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Abstract

Uplift modeling aims to model the incremental impact of a
treatment on an individual outcome, which has attracted great
interests of researchers and practitioners from different com-
munities. Existing uplift modeling methods rely on either the
data collected from randomized controlled trials (RCTs) or
the observational data which is more realistic. However, we
notice that on the observational data, it is often the case that
only a small number of subjects receive treatment, but finally
infer the uplift on a much large group of subjects. Such highly
imbalanced data is common in various fields such as market-
ing and medical treatment but it is rarely handled by exist-
ing works. In this paper, we theoretically and quantitatively
prove that the existing representative methods, transformed
outcome (TOM) and doubly robust (DR), suffer from large
bias and deviation on highly imbalanced datasets with skewed
propensity scores, mainly because they are proportional to
the reciprocal of the propensity score. To reduce the bias and
deviation of uplift modeling with an imbalanced dataset, we
propose an imbalance-aware uplift modeling (IAUM) method
via constructing a robust proxy outcome, which adaptively
combines the doubly robust estimator and the imputed treat-
ment effects based on the propensity score. We theoretically
prove that IAUM can obtain a better bias-variance trade-off
than existing methods on a highly imbalanced dataset. We
conduct extensive experiments on a synthetic dataset and two
real-world datasets, and the experimental results well demon-
strate the superiority of our method over state-of-the-art.

Introduction
Uplift modeling refers to the techniques that model the in-
cremental impact of a treatment on an individual outcome,
and the incremental impact is also known as individual treat-
ment effect (ITE) or the uplift. Uplift modeling is widely
applied in various domains, such as marketing (Radcliffe
2007), social science (Imai and Ratkovic 2013; Künzel et al.
2019) and medicine treatment (Zhang et al. 2017) because of
its ability to sufficiently target customer. For example, in the
marketing area, uplift modeling helps the marketing team
improve the targeting by focusing on only the persuadable
customers who will purchase if they are exposed to a cam-
paign otherwise not. In this way, the no effect or negative
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effect of a campaign can be prevented, so that the return of
investment of a campaign can be maximized.

Traditional uplift modeling methods rely on data col-
lected through RCTs, where subjects are randomly assigned
to receive treatment. However, due to the high cost, time-
consuming, and sometimes unethical of conducting RCT, a
more realistic way is to build the estimator from non-random
data, namely observational data. Existing works, such as
TOM (Athey and Imbens 2015), DR (Wang et al. 2019) and
SDRM (Saito, Sakata, and Nakata 2019) transforms the es-
timated ITE as the proxy outcome, which can train a new
model with any existing off-the-shelf supervised methods to
estimate the uplift directly.

However, it is worthy to notice that, existing works may
still have large bias and deviation in the highly imbalanced
dataset. A highly imbalanced dataset refers to the case where
only a small portion of the people receive the treatment,
which is very common in various fields. For example, in
marketing compaigns, to maximize the return of investment,
the advertisement is usually exposed to a small group of
audiences to save the cost. In other words, in the observed
dataset, only a small group of people receive the treatment,
but the estimated uplift model is used to predict the up-
lift over all the audiences. In this case, particularly small
propensity scores exist in the estimation, leading to large es-
timation bias and deviation in the existing work when its
inverse is adopted to construct the proxy outcome, such as
TOM and DR. Theoretical and quantitative analysis on TOM
and DR show that both methods will suffer the same large
bias and deviation problem while learning with a highly im-
balanced dataset.

In addition to the extreme propensity score, the certainty
level of treated and control outcome prediction would be dif-
ferent due to the high imbalance in treatment and control
group size. When constructing the proxy outcome, without
considering this certainty difference, the performance of the
uplift modeling would be decreased. The above challenges
brought by high imbalance data require the estimator to care-
fully take imbalance into consideration and balance the bias
and deviation of the estimator on the two groups with dra-
matically different numbers of samples.

To overcome the above challenges, we propose an
Imbalance-Aware Uplift Modeling (IAUM) by adaptively
taking the advantages of the doubly robust estimator and
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the imputed treatment effects. Specifically, we construct the
proxy outcome by aggregating the two estimators weighted
by the propensity score because, to some degree, the un-
certainty level of the doubly robust estimator and the im-
puted treatment effects are correlated with the propensity
score in this high-imbalance case. Moreover, utilizing the
propensity score as the weight avoids its appearance in the
denominator compared with the existing work. Furthermore,
we theoretically prove that IAUM can obtain a better bias-
variance trade-off than existing methods on a highly imbal-
anced dataset. One thing to note is that, in this paper, we
only discuss the case that the treatment probability is rela-
tively small, and the case that the non-treated probability is
much smaller than the treated probability can be analyzed in
the same way. We conduct the proposed IAUM method on
both synthetic and real-world datasets, and the experimen-
tal results confirm the effectiveness. In summary, our main
contributions are as follows:

• Problem. We theoretically and quantitatively prove that
the TOM and DR suffer from large bias and deviation on
a highly imbalanced dataset with an extreme propensity
score, and identify its unique challenges arising from real
applications.

