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Abstract

The question of what kind of convolutional neural network
(CNN) structure performs well is fascinating. In this work,
we move toward the answer with one more step by con-
necting zero stability and model performance. Specifically,
we found that if a discrete solver of an ordinary differen-
tial equation is zero stable, the CNN corresponding to that
solver performs well. We first give the interpretation of zero
stability in the context of deep learning and then investigate
the performance of existing first- and second-order CNNs
under different zero-stable circumstances. Based on the pre-
liminary observation, we provide a higher-order discretiza-
tion to construct CNNs and then propose a zero-stable net-
work (ZeroSNet). To guarantee zero stability of the ZeroS-
Net, we first deduce a structure that meets consistency condi-
tions and then give a zero stable region of a training-free pa-
rameter. By analyzing the roots of a characteristic equation,
we theoretically obtain the optimal coefficients of feature
maps. Empirically, we present our results from three aspects:
We provide extensive empirical evidence of different depth
on different datasets to show that the moduli of the charac-
teristic equation’s roots are the keys for the performance of
CNNs that require historical features; Our experiments show
that ZeroSNet outperforms existing CNNs which is based on
high-order discretization; ZeroSNets show better robustness
against noises on the input. The source code is available at
https://github.com/logichen/ZeroSNet.

Introduction
The structure of a convolutional neural network (CNN) sig-
nificantly affects its performance (He et al. 2016; Xie et al.
2019; Liu et al. 2021). However, there is no clear clue about
determining the importance of historical features and cur-
rent activations (e.g., a sequence consisting of ReLU, con-
volutional layer, and batch normalization layer). A promis-
ing direction for structure determination is the ordinary-
differential-equation-inspired design (Lu et al. 2018; Zhu,
Chang, and Fu 2018). We seek the answer from the perspec-
tive of zero stability which is a concept originating from nu-
merical analysis.

There are several types of stabilities in different fields. We
provide Fig. 1 to illustrate three of them: Absolute stability
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(a) A-stability (b) BIBO stability (c) Zero stability

Figure 1: Illustrations of A-stability, BIBO stability, and
zero stability. (a) Blue lines denote an A-stable method: Re-
gardless of the step size, the method approaches the exact
solution (the solid green curve). Orange lines represent a
non-A-stable method, which can only approach the exact so-
lution if the step size is small. Note that dotted lines have a
large step size. (b) The light shade represents the bound of
the input; The dark shade represents the bound of the output.
(c) The shades represent possible ranges of the difference
magnitude between features with different initial values. It
means that similar inputs generate similar outputs. In this
work, we focus on zero stability and connect it with robust-
ness and generalization.

(A-stability), bounded input bounded output (BIBO) stabil-
ity, and zero stability. In the following content, we discuss
stability from a CNN structure design perspective. As shown
in Fig. 1(a), absolute stability (A-stability) means that the
numerical solution approaches the exact solution, regardless
of the step size, as t → ∞ (Atkinson, Han, and Stewart
2011; Luo et al. 2021). For CNNs, A-stability means that
for a network with a given depth, the feature map magnitude
does not increase from the input to the output (Haber et al.
2019). BIBO stability ensures that the output feature map is
within a bound if the input is bounded (Zhang and Schaeffer
2020), as in Fig. 1(b). Although these stabilities benefit the
learning ability and prevent the model from collapsing (Jin,
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Figure 2: Left: Illustrations of the connection between zero stability and generalization/robustness. Right: Our approach to
construct a zero-stable CNN, namely ZeroSNet.

Wei, and Li 2022; Luo et al. 2022), they give no clear clues
about the CNNs’ generalization and robustness.

We show two meanings of zero stability in the context of
numerical analysis and connect them with the CNNs’ gen-
eralization and robustness, respectively. As shown in Fig.
1(c), the first meaning of zero stability is that for two simi-
lar initial values, the corresponding states at time t are also
similar (Gautschi 1997). We borrow this idea to analyze the
generalization of CNN: For a well-trained CNN, zero sta-
bility means that if the test sample is slightly different from
the training one, the feature map changes slightly compared
with that of the training sample, and then the network out-
put also changes slightly. Since this CNN is well-trained
as aforementioned, a correct prediction for the test sample
should be given. Another meaning of zero stability is that if
an initial value is perturbed, the fluctuation of the output is
bounded (Atkinson, Han, and Stewart 2011), as in Fig. 1(c).
We add the noise on the input feature as the perturbation
on the initial value, thereby building a bridge between zero
stability and the robustness of CNNs.

To illustrate the insight of zero stability in the context of
CNN, we give an example on the left side of Fig. 2. Both
zero-stable and non-zero-stable CNNs classify the cloud im-
age correctly. When similar samples are fed into the two
CNNs, the non-zero-stable CNN gives diverse predictions,
while the zero-stable one gives similar predictions and thus
succeeds in this task. To achieve zero stability, we propose
a zero-stable network (ZeroSNet) with a general form to en-
sure consistency (which tightens the upper bound of zero
stability) of the ZeroSNet. Based on the characteristic equa-
tion of the ZeroSNet, we apply the root condition and then
obtain a zero-stable region for a flexible coefficient. The
right side of Fig. 2 describes the process of constructing the

ZeroSNet.
Our contributions in this paper are summarized as fol-

lows:
• We are the first to find that zero stability well predicts

the model performance (we provide preliminary observa-
tions and more convincing evidence). Based on the find-
ing, we provide corresponding explanatory analyses.

