are “quasi-
periodic.” See, for example, Scott Dumas (2014) for more
details.

As seen above, integrable Hamiltonian systems are quasi-
periodic. Note that general Hamiltonian systems are not nec-
essarily quasi-periodic and neither are HNNs. However, for
the HNNs that are trained to model integrable systems, the
quasi-periodic behaviors are preferably maintained. When
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the modeling error is sufficiently small, this is considered as
a perturbation problem. The perturbation theory of Hamil-
tonian systems has been investigated from various perspec-
tives. For example, perturbed integrable Hamiltonian sys-
tems are in general no longer integrable; hence, approxima-
tion of integrable Hamiltonian systems by integrable neural
network models appears to be difficult. Fortunately, how-
ever, the KAM theory shows that even though the perturbed
system is not integrable, it maintains the quasi-periodic be-
haviors described above under certain conditions.

The KAM theorem has many variants under various con-
ditions. The following variant (Scott Dumas 2014) is typical:
Theorem 3 (KAM Theorem). Let θ and J be the action-
angle variables for a C∞ integrable Hamiltonian H0 :
R2M → R with M ≥ 2. If H0 is non-degenerate, that is,

det
∂2H0

∂J2
6= 0, (6)

for the perturbed system H(θ, J) = H0(J) + εF (θ, J, ε)
by F ∈ C∞, there exists ε0 such that if εF < ε0, there
exists a set of M -dimensional tori that are invariant under
the perturbed flow. For each invariant torus, the flow of the
perturbed system H is quasi-periodic. In addition, the set of
invariant tori is large in the sense that its measure becomes
full as ε→ 0.
Remark 1. The last sentence – the set of invariant tori is
large in the sense that its measure becomes full as ε → 0 –
corresponds to the non-existence of so-called resonance. If
the perturbation added to the system is in resonance with the
original system, the perturbation may grow rapidly and the
behavior of the system may change significantly. This state-
ment assures that for small perturbations, such a situation
almost never occurs.
Remark 2. It may be difficult to check whether the target
system is integrable by using given data. One possibility is
application of the Koopman operator, which makes it possi-
ble to find the conserved quantities that the given data may
admit. If a sufficient number of conserved quantities exist, it
is highly likely that the target system is integrable.

Main Results
Universal Approximation Properties of HNNs
For HNNs to be close to the true dynamics, a universal ap-
proximation theorem and a generalization error analysis are
needed. First, we show universal approximation theorems.

We first define some notation to describe the theorem.
Cm(X) with the topology of the Sobolev space W p,m(X)
is denoted by Smp (X), where W p,m(X) is a space of func-
tions that admit weak derivatives up to the mth order that
bounds Lp-norms. Hence, Smp (X) is the space of func-
tions inW p,m(X) with (usual) derivatives; for details on the
Sobolev theory, see Adams and Fournier (2003). Lp-norms
of functions are denoted by ‖ · ‖Lp , and those of vectors by
‖ · ‖p.

Universal approximation theorem for HNNs The fol-
lowing theorem shows the universal approximation prop-
erty of general energy-based physical models, which include
HNNs (Matsubara, Ishikawa, and Yaguchi 2020).

Theorem 4. Let H : RN → R be an energy function with
the equation

du

dt
= G

∂H

∂u
,

where u : t ∈ R 7→ u(t) ∈ RN and G is a non-degenerate
N × N matrix. Suppose that the state space K of this sys-
tem is compact and the right-hand side G∂H/∂u is Lips-
chitz continuous. If the activation function σ 6= 0 belongs
to S1

2(R), then for any ε > 0 there exists a neural network
HNN for which ∥∥∥∥G∂H∂u −G∂HNN

∂u

∥∥∥∥
2

< ε

holds. In addition, if the energy function is C∞, the function
can be approximated by a C∞ neural network provided that
the activation function is sufficiently smooth.

To prove this theorem, we use the following theorem and
the lemma, both of which were shown in Hornik, Stinch-
combe, and White (1990).