• Method. To reduce the bias and deviation of uplift
modeling with a imbalanced dataset, we propose an
imbalance-aware uplift modeling method via construct-
ing a robust proxy result and obtain a better bias-variance
trade-off than existing methods.

• Evaluation. We perform extensive experiments on a syn-
thetic dataset with eight different scenarios and two real-
world datasets, which demonstrates that the proposed
method achieves consistent improvement over existing
uplift modeling methods.

Related Work
As a method of obtaining ITE, there is a growing inter-
est (Gutierrez and Gérardy 2017; Zhang, Li, and Liu 2020;
Yao et al. 2020; Olaya, Coussement, and Verbeke 2020) in
developing a unbiased and robust estimator for uplift mod-
eling.

When the RCT data is enough to estimate the ITE, the
single model approach (Lo 2002), which uses the concate-
nation of treatment and covariates to predict the outcomes,
and TMA (Jaskowski and Jaroszewicz 2012), which defines
ITE as the difference between predicted outcomes coming
from two group of subjects, can be directly applied to esti-
mate the uplift.

As it is often difficult to collect the RCT data, a realistic
to model the uplift is based on observational data (Nichols
2007). TOM (Athey and Imbens 2015) is one of the most
representative method. It uses an unbiased estimator of ITE
as a proxy outcome, but requires the propensity score to be
unbiased. Since the propensity score is difficult to predict
accurately, TOM has been suffering from bias and excessive
variance. In order to solve this problem, Wang et al. (2019)
presented a doubly robust (DR) technique that combines er-
ror imputation based estimator and inverse propensity score

estimator. Moreover, Saito, Sakata, and Nakata (2019) in-
troduced a switching approach that switches between DR
estimator and predicted treatment effects, which achieves a
desirable bias-variance trade-off.

Methods mentioned above usually do not restrict to one
specific machine learning approach, and there are another
line of research work focusing on reforming the traditional
machining learning methods for uplift modeling. Based on
binary tree models, Hansotia and Rukstales (2002) pro-
posed a new splitting criterion that maximizes the differ-
ence between the estimated treatment effect of the two child
nodes. Following the idea of support vector machine (SVM),
(Zaniewicz and Jaroszewicz 2013) presented two SVM-
based uplift modeling methods, which are the L1-Uplift
Support Vector Machine and the Lp Uplift Support Vector
Machine.

Besides the above tailored uplift modeling approach
based on traditional machine learning methods, researchers
also explore to apply the deep learning techniques to the up-
lift modeling (Gutierrez and Gérardy 2017). The main ad-
vantages of deep learning methods are that the large model
capacity of neural networks can easily model complex non-
linear relationships between the treatment and the covari-
ates. In addition, with the flexibility of the design of neural
networks, it is easy to realize deconfounding of the uplift
modeling on the non-RCT data. Several deep learning based
methods (Johansson, Shalit, and Sontag 2016; Yao et al.
2018; Yu et al. 2021; Ma, Li, and Cottrell 2020; Li et al.
2021; Künzel et al. 2018; Yao et al. 2019; Zhang, Liu, and
Li 2020; Chen et al. 2021; Yao et al. 2021) successfully ex-
tend the traditional approach to combine with deep learning
and achieve improvements on the uplift modeling.

However, the aforementioned methods have not discussed
the case that learning with a highly imbalanced dataset, and
it is still an open question that how to obtain a reliable es-
timator under this setting. In this paper, we take two repre-
sentative methods, TOM and DR, as examples for detailed
analysis and develop a robust uplift estimator.

Preliminaries
In this section, we first introduce notations according to the
Rubin Causality Model (Imbens and Rubin 2015), then in-
troduce the most relevant works TOM (Athey and Imbens
2015) and DR (Wang et al. 2019) in detail.

Notations
The number of users contained in the sample is N , and we
use Xi ∈ X to represent the feature vector embedding of
i-th user ui. We denote Wi ∈ T as a binary indicator that
represents ui’s treatment assignment, i.e.,

Wi =

{
1, if ui receives the treatment;
0, otherwise. (1)

Let Y 1
i denote ui’s outcome when they receive the treat-

ment, and Y 0
i denote ui’s outcome when they do not re-

ceive the treatment. Then, we can define our interest scalar
τi which represents ITE as the difference between two vari-
ables:

τi = E[Y 1
i − Y 0

i |Xi]. (2)
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However, in real life, for any individual, we can only ob-
serve one potential result. We represent ui’s observed out-
come Y obs

i as:

Y obs
i = WiY

1
i + (1−Wi)Y

0
i . (3)

In addition, we use µ1
i and µ0

i to represent the user’s ex-
pectation of potential outcomes conditioned on Xi , which
means that µ1

i = E[Y 1
i |Xi] and µ0

i = E[Y 0
i |Xi]. µ̂1

i and
µ̂0
i are the predicted values of model for µ1

i and µ0
i , respec-

tively. We use e(Xi) be the propensity score that represents
the probability of ui’s being treated, which is written as:

e(Xi) = P (Wi = 1|Xi) = E[Wi|Xi]. (4)