• We propose a CNN named ZeroSNet with theoretical
proofs on its consistency and give a stability region of a
training-free parameter. Besides, we deduce optimal co-
efficients for historical features and the current activa-
tions.

• ZeroSNet with theoretically optimal coefficients
achieves advanced performance and outperforms the
existing high-order-discretization CNNs.

• Our experiments show that involved zero-stable CNNs
are robust against noises that are injected on the input,
while non-zero-stable ones reveal a dramatical degrada-
tion.

Preliminaries
We slightly extend the initial value problem (Atkinson, Han,
and Stewart 2011; Chen et al. 2018) and get an initial values
problem with more initial steps.
Definition 1 (Initial values problem). An initial values prob-
lem is defined as

dy(t)

dt
= f(t,y(t)), s ≤ t ≤ e,

y(s+ qh) = ys+q, q = 0, 1, . . . , d,
(1)

where y(t) ∈ Rp is a p-dimensional feature vector; s and
e are the start and the end of the time t, respectively; h is
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the step size with q denoting the qth step; ys+q−1 are given
initial states.

In the context of the deep learning, ys can be seen as the
input of a neural network, and the training process deter-
mines the optimal f(t,y(t)) (Lu et al. 2018). To discretize
(1), the definition of the dth-order discretization is given as
follow.

Definition 2 (dth-order discretization). A dth-order dis-
cretization for an initial value problem is defined as

y(tn+1) =α0yn + α1y(tn−1) + . . .+ αd−1y(tn−d+1)

+ hβf(tn,y(tn)),

n = 0, 1, . . . , d = 1, 2, . . . ,
(2)

where α0, α1, . . ., αd−1, and β are given coefficients; tn =
s+ nh.

We can interpret α0, α1, . . ., αd−1 and β as the weight
of each historical featuremap and the current activations, re-
spectively. If d = 1 and α0 = β = 1, equation (2) reveals the
Euler discretization, and it gives the pre-activation ResNet
(PreResNet) (He et al. 2016). Moreover, equation (2) can
be regarded as a special case of the multilstep method. For
d = 2, if α0 = 1 − kn, α1 = kn, and β = 1, one gets the
linear multilstep (LM) architecture (Lu et al. 2018). In this
work, we build higher-order-discretization-based CNNs, of
which zero stability and consistency are guaranteed.

Assumption 1 (Lipschitz continuous sequence after normal-
ization). Consider an f which consists of a sequence of lay-
ers (e.g., ReLU and convolutional layers) and a normaliza-
tion layer in the end, and f is Lipschitz continuous. That is,
for two arbitrary y, ŷ ∈ Rp,

∥f(t,y)− f (t, ŷ)∥ ≤ ℓ ∥y − ŷ∥ , t ∈ [s, e], (3)

where ℓ is the Lipschitz constant; ∥ · ∥ denotes the 2-norm of
a vector.

Usually, once the normalization layer (e.g., batch normal-
ization, layer normalization) is involed as the last layer in
f , condition (3) is meet for CNNs. This is because no mat-
ter how large the original feature values are, after a nor-
malization layer, these values are forced to follow a con-
troled distribution. An example of such a sequence in f is
f ′(t,y) = n2(ReLU(θ2 ⋆n1(ReLU(θ1 ⋆y)))), where n1

and n2 are both batch normalization layers; symbol ⋆ de-
notes the convolution operator.

Definition 3 (Zero stablility (Gautschi 1997)). For two grid
functions y and ŷ on [a, b], a dth-order discretization is zero-
stable if the following inequality holds for a sufficient-small
step size h:

∥yn−ŷn∥∞ ≤c( max
m∈[0,d−1]

∥ym−ŷm∥+∥r(yn)−r(ŷn)∥∞),

(4)
where r(yn) := 1/h

∑d−1
i=0 αiyn+i − βf (tn,y(tn));

r(ŷn) := 1/h
∑d−1

i=0 αiŷn+i−βf (tn, ŷ(tn)); c is a con-
stant; ∥ · ∥∞ is the infinity norm.

Definition 4 (Consistency (Atkinson, Han, and Stewart
2011)). For an exact solution y(t), a dth-order discretiza-
tion is consistent if

max
tn∈[td−1,e]

∥∥∥∥∥y(tn+1)−

(
d−1∑
i=0

αiyn−i + hβf(tn,y(tn))

)∥∥∥∥∥ /h
→ 0 as h → 0.

(5)

If y and ŷ are two solutions with different initial values,
r(yn) and r(ŷn) are truncation errors exactly (Gautschi
1997). If the dth-order discretization (2) is consistent and the
step size h is sufficient-small , we have limn→∞ r(yn) → 0
and limn→∞ r(ŷn) → 0 (Gautschi 1997). Under the con-
sistency condition (5), it follows that

∥yn−ŷn∥∞ ≤ c

(
max

m∈[0,d−1]
∥ym − ŷm∥

)
. (6)

Criterion for Zero Stability
Root condition, a well-known criterion for zero stability, is
given here and is further as a practical tool to verify zero
stability and predict the performance of CNNs later.

