
An Online Learning Approach to Sequential User-Centric Selection Problems

Junpu Chen, Hong Xie
College of Computer Science, Chongqing University

ironman98@sina.cn, xiehong2018@cqu.edu.cn

Abstract

This paper proposes a new variant of multi-play MAB
model, to capture important factors of the sequential user-
centric selection problem arising from mobile edge comput-
ing, ridesharing applications, etc. In the proposed model, each
arm is associated with discrete units of resources, each play
is associate with movement costs and multiple plays can pull
the same arm simultaneously. To learn the optimal action pro-
file (an action profile prescribes the arm that each play pulls),
there are two challenges: (1) the number of action profiles
is large, i.e., MK , where K and M denote the number of
plays and arms respectively; (2) feedbacks on action profiles
are not available, but instead feedbacks on some model pa-
rameters can be observed. To address the first challenge,
we formulate a completed weighted bipartite graph to capture
key factors of the offline decision problem with given model
parameters. We identify the correspondence between action
profiles and a special class of matchings of the graph. We also
identify a dominance structure of this class of matchings. This
correspondence and dominance structure enable us to design
an algorithm named OffOptActPrf to locate the optimal
action efficiently. To address the second challenge, we de-
sign an OnLinActPrf algorithm. We design estimators for
model parameters and use these estimators to design a Quasi-
UCB index for each action profile. The OnLinActPrf uses
OffOptActPrf as a subroutine to select the action profile
with the largest Quasi-UCB index. We conduct extensive ex-
periments to validate the efficiency of OnLinActPrf.

Introduction
MP-MAB is a sequential decision making model, which was
first studied by Anantharam et al. (Anantharam, Varaiya, and
Walrand 1987a). The canonical MP-MAB model considers
one decision maker, who sequentially makes decisions in a
finite number of time slots. In each time slot, the decision
to make is pulling a subset of arms with a given cardinal-
ity and as a result each pulled arm generates a reward ac-
cording to an unknown probability distribution associated
with it. The objective of the decision maker is to maximize
the cumulative reward. This MP-MAB model has a number
of applications such as web advertising and cognitive radio
(Komiyama, Honda, and Nakagawa 2015). Various variants
of MP-MAB were proposed (Chen, Wang, and Yuan 2013;

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Gai, Krishnamachari, and Jain 2012; Kveton et al. 2014;
Anantharam, Varaiya, and Walrand 1987a; Zhou and Tomlin
2018) and one can refer to related work for more details.

However, the canonical MP-MAB model and its variants
do not provide satisfactory tools for the sequential user-
centric selection problems. To illustrate, consider the follow-
ing user-centric selection problems arise from mobile edge
computing systems and ridesharing applications.

Example 1 (1) Sequential user-centric server selection in
mobile edge computing. There are a finite number of edge
servers and users, which can be modeled as arms and plays
respectively. A user offloading a task to an edge server cor-
responds a play pulling an arm, and it is associated with a
communication cost. In each time slot, the units of comput-
ing resources in an edge server can be modeled as the re-
source of the arm and it can be stochastic due to resource
scheduling. Multiple users can offload tasks to the same
server and the mobile edge computing platform assigns re-
source to users according to certain policies. To avoid con-
flicts and improve cumulative utility of all users, in each time
slot, users can collaborate to select the appropriate edge
servers to offload. (2) Sequential user(driver)-centric lo-
cation selection in Ridesharing. There are a finite number
of pickup locations and drivers, which can be modeled as
arms and plays respectively. A driver moving to a pickup
location corresponds a play pulling an arm, and it is asso-
ciated with a cost. The riding requests arrive at each arm
in a time slot can be modeled as the resource and it can be
stochastic due to uncertainty in the arrival. Multiple drivers
can drive to the same location and the platform assigns re-
quests to drivers according to certain policies. To avoid con-
flicts and improve cumulative rewards of all drivers, drivers
can collaborate to select the location to move.