We define δ1i , δ0i as the deviations between the expected
true value for theoretical analysis and the predicted value of
the model output, and ∆1

i , ∆0
i represent the deviation of ui’s

outcome and the predicted value of the model i.e.,

δ1i = µ̂1
i − µ1

i , δ
0
i = µ̂0

i − µ0
i ; (5)

∆1
i = Y 1

i − µ̂1
i ,∆

0
i = Y 0

i − µ̂0
i . (6)

Transformed Outcome Method
Since we cannot observe the real ITE, TOM (Athey and Im-
bens 2015) uses inverse propensity score to construct an out-
come as a proxy for ITE, which is defined as:

Y TOM
i =Y obs

i

Wi − e(Xi)

e(Xi)(1− e(Xi))

=


Y 1
i

e(Xi)
, Wi = 1;

−Y 0
i

1− e(Xi)
, Wi = 0.

(7)

With the above transformed outcome, any off-the-shelf
supervised methods can be directly applied for the estima-
tion on the dataset. However, the condition for using TOM
to construct an unbiased proxy value is to obtain the true
propensity score of each individual (that is e(Xi)), but in
practice, the true propensity score cannot be estimated due
to the complex data distribution.

Doubly Robust Method
As proved by Saito, Sakata, and Nakata (2019), TOM will be
an unreliable proxy outcome with a biased propensity score,
therefore, the doubly robust method proposed by (Wang
et al. 2019) can be adopted to construct a new proxy out-
come with better bias and variance, which is defined as:

Ŷ DR
i =

(
µ̂1
i +

Wi

ê(Xi)
(Y obs

i − µ̂1
i )
)

−
(
µ̂0
i +

1−Wi

1− ê(Xi)
(Y obs

i − µ̂0
i )
)

=


µ̂1
i − µ̂0

i +
Y 1
i − µ̂1

i

ê(Xi)
, Wi = 1;

µ̂1
i − µ̂0

i −
Y 0
i − µ̂0

i

1− ê(Xi)
, Wi = 0,

(8)

where ê(Xi) is the estimated value of the propensity score
e(Xi).

Methodology
In this section, we first introduce the challenges of uplift
modeling in highly imbalanced dataset. Then we elaborate
the proposed imbalance-aware uplift modeling approach. At
last, the theoretical analysis about the bias and the deviation
of the proposed method is provided.

Challenges
As mentioned previously, to optimize the allocation of the
budget, it is common that the treatment is only exposed to a
small portion of group because of the limited budget, which
makes the size of the treatment and the control group highly
imbalanced. Such imbalance leads to two major challenges
in uplift modeling: (1) high bias and deviation (2) different
difficulty level of treatment/control outcome prediction.

Challenge 1: High Bias and Deviation. Due to the ex-
tremely small treatment group size, the estimated propensity
scores ê(Xi) on some units tend to be very close to 0. Once
the estimated propensity score appears in the denominator,
as in TOM (Equation (7)) and DR (Equation (8)), it causes
high bias and deviation in the highly imbalanced dataset.
Formally, the following two theorems shows the bias and
deviation of the state-of-the-art methods TOM and DR (See
Appendix for the proof).
Theorem 1. The bias of TOM estimator is

Bias(Ŷ TOM
i |Xi) =


∣∣µ0

i +
1− ê(Xi)

ê(Xi)
µ1
i

∣∣, Wi = 1;

∣∣ ê(Xi)

1− ê(Xi)
µ0
i + µ1

i

∣∣, Wi = 0.

(9)
The deviation of TOM estimator is

ΛTOM =

√√√√C

n∑
i=1

( Y 1
i

ê(Xi)
+

Y 0
i

1− ê(Xi)

)2
, (10)

where C is a constant.
Theorem 2. The bias of DR estimator is:

Bias(Ŷ DR
i |Xi) =


∣∣δ0i + 1− ê(Xi)

ê(Xi)
δ1i
∣∣, Wi = 1;

∣∣ ê(Xi)

1− ê(Xi)
δ0i + δ1i

∣∣, Wi = 0.

(11)
The deviation of DR estimator is:

ΛDR =

√√√√C
n∑

i=1

( ∆1
i

ê(Xi)
+

∆0
i

1− ê(Xi)

)2
. (12)

The above theorems show that the bias and deviation
of TOM and DR are proportional to the reciprocal of the
propensity score, thus also gives a large bias and deviation.
Although DR improved the TOM in reducing the bias and
variance, it still lacks the capacity to handle the case where
the group sizes of control and treatment group are extremely
imbalanced. If ê(Xi) = 0.1, then 1

ê(Xi)
= 10, which gives

quite large and unreliable proxy outcome when Wi = 1.
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Challenge 2: Different Difficulty Level of Outcome Pre-
diction. Since the group size of the control group is much
larger than the treatment group, it is more difficult for the
predictor to estimate the potential the treatment outcome µ1

i
than control outcome µ0

i . In other words, the predicted con-
trol outcome µ̂0

i are more accurate than the predicted treat-
ment outcome µ̂1

i . This challenge motivates us that in de-
signing the transformed outcome, the part that contains the
predicted control outcome can assign more weights than the
part that contains the predicted treatment outcome.