Condition 1 (Root Condition (Ascher and Petzold 1998)).
The root condition means that the roots of a characteristic
equation r(ρ) = ρd −

∑d−1
i=0 αiρ

d−1−i satisfy |ρi| ≤ 1, and
if |ρi| = 1 then ρi is a simple root, where | · | denoting to
take the modulus of a complex number.

The empirical observations in the next section show that
some existing CNNs can be interpreted as first- and second-
order discretizations. After that, we construct a higher-order
CNN to further verify the relationship between model per-
formance and zero stability.

Observations from Existing CNNs
Involving historical feature maps benefits the CNNs’ repre-
sentation ability (Huang et al. 2017). Meanwhile, a visual-
ization study suggests that historical features may smooth
the loss landscape. However, the importance of each histori-
cal feature for the CNNs’ performance remains unclear: We
adjust the coefficients (weights) of historical feature maps
and current activations in the provided preparatory experi-
ments.

An Observation from PreResNet
As discussed earlier, PreResNet can be deemed as an Euler
discretization. Extending the Euler discretization slightly by
involving a flexible coefficient α for the current feature yn

gives
yn+1 = αyn + hf(tn,yn). (7)

Let us see what happens if we change the value of α from
Table 1. According to (Gautschi 1997), we can check the
stability quickly. As shown in Table 1, there is a significant
gap in the test accuracy between zero-stable and non-zero-
stable models. Besides, the original PreResNet (α = 1) out-
performs other models with the same structures but different
coefficients α.

6270



Model α Z. S. Test acc. (%)
PreResNet-32 2 No 79.13±0.30
PreResNet-32 1.5 No 87.07±0.14
PreResNet-32 0.5 Yes 92.52±0.42
PreResNet-32 0.7 Yes 93.16±0.13
PreResNet-32 1 Yes 93.19±0.17

Table 1: Test accuracies (mean ± standard deviation) ob-
tained by setting different feature weight α on CIFAR-10
dataset. “Z. S.” and “acc.” denote zero stability and the accu-
racy, respectively. Once the zero stability region is exceeded,
the performance shows a clear degradation.

Model k Z. S. Test acc. (%)
LM-ResNet-44 -1.5 No 81.43±0.19
LM-ResNet-44 1.5 No 89.46±0.30
LM-ResNet-44 -0.5 Yes 92.95±0.24
LM-ResNet-44 0.5 Yes 93.69±0.21

Table 2: Test accuracies (mean ± standard deviation) ob-
tained by setting different k on CIFAR-10 dataset. “Z. S.”
and “acc.” denote zero stability and the accuracy, respec-
tively. Similar with the first-order discretization, the second-
order discretization’s performance can also be predicted by
zero stability.

We are still not sure whether the phenomenon is caused by
the forward propagation or the backward propagation (from
the backward propagation perspective, PreResNet may also
benefit from the residual connection when applying the
chain rule, as discussed in Section 3 of (He et al. 2016)).
We consider a second-order situation in the following sub-
section.

An Observation from LM-Architecture
The LM-architecture in (Lu et al. 2018) can be seen as a
second-order discretization. We make a modification on β
with a sharing k for all layers to ensure consistency and then
obtain

yn+1 = (1− k)yn + kyn−1 + (2k + 1)hf(tn,y). (8)

The characteristic equation of equation (8) is

r(ρ) = ρ2 + (k − 1)ρ− k. (9)

We set several k and check zero stability by applying the
root condition (Atkinson, Han, and Stewart 2011) for equa-
tion (9), and then obtain Table 2. The detailed experiment
settings are described in Experiment section.

Zero Stability for CNN
For CNNs, the meaning of equation (6) is as follows. First,
the backpropagation determines f . When the network train-
ing process is done, we obtain f , which fits the training data.
We use y0 and ŷ0 to represent the inputs from the training
set and the test set, respectively. From equation (6), if the
inputs y0 and ŷ0 are similar, the predictions yn and ŷn are

Figure 3: An overall structure of the ZeroSNet. Left: Two
types of blocks with given coefficients that guarantee consis-
tency and zero stability. The coefficients are given by equa-
tion (10) and are training-free. Note that each block takes
three inputs and gives three outputs. The dotted arrow means
performing downsampling if dimensions are mismatched.
Left: A zero-stable block (ZeroS block). Right: Following
the two basic start blocks, we stack ZeroS blocks to build the
deep structure. f(·) in the basic ZeroS block consists of two
BN-ReLU-convolution triplets, and f(·) in the ZeroS bottle-
neck block consists of three BN-ReLU-convolution triplets.

similar, too. Assume that for a well-trained network, feeding
y0 to the equation (2) gives the correct prediction yn. Then,
we could conclude that for a test sample, which is similar to
one of the training samples, the prediction result is close to
the correct answer. It means that the zero-stable neural net-
works are robust against perturbations, and its generalization
is well for value-based differences.

To further investigate whether zero stability well predicts
the model performance, we deduce a consistent and zero-
stable model named ZeroSNet in the next section and prac-
tically compare it with its non-zero-stable counterparts in the
Experiment section.

Zero-Stable Network (ZeroSNet)
In this section, we deduce a CNN named Zero-Stable Net-
work (ZeroSNet), which is automatically consistent, and we
give the range of a flexible and training-free parameter to
ensure zero stability.