Theorem 5 (Hornik et al., 1990). Let Σ(σ) be the space of
the neural networks with the activation function σ. If the ac-
tivation function σ 6= 0 belongs to Smp (R, λ) for an integer
m ≥ 0, then Σ(σ) is m-uniformly dense in C∞(K), where
K is any compact subset of RN .

Lemma 1 (Hornik et al., 1990). Under the same assump-
tion, Σ(σ) is also dense in Smp (R, λ).

From these it follows that if the activation function σ of
the hidden layer is in Smp (R, λ) and does not vanish every-
where, then for any sufficiently smooth function, there ex-
ists a neural network that approximates the function and its
derivatives up to the order m arbitrarily well on compact
sets. This theorem has also been extended to the functions
of multiple outputs; see Hornik, Stinchcombe, and White
(1990).

Proof of Theorem 4. Because the target equation is deter-
mined only by the gradient of H , any function obtained by
shifting H by a constant gives the same equation. Hence,
we choose and fix an energy function H that yields the tar-
get equation. BecauseG∂H/∂u is Lipschitz continuous and
hence continuous on the phase space K, this function is
bounded and square-integrable. Thus, G∂H/∂u ∈ S0

2(K),
which means H is in S1

2(K). Therefore, from Lemma 1 and
the assumption that the activation function is in S1

2(R), for
each ε, there exists a neural network that approximates H in
S1

2(K):

‖H −HNN‖22 +

∥∥∥∥∂H∂u − ∂HNN

∂u

∥∥∥∥2

2

<
ε2

‖G‖22
,

which gives∥∥∥∥G∂H∂u −G∂HNN

∂u

∥∥∥∥2

2

≤ ‖G‖22
∥∥∥∥∂H∂u − ∂HNN

∂u

∥∥∥∥2

2

< ε2.
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Figure 2: Double pendulum used as the target in the exper-
iment for the illustration of the model with the coordinate
transformations.

(a) Ground truth (b) Naive HNN model

(c) HNN model with a coor-
dinate transformation

Figure 3: Examples of the orbits predicted by a HNN and the
model with coordinate transformations. Each component of
x(t) = [q1(t), v1(t), q2(t), v2(t)] is represented as red (q1),
green (v1), blue (q2), and black (v2).

HNNs with a coordinate transformation The practical
use of HNNs is hampered by the fact that the state variables
must be represented by a specific coordinate, such as the
generalized momentum; however, the derivation of the gen-
eralized momentum requires the energy function, which is
unknown. For example, the double pendulum in Figure 2 ex-
hibits the dynamics shown in Figure 3. These are predicted
by the models that are trained from the data of the state vari-
ables and their derivatives, not those of the generalized mo-
menta. HNNs failed to solve such problems because the data
were not given in the canonical coordinate system. Based on
this, we here consider a model with a coordinate transforma-
tion, such as the transformations that appear, for example, in
Rana et al. (2020); Jin et al. (2020a).

Suppose that, although the given data point x(t) is not rep-
resented by the canonical coordinate system, the data point
x(t) can be transformed into the canonical coordinate sys-
tem by an unknown transformation u(t) = uNN[x(t)]. By
substituting u = uNN(x) into the model equation (2), we

obtain
dx

dt
= (

∂uNN

∂x
)−1S(

∂uNN

∂x
)−>

∂HNN

∂x
. (7)

We show that model (7) admits the same energetic prop-
erty as the original equation and also the universal approxi-
mation property.
Theorem 6. The model (7) admits the energy conservation
law in the sense that dHNN/dt = 0.

Proof. By substituting the equation, we obtain

dHNN

dt
=
∂HNN

∂x

> dx

dt

=
∂HNN

∂x

> ∂uNN

∂x

−1

S
∂uNN

∂x

−> ∂HNN

∂x
= 0

because S is skew-symmetric and hence for any vector v,
v>Sv = 0.