Imbalance-Aware Uplift Modeling
Motivation. The two challenges mentioned above moti-
vate our transformed outcome design that it is a need to pre-
vent the propensity score appearing in the denominator and
meanwhile, the uncertainty difference of µ̂0

i and µ̂1
i should

be taken into account.

Proxy Outcome Construction. To solve the above chal-
lenges, we proposed a novel method named imbalance-
aware uplift model (IAUM), which adaptively combines the
doubly robust estimator and the imputed treatment effects
based on the propensity score to reduce the bias. The pro-
posed IAUM method is defined as:

Ŷ IAUM
i =


ê(Xi) ∗ Ŷ DR

i

+ (1− ê(Xi)) ∗ (Y 1
i − µ̂0

i ), Wi = 1;

(1− ê(Xi)) ∗ Ŷ DR
i

+ ê(Xi) ∗ (µ̂1
i − Y 0

i ), Wi = 0,

=

{
Y 1
i − µ̂0

i +
(
1− ê(Xi)

)
(Y 1

i − µ̂1
i ), Wi = 1;

µ̂1
i − Y 0

i + ê(Xi)(µ̂
0
i − Y 0

i ), Wi = 0.

(13)

where Ŷ DR
i is the doubly robust estimator which is defined

as:

Ŷ DR
i =

Wi

ê(Xi)

(
Y obs
i − µ̂1

i

)
− 1−Wi

1− ê(Xi)

(
Y obs
i − µ̂0

i

)
+
(
µ̂1
i − µ̂0

i

)
.

(14)

From Equation (13), the doubly robust estimator Ŷ DR
i and

the imputed treatment effect are aggregated with the esti-
mated propensity score as their weights. By multiplying es-
timated propensity score ê(Xi) with Ŷ DR

i when Wi = 1, the
ê(Xi) in the denominator of Ŷ DR

i can be cancelled. Further-
more, IAUM fully utilizes the samples collected from the
control group and put a small weight on the Ŷ DR

i because it
would have large variation due to the small value of ê(Xi).
When Wi = 0, a large weight will put on the Ŷ DR

i since µ̂1
i

is quite difficult to estimate precisely due to the insufficient
samples.

Implementation. To estimate the uplift using IAUM, we
first need to build two separate estimators, µ̂1

i and µ̂0
i , us-

ing the observed outcome of subjects from the treated group

Algorithm 1: IAUM Method
Input: Training data: D = {(Xi,Wi, Y

obs
i )}Ni=1

Output: Fitted uplift estimator p
1: Fit g to the potential outcome µ0

i of the control group
using the data {(Xi, Y

0
i )}

N0
i=1.

2: Fit h to the potential outcome µ1
i of the treatment group

using the data {(Xi, Y
1
i )}

N1
i=1.

3: Fit f to estimate propensity score ê(Xi) using the data
{(Xi,Wi)}Ni=1.

4: With estimated g, h and f , construct the proxy outcome
Y IAUM
i using Equation (13).

5: Fit p to the data {(Xi, Y
IAUM
i )}Ni=1.

6: return p

and control group. Then based on how the treatments are dis-
tributed to subjects, we estimate the propensity score func-
tion ê(Xi). With the estimated µ̂0

i , µ̂1
i and ê(Xi), we can

construct the proxy outcome Ŷ IAUM
i using Equation (13). Fi-

nally, any machine learning model can be used to fit Ŷ IAUM
i

using Xi and gives the uplift model. We summarize imple-
mentation details of the proposed method in Algorithm 1.

Bias Analysis of IAUM
In this subsection, we compare the bias of IAUM with TOM
and DR to validate its superiority. Firstly, we prove that
Ŷ IAUM
i has the following bias with a biased propensity score

estimator.

Theorem 3. The bias of IAUM estimator is

Bias(Ŷ IAUM
i |Xi) =

{∣∣δ0i + (
1− ê(Xi)

)
δ1i
∣∣ , Wi = 1;∣∣ê(Xi)δ

0
i + δ1i

∣∣ , Wi = 0.