Description of ZeroSNet
In (Li, Zhang, and Mao 2019), a numerical method named
general square-pattern discretization is presented. With the
aid of this numerical method, we construct the ZeroSNet.
Due to the space limitation, a mathematical derivation of the
ZeroSNet is given in the Appendix. Directly, we give the
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Figure 4: Test accuracies (mean ± standard deviation) of third-order-discretization-based models with different roots. The
models all contains 56 layers and are evaluated on CIFAR-100 dataset. It is clear that models which satisfy the root condition
(Condition 1) outperform the ones with large roots.

formal description of the ZeroSNet here:

yn+1 =
3(1 + λ)

4λ
yn − 1

λ
yn−1 +

1 + λ

4λ
yn−2

+
3λ− 1

2λ
hf(tn,yn),

(10)

where λ ̸= 0 is a scalar.
To illustrate the structure of ZeroSNet, we provide Fig.

3. We borrow ideas from (He et al. 2016) and (Zhang et al.
2017): Building a deep network by stacking blocks itera-
tively.

Note that each block takes three inputs and gives three
outputs. In Fig. 3, the dotted arrow means to perform a
downsampling if dimensions of yn,yn−1, and yn−2 are
mismatched. Three arrows pointing to the “ZeroS Block-
/Bottlenecks” module are respectively yn,yn−1, and yn−2;
Arrows starting from the “ZeroS Block/Bottlenecks” mod-
ule are respectively yn+1,yn, and yn−1. As will be dis-
cussed, Blocks in Fig. 3 ensure consistency according to the
following Theorem 1. Moreover, if we follow Theorem 2
to set λ, the neural network is zero-stable. Compared to the
PreResNet, the additional parameters of ZeroSNet are only
for downsampling. We provide a comparison of the number
of parameters in the Experiment section. By setting λn as a
trainable parameter for the nth block (n ≥ 2), we obtain a
trainable version of the ZeroSNet, and we call it ZeroSNet-
Tra. Theorems 1 and 2, as well as other properties of the
ZeroSNet, will be introduced in the next section.

Properties of ZeroSNet
Compared to the PreResNet and the LM-ResNet, ZeroSNet
involves more historical information and smoothly transmits
the low-level features. However, (Gautschi 1997) suggests
that high-order discretizations are easily to be non-zero-
stable. As shown in equation (6), consistency removes the
∥r(yn)−r(ŷn)∥ term in equation (4) and thus gives a tighter

upper bound of zero stability. Based on equation (6), zero
stability has an ability to predict the model performance. In
this part, we give Theorem 1 to ensure consistency of the Ze-
roSNet and then provide a zero stability region of parameter
λ.

Theorem 1 (ZeroSNet (10) is consistent). Suppose that y(t)
is continuously differentiable, ZeroSNet (10) meets the con-
sistency condition.

Proofs are deferred to the Appendix. By using the root
condition (Atkinson, Han, and Stewart 2011), we investigate
zero stability of ZeroSNet (10).

Theorem 2 (Zero stability region of the ZeroSNet (10)).
For a continuously differentiable function y(t), if λ ∈
(−∞,−1) ∪ (1/3,+∞), the ZeroSNet (10) is zero-stable.

Proofs are deferred to the Appendix. Based on Theorem
2, we show optimal coefficients of historical features and the
current activations f .

Theorem 3 (Optimal coefficients of the ZeroSNet (10)).
From the perspective of zero stability, optimal coefficients
of yn,yn−1,yn−2, and f(tn,yn) in the ZeroSNet (10) are
1/3, 5/9, 1/9, and 16/9, respectively.

Proofs are deferred to the Appendix. In addition to theo-
retical results on zero stability and optimal coefficients, we
conduct experiments to verify whether zero stability well
predicts CNNs’ performance and whether the theoretically
optimal coefficients work well in practice.

Experiments
In this section, we conduct extensive experiments to verify
if zero stability well predicts performance with the aid of
3rd-order-discretization-based CNNs, i.e., ZeroSNets with
zero stability and others without zero stability. Besides, we
build a trainable version of ZeroSNet for the comparison on
several benchmarks. In addition, we add different types of
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# Layers Roots’ moduli Z. S. Test acc. (%)
32 0.57, 1.00, 2.18 No 77.55±0.15
32 1.84, 0.74, 0.74 No 78.44±0.67
32 4.24, 0.24, 1.00 No 79.67±0.49
32 1.88, 0.13, 1.00 No 88.77±0.24
32 1.00, 0.87, 0.87 Yes 89.44±0.08
32 0.94, 0.33, 0.33 Yes 92.59±0.15
32 0.81, 0.61, 0.61 Yes 92.84±0.10
32 1.00, 0.52, 0.52 Yes 93.14±0.07
32 0.60, 0.82, 0.82 Yes 93.27±0.04
32 0.33, 0.33, 1.00 Yes 93.28±0.12
44 0.57, 1.00, 2.18 No 77.91±0.62
44 1.84, 0.74, 0.74 No 78.70±0.43
44 4.24, 0.24, 1.00 No 79.95±0.23
44 1.88, 0.13, 1.00 No 83.08±0.58
44 1.00, 0.87, 0.87 Yes 92.70±0.17
44 0.94, 0.33, 0.33 Yes 93.06±0.20
44 0.81, 0.61, 0.61 Yes 93.10±0.11
44 0.60, 0.82, 0.82 Yes 93.68±0.07
44 0.33, 0.33, 1.00 Yes 93.68±0.15
44 1.00, 0.52, 0.52 Yes 93.72±0.10
56 1.84, 0.74, 0.74 No 78.29±0.09
56 0.57, 1.00, 2.18 No 78.34±0.30
56 4.24, 0.24, 1.00 No 79.39±0.17
56 1.88, 0.13, 1.00 No 83.11±0.13
56 1.00, 0.87, 0.87 Yes 92.42±0.35
56 0.81, 0.61, 0.61 Yes 93.08±0.36
56 0.94, 0.33, 0.33 Yes 93.15±0.16
56 1.00, 0.52, 0.52 Yes 93.71±0.24
56 0.60, 0.82, 0.82 Yes 93.99±0.06
56 0.33, 0.33, 1.00 Yes 94.04±0.12