Theorem 7. LetH : RN → R be an energy function for the
equation

dx

dt
= (

∂u

∂x
)−1S(

∂u

∂x
)−>

∂H

∂x
,

where x : t ∈ R 7→ x(t) ∈ RN , u : x ∈ RN 7→ u(x) ∈
RN , and S is an N × N matrix. Suppose that the phase
space K of this system is compact and the right-hand side
∂H/∂u is Lipschitz continuous. Suppose also that u is aC1-
diffeomorphism. If the functions σ 6= 0 and ρ 6= 0 belong to
S1

2(R), then for any ε > 0, there exist neural networks HNN

with the activation functions σ and uNN with ρ for which∥∥∥∥(
∂u

∂x
)−1S(

∂u

∂x
)−>

∂H

∂x
− (

∂uNN

∂x
)−1S(

∂uNN

∂x
)−>

∂HNN

∂x

∥∥∥∥
2

< ε

holds.

Proof. We need to prove the approximation property for
(∂u/∂x)−1. From the assumption that ρ 6= 0 is in S1

2(R),
there exists a function uNN that approximates ∂u/∂x. Be-
cause the determinant function of matrices is continuous, it
is deduced that det ∂uNN/∂x 6= 0 and hence (∂uNN/∂x)−1

exists. Because the matrix inverse is also continuous,
(∂uNN/∂x)−1 is also approximated by uNN.

Generalization Error Analysis of HNNs
Next, we derive a generalization error bound for the standard
HNN (2) by employing a technique from statistical learning
theory. More precisely, we adjust the technique so that an
estimate on the energy gradient can be obtained.
Remark 3. Although the standard HNN without the coordi-
nate transformations is considered below, the results can be
extended to the general energy-based model with the coor-
dinate transformations if the matrix (∂u/∂x)−1 is bounded.

In statistical learning theory, generalization error bounds
are typically obtained by using the Rademacher complex-
ities. See, for example, Bousquet, Boucheron, and Lugosi
(2004); Giné and Nickl (2016); Shalev-Shwartz and Ben-
David (2014); Steinwart and Christmann (2008) for details.
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Definition 3. For a set V ⊂ Rn,

Rn(V ) :=
1

n
Eσ∼{−1,1}n sup

v∈V

n∑
i=1

σivi

is called the Rademacher complexity of V .

Lemma 2. Let X and Y be arbitrary spaces, F ⊂ {f :
X → Y } be a hypotheses class, and L : Y × Y → [0, c] be
a loss function. For a given data set (xi, yi) ∈ X × Y (i =
1, . . . , n), let G be defined by {(xi, yi) ∈ X × Y 7→
L[yi, h(xi)] ∈ R | h ∈ F , i = 1, . . . , n}. Then, for any
δ > 0 and any probability measure P , we obtain, with a
probability of at least (1 − δ) with respect to the repeated
sampling of Pn-distributed training data, the following:

E[L(Y, h(X))] ≤

1

n

n∑
i=1

L(yi, h(xi)) + 2Rn(G) + 3c

√
2 ln 4

δ

n

for all h ∈ F .

The Rademacher complexity is known to be bounded by
using the covering number.

Definition 4. Let V and V ′ be subsets of Rn. V is r-covered
by V ′ with respect to the metric function defined by the norm
‖ · ‖ if for all v ∈ V , there exists a v′ ∈ V ′ such that
‖v − v′‖ < r. The covering number N(r, V, ‖ · ‖) of V
is the minimum number of elements of a set that r covers
V . N(r, V, ‖ · ‖) is also denoted by N(r, V ) if the metric is
clear from the context.

Lemma 3. If
√

logN(c2−k, V ) ≤ α + kβ for some α and
β, thenRn(V ) ≤ 6c(α+ 2β)/n.

Thus, if the covering number is estimated for a HNN, the
bound on the generalization error is obtained. To this end,
we suppose that the model is trained by minimizing the p-
norm of the error in the right-hand side of the model. More
precisely, for the hypothesis h : uj 7→ S

∂HNN(uj)
∂u , we con-

sider the loss function

L[∇H(uj), h(uj)] =

∥∥∥∥∂H(uj)

∂u
− ∂HNN(uj)

∂u

∥∥∥∥p
p

, (8)

where ui are training data. We denote the Lipschitz con-
stant of the loss function associated with the above by ρp.
Of course, p = 2 is typically used; however, we show be-
low that p > 2M is useful to obtain an L∞ bound on the
Hamiltonian.