(15)

Proof. Given the definition of IAUM estimator in Equa-
tion (13), the bias of IAUM is:

Bias(Ŷ IAUM
i |Xi,Wi = 1)

=
∣∣∣E[Ŷ IAUM

i |Xi,Wi = 1]− τi

∣∣∣
=
∣∣E[Y 1

i − µ̂0
i +

(
1− ê(Xi)

)
(Y 1

i − µ̂1
i )|Xi]− τi

∣∣
=
∣∣µ1

i − µ̂0
i +

(
1− ê(Xi)

)
(µ1

i − µ̂1
i )− (µ1

i − µ0
i )
∣∣

=
∣∣(1− ê(Xi)

)
(µ̂1

i − µ1
i ) + (µ̂0

i − µ0
i )
∣∣

=
∣∣δ0i + (

1− ê(Xi)
)
δ1i
∣∣,

(16)

where δ0i = µ̂0
i − µ0

i and δ1i = µ̂1
i − µ1

i , and line 3 to line 4
in the above equation is because µ1

i = E[Y 1
i |Xi] and µ0

i =

E[Y 0
i |Xi]. Similarly, when Wi = 0, the bias of Ŷ IAUM

i can
be derived in the same way.

Proposition 1. Suppose |δ0i | < |δ1i |, the bias of
proposed IAUM method is less than DR and TOM,
i.e., Bias(Ŷ IAUM

i |Xi,Wi) < Bias(Ŷ DR
i |Xi,Wi) <

Bias(Ŷ TOM
i |Xi,Wi).
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Proof. According to the above assumptions, the treatment
deviations δ1i between the expected true value and the pre-
dicted value is much large than δ0i , due to lack of treatment
samples, i.e. | δ

0
i

δ1i
| ≪ 1. Under this condition, we can derive

the difference of squared bias of IAUM and DR as:

△ =Bias(Ŷ IAUM
i |Xi,Wi = 1)2 − Bias(Ŷ DR

i |Xi,Wi = 1)2

=(δ0i +
(
1− ê(Xi)

)
δ1i )

2 − (δ0i +
1− ê(Xi)

ê(Xi)
δ1i )

2

=− 2
(1− ê(Xi))

2

ê(Xi)
δ1i ∗ (δ0i +

1− ê(Xi)
2

2ê(Xi)
δ1i )

=− 2κ0δ
1
i ∗ (δ0i + κ1δ

1
i )

=− 2κ0(δ
1
i )

2 ∗ (κ1 +
δ0i
δ1i

)

≤− 2κ0(δ
1
i )

2 ∗ (κ1 − |δ
0
i

δ1i
|) < 0,

(17)

where κ0 = (1−ê(Xi))
2

ê(Xi)
> 0 and κ1 = 1−ê(Xi)

2

2ê(Xi)
. Given

| δ
0
i

δ1i
| < 1, we can get κ1 > 0 when ê(Xi) <

√
2 −

1 ≈ 0.414, which is obviously satisfied on an imbal-
anced dataset. Therefore, we can get △ < 0 and prove
Bias(Ŷ IAUM

i |Xi,Wi = 1) < Bias(Ŷ DR
i |Xi,Wi = 1), and

the case when Wi = 0 can be derived in a similar way.
As proved in (Saito, Sakata, and Nakata 2019), DR

would has smaller bias than TOM when |∆(k)
i | <

µ
(k)
i (∀k ∈ {0, 1}), which is a reasonable condition to

be satisfied due to the powerful fitting ability of exist-
ing machine learning algorithms. Therefore, we can fi-
nally get Bias(Ŷ IAUM

i |Xi,Wi) < Bias(Ŷ DR
i |Xi,Wi) <

Bias(Ŷ TOM
i |Xi,Wi).

Deviation Analysis of IAUM
In this subsection, we analyze the deviation of IAUM, and
then compare it with existing works.

Theorem 4. Given the propensity score e(Xi), with proba-
bility 1− η, the following inequation holds:

|G∗ − E[G∗]|

≤

√√√√ 1

2N2
log(

2

η
)

n∑
i=1

(Ŷ ∗
i (Wi = 1)− Ŷ ∗

i (Wi = 0))2,

(18)

where Ŷ ∗
i is the proxy/transformed outcome generated by

any proxy method, and ∗ can be TOM, DR or IAUM.
Ŷ ∗
i (Wi = 1) and Ŷ ∗

i (Wi = 0) denote the proxy out-
come when Wi = 1 and Wi = 0, separately. G∗ =
1
N

∑N
i=1(Ŷ

∗
i − τi).

Proof. Since we assume that each observation indicator W
follows the Bernoulli distribution with probability e(x) (that

is the propensity score), we can rewrite Ŷ ∗
i as follows:{

P (Ŷ ∗
i (Wi = 1)|Xi) = ei

P (Ŷ ∗
i (Wi = 0)|Xi) = 1− ei.

(19)

Random variable Ŷ ∗
i − τi takes the value either Ŷ ∗

i (Wi =

0)− τi or Ŷ ∗
i (Wi = 1)− τi, which still follow the Bernoulli

distribution.{
P (Ŷ ∗

i (Wi = 1)− τi|Xi) = ei

P (Ŷ ∗
i (Wi = 0)− τi|Xi) = 1− ei.