Table 3: Test accuracies (mean ± standard deviation) ob-
tained by setting different coefficients (α0, α1, α2, and β) on
CIFAR-10 dataset. These coefficients give different moduli
of roots. “# Layers”, “Z. S.”, and “acc.” denote the number of
layers, zero stability, and the accuracy, respectively. Similar
with first- and second-order discretizations, the third-order
discretization’s performance can also be well predicted by
zero stability.

noise to the images and observe the relationship between
robustness and zero stability. Note that hyperparameters for
CIFAR-10 and CIAFR-100 are the same as those in (Lu et al.
2018).

Predicting Performance by Zero Stability
In early parts of this aper, preliminary experiments im-
ply that zero stability well predicts the model performance.
To further verify this conjecture, we use many 3rd-order-
discretization-based CNNs for evaluations. We carefully
choose coefficients α0, α1, α2, and β to include more root
patterns (see the Table 10 for the mapping of those coeffi-
cients and the moduli of roots). Then, we provide Table 3
to show the results for 32- to 56-layer models on CIFAR-
10. It is clear that if the roots satisfy the root condition (i.e.,
the model is zero-stable), the model performs well; If the

Model # Layer C100 (%) C10 (%)
ResNet 20 69.46±0.15∗ 91.25†

LM-ResNet 20 69.32±0.33 91.67†
ZeroSNet-Opt 20 69.88±0.21 92.01±0.35
ZeroSNet-Tra 20 69.90±0.26 92.32±0.10
ResNet 32 71.30±0.20∗ 92.49†

LM-ResNet 32 71.32±0.36 92.82†
ZeroSNet-Opt 32 71.25±0.31 93.28±0.12
ZeroSNet-Tra 32 71.09±0.21 93.07±0.14
ResNet 44 72.36±0.23∗ 92.83†

LM-ResNet 44 72.05±0.25 93.34†
ZeroSNet-Opt 44 72.49±0.30 93.68±0.15
ZeroSNet-Tra 44 72.18±0.38 93.69±0.21
ResNet 56 72.56±0.08∗ 93.03†

LM-ResNet 56 72.94±0.19 93.69†
ZeroSNet-Opt 56 73.11±0.33 94.04±0.12
ZeroSNet-Tra 56 72.72±0.13 93.8±0.22
ResNet 110 72.24∗† 93.63∗†

LM-ResNet 110 74.13† 93.84†
ZeroSNet-Opt 110 74.50±0.28 94.35±0.14
ZeroSNet-Tra 110 74.56±0.23 94.30±0.02

Table 4: Test accuracies (mean ± standard deviation) on
CIFAR-10 and CIFAR-100 datasets. “# Layer” denotes the
number of layers. Best results of each # Layers are bold. “†”
indicates results obtained from (Lu et al. 2018); “∗” indi-
cates ResNet with the pre-activation (PreResNet).

model is non-zero-stable, its performance is relatively poor.
Figure 4 shows results of 56-layer models on CIFAR-100,
and the performance gap between the zero-stable and non-
zero-stable models is significant. In Fig. 4, the root condition
(Condition 1) well predicts the model performance. Optimal
coefficients given by Theorem 3 leads to a group of moduli
of roots being 0.33, 0.33, 1.00; These optimal coefficients
are denoted in cyan hollow circles in Fig. 4. Combining Ta-
ble 3 and Fig. 4, we find that the optimal coefficients given
by Theorem 3 indeed outperform other coefficients in most
cases. Empirically, zero stability well predicts model per-
formance on different datasets with different discretization
orders.

Comparison Experiments
In this part, we compare the ZeroSNet with existing high-
order-discretization CNNs (LM-ResNets) and PreResNets
(Lu et al. 2018; He et al. 2016) on CIAFR-10 and CIFAR-
100 datasets. In addition, comparisons on ImageNet are also
performed. Although ZeorSNet outperforms existing high-
order CNNs and PreResNets, our major goal is not to beat
the state-of-the-art model. Thus, we do not involve addi-
tional tricks. We provide Table 4 to show the test perfor-
mance of 20- to 110-layer models on CIAFR-10 and CIFAR-
100 datasets. In addition, we use ZeroSNet-Opt to represent
a ZeroSNet with optimal coefficients (i.e., Theorem 3) in
this comparison. By setting λn as a trainable parameter for
the nth block (n = 2, 3, . . .), we have a trainable ZeroSNet,
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Model # Layer Top-1 (%) Top-5 (%)
PreResNet 18 69.66 88.94
ZeroSNet-Opt 18 69.84 88.97
PreResNet 34 72.21 90.68
ZeroSNet-Opt 34 72.69 90.83
PreResNet 50 74.51 91.91
ZeroSNet-Opt 50 74.88 92.03