Example 1 illustrates three common factors of the sequen-
tial user-centric selection problems: (1) each arm is associ-
ated with stochastic units of resources; (2) each play is asso-
ciated with different costs in pulling different arms; (3) mul-
tiple plays can pull the same arm. We generalize MP-MAB
to capture those important factors. To illustrate, consider the
following simplified example of our model.

Example 2 Consider one decision maker and M = 2
arms. The decision maker needs to assign K = 2 plays
in each time slot. Here, each arm can be mapped as

The Thirty-Sixth AAAI Conference on Artificial Intelligence (AAAI-22)

6231



an edge server and each play can be interpreted as a
user in mobile edge computing system. Let (at,1, at,2) ∈
{(1, 1), (2, 1), (1, 2), (2, 2)} denote the action profile in time
slot t, where at,1 and at,2 denote the arm pulled by play 1
and play 2 respectively. Namely, we have MK = 4 possi-
ble action profiles. In each time slot, both arm 1 and arm
2 have one unit of resource. The reward of a play getting
one unit of resource from arm 1 and arm 2 are 0.33 and
0.44 respectively. Let ck,m denote the movement cost of play
k ∈ {1, 2} for pulling arm m ∈ {1, 2}. We consider the
following movement cost c1,1 = 0.1, c1,2 = 0.3, c2,1 =
0.6, c2,2 = 0.2. Then the optimal action profile can be (1, 2),
i.e, play 1 pulls arm 1 and play 2 pulls arm 2.

Example 2 illustrates a simplified case of our model and
it shows that the number of all possible action profiles is
MK . Namely, given all model parameters, exhaustive search
of optimal action profile is computationally infeasible when
the number of arms and plays are large. The first question
is: How to design computationally efficient searching al-
gorithms to locate the optimal action profile? In practice,
the resource and the reward associated with each unit of re-
source is uncertain, and the uncertainty unknown to the de-
cision maker. The decision maker can collect feedbacks or
reward on these uncertainties. The second question is: How
to infer the optimal action profile from these feedbacks? We
answer these three questions and our contributions are:

• We formulate a new variant of MP-MAB model to cap-
ture important factors of the sequential user-centric selec-
tion problem. In proposed model, each arm is associated
with discrete and stochastic units of resource, the reward
associated with each unit of resource is also stochas-
tic, and multiple plays can pull the same arm simultane-
ously (reward of each play is determined by the assign-
ment). Furthermore, each play is associated with a cost in
pulling an arm and the cost can be different across differ-
ent plays or different arms. The objective is to maximize
the total profit in a finite number of time slots.

• We formulate a completed bipartite graph, which cap-
ture important factors of the offline optimization problem
with given model parameters. We show that locating the
optimal action profile is equivalent to finding the maxi-
mum U -saturated and V-monotone matching. We apply
the a maximum matching algorithm to search a max-
imum U -saturated matching. We design an algorithm,
which we call OffOptActPrf, to locate a maximum
U -saturated and V-monotone matching and transform the
located matching into an action profile. We prove that this
action profile is optimal.

• For the online problem with some unknown model pa-
rameters, we design algorithms to estimate model pa-
rameters and derive confidence interval sequence for
it. Based on the confidence interval sequence, we de-
sign a quasi-UCB index for each action profile. We
apply the OffOptActPrf to located the action pro-
file with the largest quasi-UCB index, resulting in our
OnLinActPrf algorithm. Extensive experiments show
the efficiency of OnLinActPrf.