(20)

Therefore, according to Hoeffding’s inequality (Hoeffd-
ing 1994), with probability 1− η, for any ξ̂ > 0 we have the
following inequality:

P (|
∑
i

[Ŷ ∗
i − τi]−E[

∑
i

Ŷ ∗
i − τi]| ≥ ξ̂) ≤ 2 exp(

−2ξ̂2∑
i ρ

2
),

(21)
where ρ is equal to Ŷ ∗

i (Wi = 1)−τi−(Ŷ ∗
i (Wi = 0)−τi) =

Ŷ ∗
i (Wi = 1)− Ŷ ∗

i (Wi = 0).
The summation here is to sum over all samples i ∈ N .

We set ξ̂ = ξ|N |(ξ > 0 ⇔ ξ̂ > 0). Based on the above
inequality, we can get the inequality of the G∗ as follows:

P (|G∗ − E[G∗]| ≥ ξ) ≤ 2 exp(
−2ξ2|N |2∑

i ρ
2
i

). (22)

Setting the right side of the inequality to the probability η
and solving for ξ to complete the proof of Equation (18).

To simplify the formula, we can set a substitute variable
C as 1

2N2 log(
2
η ), and let Λ∗ denotes the upper bound of the

deviation. With the above theorem, we can derive the Λ∗ of
our proposed IAUM method as:

ΛIAUM

=

√√√√C
n∑

i=1

(
(2− ê(Xi))(Y 1

i − µ̂1
i ) + (1 + ê(Xi)(Y 0

i − µ̂0
i )
)2

=

√√√√C
n∑

i=1

(
(2− ê(Xi))∆1

i + (1 + ê(Xi)∆0
i

)2
.

(23)
Similarly, given Theorem 4 and the definition of TOM and

DR estimator, we can derive the deviation of TOM (Equa-
tion (10)) and DR (Equation (12)). We can easily prove that
2 − ê(Xi) < 1

ê(Xi)
and 1 + ê(Xi) < 1

1−ê(Xi)
, therefore

ΛIAUM < ΛDR < ΛTOM.

Experiment
In this section, we conduct the experiments on synthetic
and industrial datasets to validate the following. (1) Com-
pared with other propensity score based methods, our IAUM
method has the smallest bias and variance in uplift estima-
tion. (2) In the highly imbalanced dataset, the prediction dif-
ficulties of treatment/control outcome vary a lot. (3) Our pro-
posed method can efficiently target the audience and obtain
the highest return of investment on the industrial application.
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Datasets
We conduct the experiment on three datasets: (1) Synthetic
dataset; (2) Industrial dataset; (3) Right Heart Catheteriza-
tion (RHC) dataset.

Synthetic Dataset. First, we evaluated the performance of
our method and other existing method on synthetic datasets
composed of eight scenarios. Each scenario was defined by
the data generating processes used in (Saito, Sakata, and
Nakata 2019; Schuler et al. 2018). Specifically, we generate
data composed of one million individuals with 10 features,
which follow a Gaussian distribution with a mean of 0 and a
variance of 1. Then we set the probability of the individual
to receive treatment around 0.1 to construct the imbalance
of the dataset. The characteristics of the eight scenarios are
briefly summarized in Table 1. E[Y 1

i ] and E[Y 0
i ] represent

the mean of τi. In each scenario, the data is split into train-
ing set and test set with the ratio of 50%/50%.

Industrial Dataset. To further evaluate the effectiveness
of the proposed method, we compare these methods on an
industrial dataset collecting from a real mobile marketing
campaign. Here the treatment is to expose an advertisement
to the logged user for promoting conversion, and the ob-
served outcome is whether the user converts within this lo-
gin. X in this dataset is the feature that encodes the infor-
mation of users’ demographic profiles and online behaviors.
One thing to note is that the user can achieve the conversion
via other approaches except for the advertisement, i.e., the
control group can also be observed positive outcome. There-
fore, through modeling the uplift of the treatment, we can
target at the users with large uplift to save the budget on the
advertising. Here we use 7-day data that includes millions of
users to construct the dataset, where the first 6 days are for
training, and the data collected on the last day is for testing.
In addition, the propensity score e(Xi) is smaller than 5%,
which indicates that this dataset is highly imbalanced.

RHC Dataset. We chose Right Heart Catheterization
(RHC) data (Saito, Sakata, and Nakata 2019) as the real-
world data set to compare our procedure with existing meth-
ods. RHC is the diagnosis of critically ill patients, and the
data set contains 5735 patients. In this dataset, 2184 pa-
tients received treatment and 3551 did not receive treatment,
and this treatment allocation is not random. In order to test
all methods under an imbalance setting, we build an imbal-
anced RHC dataset via randomly down-sampling the treat-
ment group to e(X) = 0.1.