Remark 4. The training can be performed also by using the
symplectic gradient:∥∥∥∥S ∂H(uj)

∂u
− S ∂HNN(uj)

∂u

∥∥∥∥p
p

. (9)

In that case, the results will be slightly modified using the
norm of S; however, we omit this for simplicity.

A bound of the covering number is derived as follows.

Theorem 8. Suppose that the hypotheses classF consists of
multi-layer perceptrons fNN that have ρσj -Lispchitz activa-
tion functions σj(j = 1, . . . , nl), for which the derivatives
are ρ′j-Lipschitz continuous and bounded by sup |σ′j | < cσj

.
Suppose also that the matrices A>j (j = 1, . . . , nl + 1) in
the linear layers in the perceptrons have the bounded norm
|A>j | < cAj

:

F = {fNN(u) |
Anl+1σnl

(Anl
σnl−1

[· · ·σ1(A1u+ b1) · · · ] + bnl
) + bnl+1},

where bj’s are vectors. Let G be defined by
{L[∇H(ui), h(ui)] | h ∈ F} with the ρp-Lipschitz
continuous loss function L. In addition, suppose that the
phase space is compact so that the data ui(i = 1, . . . , n)
are in a bounded set with the bound ‖ui‖ < cu. Then, the
covering number of G is estimated by

N(ε,G) ≤(2ρpcucAnl+1
ρ′σnl

(
∏nl−1
j=1 ρσj

)(
∏nl−1
j=1 cσj

)(
∏nl

j=1 cAj
)2

ε

+ 1
)n
.

To prove this theorem, we use the following lemmas,
which are typically used to estimate the covering num-
bers (Shalev-Shwartz and Ben-David 2014).

Lemma 4. Let B be a unit ball in Rn. Then, N(ε,B, ‖ ·
‖2) ≤

(
2
ε + 1

)n
.

Lemma 5. Suppose that functions φi : R → R, i =
1, 2, . . . , n are ρ-Lipschitz continuous. Then, for V ⊂ V n,
N(ε, ~φ ◦ V ) ≤ N( ερ , V ), where for v ∈ Rn, ~φ(v) :=

[φ1(v1), . . . , φn(vn)], ~φ ◦ V := {~φ(v) | v ∈ V }.

Proof of Theorem 8. To simplify the discussion, we will es-
timate the covering number of the following perceptron

fNN(u) = A3σ2[A2σ1(A1u+ b1) + b2] + b3.

Because the proof for general cases is exactly the same, we
need to estimate the covering number of the gradient of fNN,
which is written as

∇fNN(u) = A>1 (Dσ1)A>2 (Dσ2)A>3 ,

where Dσ2 and Dσ1 are Jacobian matrices. These Jacobian
matrices are evaluated at u = A2σ1(A1u + b1) + b2 and
A1u+ b1, respectively. We first estimate the covering num-
ber associated with Dσ2. Dσ2 has the same architecture as
a multi-layer perceptron, except that the last activation func-
tion is replaced by the differential σ′2 of σ2:

Dσ2 = σ′2[A2σ1(A1u+ b1) + b2].

Assuming that the input data are in the ball Bcu with radius
cu, we obtain

N(ε,Bcu) ≤
(

2cu
ε

+ 1

)n
.
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Then, because the norms ofA1,A2 are bounded by cA1 , cA2 ,
matrix multiplications by these matrices are cA1 - and cA2 -
Lipschitz continuous, respectively. In addition, σ1 is ρ1-
Lipschitz and σ′2 is ρ′2-Lipschitz continuous. Therefore, the
covering number associated with Dσ2 is estimated by

N(ε,Dσ2) ≤
(

2ρ1ρ
′
2cA1

cA2
cu

ε
+ 1

)n
.