Related Work
Modeling Perspective. The canonical MP-MAB model was
proposed by Anantharam et al. (Anantharam, Varaiya, and
Walrand 1987a). Anantharam et al. (Anantharam, Varaiya,
and Walrand 1987b) extended the canonical from IID re-
ward to Markovian reward. Combinatorial bandits (Cesa-
Bianchi and Lugosi 2012; Chen, Wang, and Yuan 2013;
Combes et al. 2015b) generalizes the reward function of
the canonical MP-MAB from linear to non-linear. Various
variants of combinatorial bandits were studied: (1) combi-
natorial bandits with semi-bandit feedback (Chen, Wang,
and Yuan 2013; Chen et al. 2016; Gai, Krishnamachari, and
Jain 2012; Combes et al. 2015b), i.e., the reward of each
pulled arm is revealed; (2) combinatorial bandits with ban-
dit feedback: (Cesa-Bianchi and Lugosi 2012; Combes et al.
2015b), i.e., only one reward associated with the pulled arm
set is revealed; (3) combinatorial bandits with different com-
binatorial structures, i.e., matroid (Kveton et al. 2014), m-
set (Anantharam, Varaiya, and Walrand 1987a), permutation
(Gai, Krishnamachari, and Jain 2012), etc. Cascading bandit
(Combes et al. 2015a; Kveton et al. 2015; Wen et al. 2017)
extends the the reward function of the canonical MP-MAB
from linear to a factorization form over the set of selected
arms. MP-MAB with a reward function depending on the
order of plays is considered in (Lagrée, Vernade, and Cappé
2016; Komiyama, Honda, and Takeda 2017). This reward
function is motivated by click model of web applications.
MP-MAB with switching cost is considered in (Agrawal
et al. 1990; Jun 2004), where only the number of switches is
considered. MP-MAB with budget constraint is considered
in (Xia et al. 2016; Zhou and Tomlin 2018) and with stochas-
tic number of plays in each round is considered in (Lesage-
Landry and Taylor 2017), which is motivated from power
system. Different from these models, our model allows as-
signing multiple plays to the same arm and the reward as
well as feedbacks depend on the resource of the arm, while
previous models only allows at most one play to an arm. Fur-
thermore, we consider movement cost of plays. Our model
is motivated by sequential user-centric selection problem.

Algorithmic perspective. Anantharam et al. (Anan-
tharam, Varaiya, and Walrand 1987a) established asymp-
totic lower bound for the canonical MP-MAB and an al-
gorithm achieving the lower bound asymptotically was pro-
posed. Gai et al. (Gai, Krishnamachari, and Jain 2012) pro-
posed a UCB style algorithm for MP-MAB. This UCB style
algorithm was improve by Chen et al. (Chen, Wang, and
Yuan 2013), i.e., they showed that CUCB achieves a smaller
regret upper bound. Komiyama et al. (Komiyama, Honda,
and Nakagawa 2015) showed that Thompson sampling is
optimal, i.e., achieving the regret lowerd bound established
by Anantharam et al. (Anantharam, Varaiya, and Walrand
1987a). A number of sophisticated algorithms were pro-
posed for various variants of the MP-MAB model. For ex-
ample, algorithms for combinatorial bandits (Combes et al.
2015b), cascading bandits (Combes et al. 2015a), MP-MAB
with budget constraint (Zhou and Tomlin 2018), just to name
a few. These algorithms were designed to exploit the partic-
ular combinatorial structure in the action space or objective
function. These algorithms can not be applied to our model,

6232



because our model allows assigning multiple plays to the
same arm and the reward as well as feedbacks depend on
the stochastic resource of the arm, while previous models
only allows at most one play to an arm. Furthermore, we
consider movement cost of plays, which further complicates
the problem. We design a computational efficient algorithm
with sub-linear regret to address the challenge.

System Model & Problem Formulation
System Model
We consider a sequential user-centric decision problem,
where the decision maker needs to make decisions in T ∈
N+ time slots sequentially. In each time slot, the decision
is to assign K ∈ N+ plays denoted by [K] , {1, . . . ,K}
to the arm set denoted by [M ] , {1, . . . ,M}. In each time
slot, each play pulls one arm and different plays can pull
the same arm. A play (or an arm) can model a users (or an
edge server) in mobile edge computing systems, a driver (or
pickup location) in ride sharing applications, etc. The deci-
sion maker corresponds to all users collaborate as a whole.
Pulling one arm models that a user offload a task to an edge
server, a driver moves to a pickup location, etc.