Comparison Methods
We compare our method with several baselines:
• TMA (Jaskowski and Jaroszewicz 2012): an estimator

defines ITE as the difference between predicted out-
comes coming from two group of subjects;

• TOM (Athey and Imbens 2015): an estimator based on
the transformed outcome via reweighting based on in-
verse propensity score;

• DR (Funk et al. 2011): a doubly robust estimator that
combines error imputation based estimator and inverse
propensity score estimator;

• X-Learner (Künzel et al. 2019): a two model approach
that crossovers the information in the treated and control
subjects;

• SDRM (Saito, Sakata, and Nakata 2019): an estimator
that switches between doubly robust estimator and pre-
dicted µ̂1

i − µ̂0
i ;

• TMLE (Schuler and Rose 2017): a targeted maximum
likelihood estimator;

• TDVAE (Zhang, Liu, and Li 2020): a variational infer-
ence approach to simultaneously infer latent factors from
the observed variables.

Model Setup
On the synthetic dataset and the RHC dataset, we use the
linear regression as the base learners for simplicity. For each
scenario, we repeat the training process ten times and report
the average bias and variance of the deviation between the
expected true value and the predictions of the model output.

As the industrial dataset has high-dimensional features,
we choose the multilayer perceptron (MLP) with three hid-
den layers (the number of neurons is 512, 128 and 128,
respectively) as the base learner to fit the data. All neural
network-based methods are optimized by Adam (Kingma
and Ba 2014) optimizer with a learning rate of 3e − 4, and
set the batch size to 512.

Evaluation Metrics
Synthetic Dataset. On the synthetic dataset, since poten-
tial outcomes are simulated based on covariates in a care-
fully designed way, the ground truth ITEs are known. There-
fore, we can directly calculate the bias and variance of the
deviation between the predictions and the ground truth. The
smaller the bias and variance is, the better the performance
is.

Industrial & RHC Dataset. On the industrial dataset and
RHC dataset, only one of the potential outcomes is observ-
able, and the ground truth ITEs are not available. Therefore,
we adopt the widely used metrics, the Qini curve (Radcliffe
2007) and the area under the Qini curve (Qini coefficient),
to evaluate the performance of different estimators. Specifi-
cally, the Qini curve is defined as:

Qini(ϕ) =
Nw=1

y=1 (ϕ)

Nt
−

Nw=0
y=1 (ϕ)

Nc
, (24)

where ϕ is the fraction of population treated ordered by
predicted uplift (from highest to lowest). Nw=1

y=1 (ϕ) and
Nw=0

y=1 (ϕ) are the count of positive outcomes in the treat-
ment and control groups respectively from ϕ. Nt and Nc are
the numbers of subjects within the entire treatment and con-
trol groups, respectively. The larger the Qini coefficient is,
the better the performance is.

Results on the Synthetic Dataset
Figure 1 shows the bias of our proposed methods as well
as the methods adopting the propensity score to construct
proxy outcome. It is observed that among all datasets, the
proposed IAUM has the smallest bias. And TOM shows
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No. 1 2 3 4 5 6 7 8

E[Y 1
i ] 5.998 -1.931 6.008 0.995 -4.999 0.312 -1.349 3.617

E[Y 0
i ] 6.002 -2.075 9.998 -7.002 -3.000 -0.317 1.660 -2.362

Mean of τi 0.000 0.159 -3.999 7.998 -1.997 0.635 -3.001 6.001

Table 1: Characteristics of eight scenarios.

large bias on these datasets, which suggests that TOM is
prone to be biased is due to the biased estimated propen-
sity score. With the technique of switching, SDRM success-
fully reduced the bias, but its bias is still larger than IAUM
on the imbalanced setting. Similar trend can be observed in
terms variance, as shown in Figure 2. Overall, the proposed
method IAUM consistently outperforms other methods on
the synthetic dataset with the smallest bias and variance.
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Figure 1: The log-scaled bias on the synthetic dataset.
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Figure 2: The log-scaled variance on the synthetic dataset.

To further demonstrate the superiority of our proposed
IAUM method, we vary the ratio of treated group in the
dataset from 0.1 to 0.5. The ratio can be viewed as the im-
balance level of the dataset, and the farther the ratio away
from 0.5, the higher level of the imbalance. Figure 3 show
the results of IAUM and other baselines over different group
size ratio. Due to the space limit, we only report the re-
sults on scenario 8, and similar trends can be observed in
other scenarios. It is observed that all methods have simi-
lar performance when the group size is around 0.5. With the
increase of the imbalance level, IAUM consistently outper-
forms other methods with a significant gap, which reflects
the effectiveness of our proposed method.
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Figure 3: The log-scaled bias of each method under different
data imbalance levels.

Additionally, to show the rationality of our proxy outcome
design, in Figure 4, we report the mean absolute error of
the potential outcome model MAE(µ1

i ) and MAE(µ0
i ) un-

der different imbalance levels ranging from 0.1 to 0.5. It
can be seen from the figure that the MAE of the µ0 model
is significantly smaller than the MAE of the µ1 model, in-
dicating that predicting the treated outcome is much more
difficult than the control outcome when the treated group
size is extremely small. This observation validates that it is
reasonable to use the propensity score as the weight, which
prevents the constructed proxy outcome from assigning high
weights to the part containing µ̂1.
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Figure 4: The outcome prediction results under different data
imbalance levels.