Finally, because σ′1 is assumed to be bounded by cσ1
,

the norms of the matrices other than Dσ2 in ∇fNN are
bounded as follows: ‖A>1 ‖ < cA1 , ‖A>2 ‖ < cA2 , ‖A>3 ‖ <
cA3 , ‖Dσ1‖ < cσ1 . Because the loss function is assumed to
be ρp-Lipschitz continuous, we obtain the estimate

N(ε,G) ≤
(

2ρpρ1ρ
′
2cσ1(cA1cA2)2cA3cu

ε
+ 1

)n
.

L∞ Estimate on the Error in the Hamiltonian
The generalization error analysis in Theorem 8 shows that,
at a certain probability, the expectation of the loss function
can be bounded. If this bound certainty holds and if the train-
ing is performed by minimizing the p-norm with p > 2M ,
we can derive an L∞ estimate on the Hamiltonian for the
standard HNN (2) by applying the Poincaré inequality and
the Sobolev inequality under Assumption 1.
Assumption 1 There exists a density fP for measure P with
inf fP > 0.
Remark 5. The condition p > 2M is not required in prac-
tice because of the well-known equivalence of the norms in
finite dimensional spaces; for example, if the standard 2-
norm is small enough, then the p-norm is also small. How-
ever, when the dimension 2M is large, the 2-norm needs to
be very small to bound the p-norm because the constant in
the inequality used to bound the p-norm depends on the di-
mension. Therefore, it is preferable to minimize the p-norm
in such cases.
Theorem 9 (Poincaré inequality). Suppose that 1 ≤ p ≤ ∞
and Ω ⊂ R2M is bounded. Then there exists a constant cp
such that, for any H ∈ S1

p(Ω),∫
Ω

|H(u)− H̄|pdu ≤ cp
∥∥∥∥∂H∂u

∥∥∥∥p
p

, H̄ =
1∫

Ω
du

∫
Ω

H(u)du.

The constant cp is called the Poincaré constant.
Theorem 10 (Sobolev inequalities). There exist constants
c1, c2 such that, if lp > 2M ,

‖e‖L∞(R2M ) ≤ c‖e‖Wp,l(R2M ),

‖e‖L∞(T2M ) ≤ c‖e‖Wp,l(T2M ).

By using these inequalities along with the invariance of
the Hamilton equation under the constant shift of the energy
function, we obtain an error bound on the Hamiltonian.
Lemma 6. Among the energy functions that yield the target
Hamilton equation, we choose the one for which∫

H(u)du =

∫
HNN(u)du (10)

holds, so that the error function has zero mean: e(u) :=
H(u)−HNN(u), ē(u) := 0. Then,∫

Ω

|e(u)|pdu ≤ cp
∥∥∥∥ ∂e∂u

∥∥∥∥p
Lp

.

From the above estimate, we obtain∫ ∥∥∥∥∂H(u)

∂u
− ∂HNN(u)

∂u

∥∥∥∥p
p

dP

≤ 1

n

n∑
i=1

L[Yi, h(Xi)] + 2Rn(G) + 3c

√
2 ln 4

δ

n
.

By using the density fP for the measure P , we obtain

inf fP

∫ ∥∥∥∥∂H(u)

∂u
− ∂HNN(u)

∂u

∥∥∥∥p
p

du

≤
∫ ∥∥∥∥∂H(u)

∂u
− ∂HNN(u)

∂u

∥∥∥∥p
p

dP,

which gives us∫ ∥∥∥∥∂H(u)

∂u
− ∂HNN(u)

∂u

∥∥∥∥p
p

du

≤ 1

inf fP

∫ ∥∥∥∥∂H(u)

∂u
− ∂HNN(u)

∂u

∥∥∥∥p
p

dP

≤ 1

inf fP

 1

n

n∑
i=1

L[Yi, h(Xi)] + 2Rn(G) + 3c

√
2 ln 4

δ

n

 .