Table 5: Accuracies (top-1 and top-5) on ImageNet valida-
tion set with single-crop testing. “# Layer” denotes the num-
ber of layers. We apply the mixed-precision training for all
models on ImageNet.

namely ZeroSNet-Tra. Table 4 shows that ZeroSNets outper-
form LM-ResNets (Lu et al. 2018) and PreResNets. Com-
pared to ZeroSNet-Tra with several trainable λn, ZeroSNet-
Opt with one training-free λ shared for all blocks is compet-
itive. In addition, Table 5 shows that the ZeroSNet-Opt has
the advantage of top-1 and top-5 accuracies on ImageNet.
Note that we use mixed-precision training for all models on
ImageNet.

Robustness
We verify the robustness of models on the test set. We
store network parameters after the noise-free training. Then,
we unnormalize the input images into [0, 1]. After feed-
ing these input images into the stored models, the accura-
cies under perturbations are obtained. Three types of noises
are involved: Uniform noise, Gaussian noise, and constant
noise. Each type of noise is added to input images with
different levels. Table 6 shows the test performance of 56-
layer models under these three types of noises. The uni-
form noises are in [lower bound, upper bound]; The Gaus-
sian noises are generated with standard deviation δ and a
mean of zero; The constant noise is a grey image with pixel
values of µ. As in Table 6, the non-zero-stable models’
test accuracies decrease dramatically after injecting noises,
while zero-stable models are robust. For example, under uni-
form noises distributed in [−0.08, 0], test accuracies of non-
zero-stable models decrease 12.38% on average, while for
zero-stable models, this degradation is only 6.40%. Similar
phenomenons are clear in other noise-model pairs. We pro-
vide more experiment results on noises with different levels
and some results with adversarial examples (i.e., fast gradi-
ent sign method (FGSM) (Goodfellow, Shlens, and Szegedy
2014) on MNIST and projected gradient descent (PGD)
(Madry et al. 2018) on CIFAR-10) in the Appendix.

Generalization Gap
In addition to performance on the test set, we provide the
experimental results of the generalization gap for ZeroSNets
in Table 7. To facilitate comparison, all involved ZeroSNets
have a root as 1 and two repeated roots. From tables 7, we
can see that smaller moduli of roots (which imply better zero
stability) generally lead to a smaller generalization gap. In
general, the optimal coefficients given by Theorem 3 lead
to the best generalization gap. To achieve sufficient training,

we train all models for 500 epochs for generalization gap
experiments (this is different from all other experiments in
this paper).

Computation Efficiency
From the Experiment section, we can see that there are per-
formance improvements brought by ZeroSNets. In this part,
we evaluate the costs of such improvements. A comparison
of the number of parameters is given in Table 8. ZeroSNets
have a close number of parameters compared with PreRes-
Nets. Besides, we provide the runtime of PreResNet20 and
ZeroSNet20 on CIFAR-10 (Table 9). Table 9 shows that time
consumption of ZeroSNet20 is close to PreResNet20, espe-
cially for large batch sizes. When we perform the runtime
experiments, we remain only one task on a server.

Experiment Settings
We provide detailed experiment settings as follows. We
use Pytorch 1.8.1 framework and run our experiments on a
server with 10 RTX 2080 TI GPUs and 2 RTX 3090 GPUs.

CIFAR. Hyperparameters for CIFAR-10 and CIAFR-100
are the same as those in (Lu et al. 2018). We conduct all ex-
periments with stochastic gradient descent (SGD) optimizer.
On the CIFAR, we use a batch size of 128 with an initial
learning rate of 0.1, the momentum of 0.9, and weight de-
cay 0.0001. Models in generalization gap experiments (Ta-
ble 7) are trained for 500 epochs to achieve sufficient train-
ing. Except for the generalization gap experiments, all mod-
els on CIFAR-10 and CIFAR-100 are trained for 160 and
300 epochs, respectively. We apply the step decay to train all
models on CIFAR and divide the learning rate by 10 at half
and three-quarters of the total epoch. We report the “mean
± standard deviations” accuracies based on three individual
runs. For the trainable version of ZeroSNet (i.e., ZeroSNet-
Tra), all λn are initialized as 1. The data augmentations are
the random crop with a 4-pixel padding and random hori-
zontal flip, as in (Lu et al. 2018).

ImageNet. Our training script is based on https://github.
com/13952522076/Efficient ImageNet Classification and
remains all default hyperparameters. To improve the train-
ing efficiency on ImageNet, we use a mix-precision strategy
provided by NVIDIA apex with distributed training. We ap-
ply the cosine decay with a 5-epoch warmup to train models
for 150 epochs. The weight decay and the momentum are
4 × 10−5 and 0.9, respectively. Following the adjustment
guidance of the learning rate and the batch size (Goyal et al.
2017; Jastrzebski et al. 2018), we set them according to the
GPU memory. Specifically, for 18-layer models, we use
an initial learning rate of 0.2 and a batch size of 128; for
34-layer models, we use an initial learning rate of 0.1 and
a batch size of 64; for 50-layer models, we use an initial
learning rate of 0.05 and a batch size of 32. For ImageNet,
we apply 8-GPU distributed training on a single server.