TMA TOM DR X-Learner SDRM IAUM

0.076 0.095 0.149 0.110 0.468 0.593

Table 2: Qini coefficients on the industrial dataset.

6319



Results on the Industrial and RHC Dataset
Figure 5 shows Qini curves on the industrial dataset. We can
see that IAUM outperforms other uplift modeling methods
with a large margin, and SDRM is relatively closed to IAUM
due to its powerful switching technique. TOM, X-Learner,
TMA and DR show comparable performance, which are
both better than the randomized estimation. Moreover, Ta-
ble 2 presents the results of Qini coefficients, and IAUM
has the largest Qini coefficient among these methods, which
well verifies its effectiveness. According to Figure 5, we can
consider users with the top-scored 20% uplift as the target
audience to maximize the return of investment since most
of accumulated gain is obtained on the top 20% of treated
individuals.
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Figure 5: Qini curves on the industrial dataset.

TMA TOM DR X-Learner SDRM TMLE TDVAE IAUM

0.0059 0.0078 0.0116 0.0114 0.0123 0.0095 0.0130 0.0143

Table 3: Qini coefficients on the imbalanced RHC dataset.

Table 3 presents the results of Qini coefficients on the
RHC dataset, and we can see a similar performance with
the industrial dataset. TMA and TOM both perform poor
under the imbalance setting, and the other baseline methods
with comparable performance still fail to outperform IAUM,
which has the largest Qini coefficient.

Conclusion
In this paper, through theoretical and quantitative analy-
sis, we prove that existing uplift modeling methods would
suffer from large bias and deviation on a highly imbal-
anced dataset. To overcome this drawback, we propose an
imbalance-aware uplift modeling method via constructing a
robust proxy outcome, which adaptively combines the dou-
bly robust estimator and the imputed treatment effects based
on the propensity score. Experimental results well demon-
strated the effectiveness of the proposed method, and show
its power in the industrial setting. Future work will focus on
how to construct robust proxy outcome while considering
the deviation of the propensity score since poor estimation
of the propensity score would lead to large errors.

Appendix
Proof of Theorem 1

Proof. Given the definition of TOM estimator (Equation (7)
in our paper), the bias of TOM is:

Bias(Ŷ TOM
i |Xi,Wi = 1) = |E[Ŷ TOM

i |Xi,Wi = 1]− τi|

=
∣∣E[ Y 1

i

ê(Xi)
|Xi]− (µ1

i − µ0
i )
∣∣

=
∣∣ µ1

i

ê(Xi)
− (µ1

i − µ0
i )
∣∣

=
∣∣µ0

i +
1− ê(Xi)

ê(Xi)
µ1
i

∣∣.
Bias(Ŷ TOM

i |Xi,Wi = 0) = |E[Ŷ TOM
i |Xi,Wi = 0]− τi|

=
∣∣E[ −Y 0

i

1− ê(Xi)
|Xi]− (µ1

i − µ0
i )
∣∣

=
∣∣ −µ0

i

1− ê(Xi)
− (µ1

i − µ0
i )
∣∣

=
∣∣ ê(Xi)

1− ê(Xi)
µ0
i + µ1

i

∣∣.
(25)

Proof of Theorem 2

Proof. Given the definition of DR estimator (Equation (8) in
our paper), the bias of DR is:

Bias(Ŷ DR
i |Xi,Wi = 1)

=|E[Ŷ DR
i |Xi,Wi = 1]− τi|

=
∣∣E[µ̂1

i − µ̂0
i +

Y 1
i − µ̂1

i

ê(Xi)
|Xi]− (µ1

i − µ0
i )
∣∣

=
∣∣µ̂1

i − µ̂0
i +

µ1
i − µ̂1

i

ê(Xi)
− (µ1

i − µ0
i )
∣∣

=
∣∣(µ̂0

i − µ0
i ) +

1− ê(Xi)

ê(Xi)
(µ̂1

i − µ1
i )
∣∣

=
∣∣δ0i + 1− ê(Xi)

ê(Xi)
δ1i
∣∣.

Bias(Ŷ DR
i |Xi,Wi = 0)

=|E[Ŷ DR
i |Xi,Wi = 0]− τi|

=
∣∣E[µ̂1

i − µ̂0
i −

Y 0
i − µ̂0

i

1− ê(Xi)
|Xi]− (µ1

i − µ0
i )
∣∣

=
∣∣µ̂1

i − µ̂0
i −

µ0
i − µ̂0

i

1− ê(Xi)
− (µ1

i − µ0
i )
∣∣

=
∣∣ ê(Xi)

1− ê(Xi)
(µ̂0

i − µ0
i ) + (µ̂1

i − µ1
i )
∣∣

=
∣∣ ê(Xi)

1− ê(Xi)
δ0i + δ1i

∣∣.

(26)
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