Arm model. The amount of resource and reward associ-
ated with arm m ∈ [M ] is characterized by a pair of random
vectors [Dm,Rm], where Dm , [Dt,m : ∀t ∈ [T ]] and
Rm , [Rt,m : ∀t ∈ [T ]], where [T ] , {1, . . . , T}. More
specifically, Dt,m denotes the number of units of resource
associated with arm m in time slot t. The Dt,m is a random
variable capturing uncertainty in resource of an arm, and its
support is [dmax] , {1, . . . , dmax}, where dmax ∈ N+.
A unit of resource can model a CPU in an edge server, a
ridesharing request arrived at a pickup location, etc. We con-
sider a stationary resource model, i.e., D1,m, . . . , DT,m are
independent and identically distributed (IID) random vari-
ables for each given m. Furthermore, Dt,m, ∀t,m, are inde-
pendent. Denote the probability mass function of Dt,m as
pm , [pm,d : ∀d ∈ [dmax]]:

pm,d = P[Dt,m = d], ∀d ∈ [dmax],m ∈ [M ].

Denote the probability mass matrix as:

P , [pm,d : ∀d ∈ [dmax],m ∈ [M ]].

The probability mass matrix P is unknown to the decision
maker. In time slot t, the resource profile denoted by Dt ,
[Dt,m : ∀m ∈ [M ]] is revealed to the decision maker.

In time slot t, if a play gets one unit of resource from arm
m, it receives a reward, which is a sample from the random
variable Rt,m. Given an arm m and time slot t, the reward
associated with different units of resource are IID samples of
Rt,m. We consider a stationary reward, i.e.,R1,m, . . . , RT,m
are IID random variables. Furthermore, Rt,m, ∀t,m, are in-
dependent. The support of Rt,m is denoted by R ⊆ R. We
denote the mean of IID random variables R1,m, . . . , RT,m
as: µm = E[Rt,m], ∀t ∈ [T ],m ∈ [M ]. Denote the reward
mean vector as µ , [µm : ∀m ∈ [M ]]. The reward mean
vector µ is unknown to the decision maker.

Play model. Let at,k ∈ [M ] denote the arm pulled by
play k ∈ [K]. Denote the action profile of all plays as at ,
[at,k : ∀k ∈ [K]]. Denote the number of plays that pull
arm m in time slot t as nt,m ,

∑
k∈[K] I{at,k=m}. If the

number of units of resource associated with arm m exceeds
the number of plays that pull this arm, i.e., Dt,m ≥ nt,m,
each play receives one unit of resource and Dt,m − nt,m
units of resource are left. On the contrary, i.e.,Dt,m < nt,m,
only Dt,m units of resource is allocated to Dt,m plays (one
unit of resource per play) and nt,m − Dt,m plays do not
get resource. Denote Xt , [Xt,k : ∀k ∈ [K]], where Xt,k

denotes the reward of play k in round t. The reward Xt,k is
a sample of Rt,at,k if play k receives one unit of resource
from arm at,k, otherwise we set Xt,k = null by default.

Let ck,m ∈ R+ ∪ {+∞} denote the movement cost
of play k pulling arm m. For example, ck,m captures the
cost of a driver moving to a pickup location, the com-
munication cost of a user offloading a task to an edge
server. Note that ck,m = +∞ models that arm m is not
available to play k. Denote the cost profile of play k as
ck , [ck,m : ∀m ∈ [M ]]. The cost profile ck is known
to the decision maker. Let C(at) denote cost associated
with the action profile at: C(at) =

∑
k∈[K] ck,at,k =∑

k∈[K]

∑
m∈[M ] ck,mI{at,k=m}.

The Decision Problem
Let Rm(J , µm,pm) and Um(J , µm,pm) denote total re-
ward and utility respectively, received by a set of J ∈ [K]
plays for pulling arm m in a time slot. Here we omit the in-
dex t due to that we consider stationary stochastic resource
and reward. The Rm(J , µm,pm) can be expressed as

Rm(J , µm,pm) , µmE [min {|J |, Dt,m}]

= µm

 |J |∑
d=1

dpm,d +

dmax∑
d=|J |+1

|J |pm,d

 .