Robustness. The random seeds of PyTorch for generating
the uniform and Gaussian noises are both 1. In the standard
training phase, we store three individual models for each
group of α0, α1, α2, and β. Then, we use the three models
to evaluate the average robustness and report the result in the
“mean ± standard deviations” format. Finally, we map the
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Roots’ moduli Z. S. Noise-free [−0.08, 0] [0, 0.08] δ = 0.01 δ = 0.02 δ = 0.04 µ = 0.3

1.84, 0.74, 0.74 No 78.29±0.09 67.01±1.08 67.14±1.32 77.17±0.28 70.65±0.78 50.76±3.94 66.82±1.36
0.57, 1.00, 2.18 No 78.34±0.30 66.16±1.81 66.99±1.67 76.88±0.48 69.75±1.38 48.72±2.82 67.81±0.22
4.24, 0.24, 1.00 No 79.39±0.17 67.06±1.83 67.06±2.02 77.41±0.66 70.19±1.84 51.23±0.39 69.31±0.97
1.88, 0.13, 1.00 No 83.11±0.13 69.38±0.40 69.16±0.51 81.25±0.22 73.23±0.37 50.2±0.96 73.88±0.96
1.00, 0.87, 0.87 Yes 92.42±0.35 83.89±1.55 83.98±0.81 91.21±0.43 86.73±0.94 64.69±2.35 86.75±0.77
0.81, 0.61, 0.61 Yes 93.08±0.36 86.91±0.31 86.92±0.29 92.00±0.28 88.66±0.30 74.19±0.39 87.43±0.48
0.94, 0.33, 0.33 Yes 93.15±0.16 88.05±0.23 88.16±0.29 92.24±0.18 89.51±0.19 76.74±0.13 87.73±0.32
1.00, 0.52, 0.52 Yes 93.71±0.24 87.10±0.38 87.23±0.27 92.47±0.30 88.84±0.29 73.96±0.47 88.90±0.35
0.60, 0.82, 0.82 Yes 93.99±0.06 87.76±0.31 87.84±0.42 92.75±0.14 89.46±0.29 74.97±0.84 88.82±0.29
0.33, 0.33, 1.00 Yes 94.04±0.12 88.31±0.33 87.64±0.43 92.96±0.12 89.67±0.29 74.49±1.25 88.78±0.29

Table 6: Test accuracies (mean ± standard deviation) on CIFAR-10 under uniform noise ([lower bound, upper bound]), zero-
mean Gaussian noise (with standard deviation δ), and constant noise (with magnitude µ). Note the input imgages are normalized
into an interval of [0, 1]. “Z. S.” denotes zero stability.

Model Roots’ moduli Training Test Gap
ZeroSNet44 1, 0.52, 0.52 99.31 72.25 27.06
ZeroSNet44 1, 0.87, 0.87 98.04 71.59 26.45
ZeroSNet44 1, 0.33, 0.33 99.34 72.91 26.43
ZeroSNet56 1, 0.87, 0.87 99.31 71.07 28.24
ZeroSNet56 1, 0.52, 0.52 99.67 72.55 27.12
ZeroSNet56 1, 0.33, 0.33 99.65 72.96 26.69
ZeroSNet110 1, 0.87, 0.87 99.90 73.62 26.28
ZeroSNet110 1, 0.52, 0.52 99.90 75.15 24.75
ZeroSNet110 1, 0.33, 0.33 99.92 75.00 24.92
ZeroSNet164 1, 0.87, 0.87 98.77 73.24 25.53
ZeroSNet164 1, 0.52, 0.52 99.92 77.77 22.15
ZeroSNet164 1, 0.33, 0.33 99.92 78.15 21.77
ZeroSNet326 1, 0.87, 0.87 99.47 73.38 26.09
ZeroSNet326 1, 0.52, 0.52 99.95 78.63 21.32
ZeroSNet326 1, 0.33, 0.33 99.95 79.26 20.69

Table 7: Generalization gap (%) on CIFAR-100. We use dif-
ference of the training and test accuracies (i.e., “training acc.
− test acc.”) to measure the generalization gap. Generally,
as the moduli of roots decrease, generalization ability of the
corresponding model improves.

pixels from [0, 255] to [0, 1]. After noise injection, we clip
the dirty data (negative-valued input pixels or values exceed
1) within [0, 1].

Table 10 gives the mapping from coefficients to moduli of
roots.

Related Work
Robustness of neural ODEs: Hanshu et al. gives a loss term
to minimize the upper bound of the difference between end
states and find that neural ODEs with continuous represen-
tation perform well on the robustness. Zhang et al. study the
robustness through the lens of step size, and they find that
small step size benefits both forward and backward propa-
gation. Embedding Gaussian processes into a neural ODE
improves the robustness, as in (Anumasa and Srijith 2021).
By training multiple noise-injected ResNets to approximate
the Feynman-Kac formula, a robust model is constructed in
(Wang et al. 2019). Differently, we consider the robustness
of discrete CNNs and bridge it with the network structure

# Layers LMResNet PreResNet ZeroSNet
20 0.27M 0.28M 0.28M
32 0.47M 0.48M 0.48M
44 0.66M 0.67M 0.67M
56 0.86M 0.87M 0.87M
110 1.14M 1.74M 1.74M

Table 8: Parameter amount of ResNets, LMResNets, Pre-
ResNets, and ZeroSNets. Note that the parameter amount of
the ZeroSNet is close to PreResNet.