We note that the left-hand side is the Sobolev norm of the
error in W p,l; then, under the assumption that p > 2M , we
can use the Sobolev inequality to obtain

(sup
u
‖H(u)−HNN(u)‖)p ≤ cp

∥∥∥∥∂H(u)

∂u
− ∂HNN(u)

∂u

∥∥∥∥p
p

≤ cp

inf fP

 1

n

n∑
i=1

L[Yi, h(Xi)] + 2Rn(G) + 3c

√
2 ln 4

δ

n

 ,

which ensure thatH andHNN are close in terms of the func-
tion values.

KAM Theory for HNNs
The universal approximation property shown in the previ-
ous sections guarantees that the value of MSE can be made
arbitrarily small by training; however, in actual training, a
finite error remains. In this section, as an application of the
generalization bound, we apply the KAM theory to theoreti-
cally investigate the trained standard HNN model (2) in such
cases by assuming that the target system is integrable.

We make a few assumptions that are needed for the appli-
cation of the KAM theory.
Assumption 2 The dimension of the phase space is assumed
to be 2M with M ≥ 2.
Assumption 3 The target system is an integrable Hamilto-
nian system with the conserved quantities F1, . . . , FM . The
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series c1, . . . , cM exists such thatK = ∩Mi=1F
−1
i (ci) is con-

nected and compact.
Under the above assumptions, from the Liouville–Arnold

theorem there exist a neighborhood N of K, U ⊂ Rn and a
coordinate transform

φ : (θ, J) ∈ Tn × U → φ(θ, J) ∈ N , (11)

such that the transformed system is the Hamilton equation.
Following the usual setting of the KAM theorem, we con-
sider the target system and the Hamiltonian equation in the
transformed coordinate Tn × U .
Assumption 4 The HamiltonianH : Tn×U → R of the tar-
get system is C∞ and non-degenerate. The activation func-
tions of the HNNs used are in C∞.
Assumption 5 From the generalization error analysis in the
previous section, we have essentially shown that if p > 2M ,
with at least probability 1− δ, it holds that

sup |H(u)−HNN(u)| < c1Ltrain + c2Rn + c3

√
ln 1

δ

n

with constants c1, c2, and c3, where Rn is a bound on the
Rademacher complexity. We assume that the training was
performed with p > 2M and the above statement certainly
holds.

Using these assumptions, we obtain Theorem 10.
Theorem 11. Let the threshold of the KAM theorem be ε0

and δ be

δ = exp

(
−n
(
ε0 − c1Ltrain − c2Rn

c3

)2
)
.

Under the above assumptions, with a probability of at least
(1 − δ), a set of invariant tori exists for the trained model
HNN.

Proof. It is confirmed by a straightforward calculation that
if δ is given as described above, it holds that sup |H(u) −
HNN(u)| < ε0, and hence the assumption of the KAM the-
orem is satisfied.

Remark 6. As mentioned in Remark 1, the KAM theorem
also shows that the invariant tori become larger when the
perturbation becomes smaller. Hence, if the generalization
error is small, the size of the tori is expected to be large.

Note that general Hamiltonian systems, and hence gen-
eral HNNs, are not quasi-periodic. Therefore, a model that
approximates a quasi-periodic Hamilton equation may be (in
some sense) approximately quasi-periodic, but it is not nec-
essarily strictly quasi-periodic. This theorem states that the
trained model can be strictly quasi-periodic even if the train-
ing loss does not completely vanish.

Numerical Example: Learning the Zabusky and Kruskal
Experiment As a numerical experiment, we trained a
HNN1 so that the dynamics of the KdV equation is learned
by using the data from the experiment by Zabusky and

1We use the HNN code for the KdV equation provided by https:
//github.com/tksmatsubara/discrete-autograd (MIT License).

Kruskal (1965), in which a nontrivial recurrence of initial
states is reported.

The KdV equation is derived from the energy function

H(u) =

∫ [
1

6
αu3 − 1

2
β

(
∂u

∂x

)2
]

dx.

In fact, under the periodic boundary condition, the varia-
tional derivative is

δH

δu
=

∫ [
1

2
αu2 + β

∂2u

∂x2

]
dx,

and the KdV equation is defined as a Hamiltonian equation:

∂u

∂t
=

∂

∂x

δH

δu
= αu

∂u

∂x
+ β

∂3u

∂x3
.

For spatial discretization, we used the forward and back-
ward difference operators,

Df :=
1

∆x


−1 1 · · · 0 0
0 −1 · · · 0 0
. . . . . . · · ·

. . . . . .
0 0 · · · −1 1
1 0 · · · 0 −1

 and

Db :=
1

∆x


1 0 · · · 0 −1
−1 1 · · · 0 0
. . . . . . · · ·

. . . . . .
0 0 · · · 1 0
0 0 · · · −1 1

 ,

respectively. The central difference operatorD is their mean,
specificallyD = 1

2 (Df +Db) and that for the second deriva-
tive is D2 = DfDb = DbDf . Using these difference opera-
tors, the equation is semi-discretized as

H(u) =
∑
x

[
1

6
αu3 − 1

2
β

(Dfu)2 + (Dbu)2

2

]
∆x,

du

dt
= D

∂H

∂u
= D

(
1

2
αu2 + βD2u

)
.

Following Zabusky and Kruskal (1965), we set the pa-
rameters to α = −1.0 and β = −0.0222, set the width of
phase space to 2.0, and used the initial condition u(0, x) to
u(0, x) = cos(xπ). We discretized the system with the spa-
tial and temporal mesh sizes of ∆x = 0.1 and ∆t = 0.01.
We obtained an orbit for 200 time steps from the initial con-
dition using the fifth-order Dormand–Prince method with
the absolute and relative tolerances of 10−10 and 10−8.

We performed the experiments on an NVIDIA TITAN V
with double precision. We employed a three-layered convo-
lutional neural network with kernel sizes of 3, 1, and 1. The
number of hidden channels was 200, the number of output
channels was 1, the activation function was the tanh func-
tion, and each weight parameter was initialized as a random
orthogonal matrix. We summed up the output in the spatial
direction and obtained the global energy. We used the whole
orbit at every iteration, and minimized the mean squared er-
ror of the time derivative as the loss function using the Adam
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Figure 4: Results of training in the Zabusky and Kruskal experiment (Zabusky and Kruskal 1965). (top panels) The predicted
states at t =0.0, 2.0, 4.8, and 9.8. (second panel) The true dynamics u. (third panel) The dynamics uNN modeled by a neural
network. (bottom panel) The energy function H given the true dynamics u and modeled dynamics uNN.

optimizer with a learning rate of 10−3 for 10,000 iterations;
the error reached a maximum of 1.37×10−3. Given the true
dynamics u, the absolute error between the energy function
H and the neural networkHNN was 1.31×10−4 on average
and 2.51× 10−4 at most.

Using the true model and the trained neural network, we
also obtained orbits for 1100 time steps from the same initial
condition, as shown in the second and third panels of Fig. 4,
respectively. In the top panels, blue and orange lines denote
the true state u and the state predicted by the trained neural
network uNN at t =0.0, 2.0, 4.8, and 9.8. The bottom panel
shows the energy functionH given the predicted states u and
uNN. Due to the non-zero training error, more waves incur a
larger error. Nonetheless, at around t = 9.8, the true model
and learned neural network reproduce sin waves, which are
given as the initial condition, and the energy error is restored
to zero; they exhibit quasi-periodic behaviors.

Concluding Remarks

We analyzed the behavior of HNNs with non-zero learning
errors by combining the KAM theory and statistical ma-
chine learning. We investigated the approximation proper-
ties of deep energy-based models, including HNNs. More
precisely, we proved the persistence of the quasi-periodic
behaviors of integrable Hamiltonian systems with a high
probability even when the loss function is not perfectly zero.
Further, we provided a generalization error bound and uni-
versal approximation theorems for HNNs to ensure that the
loss function can be sufficiently small for application of the
KAM theorem. Meanwhile, in the recent research on this
type of model, numerically integrated gradients are often
used for training. Similar results should be obtained for such
cases; however, rigorous discussion is needed.
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