Model BS=128 BS=512 BS=4096
PreResNet20 (training) 1532 829 913
ZeroSNet20 (training) 1662 829 928
PreResNet20 (test) 142 140 212
ZeroSNet20 (test) 151 143 220

Table 9: Training and test runtime (second) of PreResNet20
and ZeroSNet20 on CIFAR-10.

through zero stability.
Stability of CNNs: A-stability of CNNs is investigated

in (Haber and Ruthotto 2017). The insight that the features
should be well-posed in (Haber and Ruthotto 2017) is im-
portant for keeping the representation ability and away from
explosions. Although the generalization is mentioned, the
connection between it and A-stability is not clear in (Haber
and Ruthotto 2017). Since A-stability does not involve per-
turbation, it may be irrelevant to the generalization. (Weinan
2017; Lu et al. 2018; Chen 2019) give the interpretation of
deep neural networks from an ordinary differential equa-
tion (ODE) perspective. Based on those works, (Ruthotto
and Haber 2020) further studies stability from a perspec-
tive of the partial differential equation (PDE). (Ruthotto and
Haber 2020) constructs parabolic and hyperbolic CNNs, and
proves that under certain assumptions (e.g., weight symme-
try, special activation), the parabolic and hyperbolic CNNs
are stable. Different from (Ruthotto and Haber 2020), we
construct zero-stable CNNs based on high-order discretiza-
tion and show that zero stability can predict performance
well. (Zhang and Schaeffer 2020) studies the stability of sev-
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α0 α1 α2 β0 Module of the 1st root Module of the 2nd root Module of the 3rd root Z. S.
1.0000 1.0000 1.0000 1.0000 1.84 0.74 0.74 No
3.7500 -4.0000 1.2500 -0.5000 0.57 1.00 2.18 No
-3.0000 5.0000 -1.0000 4.0000 4.24 0.24 1.00 No
-0.7500 2.0000 -0.2500 2.5000 1.88 0.13 1.00 No
2.2500 -2.0000 0.7500 0.5000 1.00 0.87 0.87 Yes
0.1000 0.2000 0.3000 0.4000 0.81 0.61 0.61 Yes
0.5000 0.3000 0.1000 0.1000 0.94 0.33 0.33 Yes
0.8250 -0.1000 0.2750 1.4500 1.00 0.52 0.52 Yes
1.0000 0.3000 -0.4000 1.0000 0.60 0.82 0.82 Yes
0.3333 0.5556 0.1111 1.7778 0.33 0.33 1.00 Yes

Table 10: Mapping from coefficients to moduli of roots. “Z. S.” denotes zero stability. Note that the theoretically optimal
coefficients (1/3, 5/9, 1/9, and 16/9) are in decimal forms here (0.3333, 0.5556, 0.1111, and 1.7778).

eral ResNet-like networks, and it gives upper bounds of the
output feature maps and the sensitivity bound. Differently,
we use zero stability in numerical analysis (Gautschi 1997)
and then provide guidance to construct high-order struc-
tures.

Structure based on high-order discretization: After in-
terpreting some well-performed CNNs as ODEs, Lu et al.
give the LM architecture. We interpret the LM architecture
as a second-order discretization and use it as a tool for our
preliminary observation on how zero stability affects model
performance. Unlike the LM architecture, ZeroSNet in our
work has a theoretical guarantee to be consistent and zero-
stable. In our experiments, following the same settings of
hyperparameters, ZeroSNet outperforms the LM-ResNet in
(Lu et al. 2018).

Discussion
The well-performed ZeroSNet is somehow just a by-product
for investigating the nature of CNNs. To speed up the train-
ing, we use plain settings for all experiments and apply the
mixed-precision training on ImageNet, and our results can-
not beat the state-of-the-art ones on the leaderboard. Be-
sides, due to the space limitation, we only discuss the first-
to third-order discretizations, but we believe the connection
between performance and zero-stability is clear. A general
theory for leading the structure designing is beyond this pa-
per’s scope, and it requires further exploration. The precise
understanding of deep neural networks still needs more ef-
fort, and our work only takes a little step to this big prob-
lem’s answer.

Conclusion
In this work, we first observe that zero stability well predicts
the performance of PreResNets and LM-ResNets. Based on
these preliminary observations, we construct a high-order
CNN named ZeroSNet to further verify the prediction abil-
ity of zero stability. Theoretically, we prove ZeroSNet’s ad-
vantages on consistency and zero-stability, with a group of
optimal coefficients for historical features and the current
activations deduced. Four groups of experiments are carried
out in this paper. First, we compare ZeroSNets with their
non-zero-stable counterparts, and the results clearly show
that zero-stable models outperform non-zero-stable ones on

generalization. Second, we evaluate the theoretically opti-
mal coefficients on different datasets, and the results demon-
strate that they are also optimal in practice. Then, ZeroS-
Net with the theoretically optimal coefficients and ZeroS-
Net with trainable parameters are employed for comparison.
Results show that ZeroSNets outperform previous advanced
CNNs on CIFAR-10, CIFAR-100, and ImageNet. Finally,
experiments on test images injected with noise verify the
superiority of zero-stable CNNs on the robustness.
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