The utility is defined as

Um(J , µm,pm) , Rm(J , µm,pm)−
∑

k∈J
ck,m.

Let U(at,µ,P ) denote the utility of all plays under action
profile at, formally

U(at,µ,P ) ,
∑

m∈[M ]

Um({k|at,k = m}, µm,pm).

Our objective is to select the action profile to max-
imize the total utility in T time slots, i.e., maximize∑T
t=1 U(at,µ,P ). The optimal action profile is

a∗ ∈ arg max
a∈A

U(a,µ,P ), (1)

where A , [M ]K . Note that a∗ is unknown to the decision
maker as µ and P are unknown to the decision maker. Fur-
thermore, even given µ and P , locating a∗ is nontrivial, as
there are in total |A| = MK action profiles.

DenoteHt , (D1,X1,a1 . . . ,Dt,Xt,at) as the histor-
ical data of the decision maker up to time slot t. Our objec-
tive is to design an algorithm denoted by OnLinActPrf to

6233



select action profile relying onHt−1 in each time slot t, i.e.,
at = OnLinActPrf(Ht−1). We quantify the performance
of OnLinActPrf via the regret:

RT ,
T∑
t=1

{U(a∗,µ,P )− E[U(at,µ,P )]},

where at = OnLinActPrf(Ht−1).

The Offline Optimization Problem
Bipartite Graph Representation
To locate the optimal action profile a∗ expressed in Equation
(1), exhaustive search is computationally expensive, because
the total number of action profiles is |A| = MK . Consider
M = 10 arms andK = 100 plays, we have |A| = 10100. To
facilitate the design of computationally efficient algorithms
to locate a∗, we next formulate a bipartite graph to capture
important factors of the offline optimization problem stated
in Equation (1).

Bipartite graph. We formulate a complete weighted bi-
partite graph with node set U ∪V and edge set U ×V , where
U ∩ V = ∅ and

U , {u1, . . . , uK}, V ,
⋃

m∈[M ]

Vm,

Vm , {vm,1, . . . , vm,K}.

The node uk ∈ U corresponds to play k ∈ [K]. The node set
Vm corresponds to arm m ∈ [M ]. The physical meaning of
each node vm,k ∈ Vm, where k ∈ [K], will be made clear
when we introduce weights of edges. To introduce the intu-
ition behind weights of edges, we need the following lemma.

Lemma 1 Let J ⊆ [K] denote a subset of plays. We have

Um(J ∪ {k}, µm,pm)− Um(J , µm,pm)

= µmPm,|J |+1 − ck,m, (2)

where k ∈ [K] \ J , and Pm,n ,
∑dmax

d=n pm,d.

Lemma 1 states a closed-form formula for the marginal
utility contribution of play k for joining a set of J plays to
pull arm m. From the formula, i.e., Equation (2), one can
observe that the marginal utility contribution of play k de-
pends on the cardinality of J , instead of the index of each
play in the set J . For the ease of presentation, we there-
fore denote the marginal utility contribution of play k, i.e,.
Um(J ∪ {k}, µm,pm) − Um(J , µm,pm) by ∆m(k, |J |).
Equation (2) implies that

∆m(k, |J |) = µmPm,|J |+1 − ck,m.

Note that Um(∅, µm,pm) = 0. We can then express the util-
ity associated with arm m as

Um(J , µm,pm) =

|J |∑
j=1

∆m(kj , j − 1), (3)

where kj ∈ J denotes the index of a play in set J and
k1 < k2 < . . . < k|J |.

Equation (3) guides us to define weights of edges as fol-
lows. Let W : U × V → R denote a function, which pre-
scribes a weight for each edge. Formally, the weight of the
edge (uk, vm,j) is

W (uk, vm,j) = ∆m(k, j − 1), ∀k, j ∈ [K],m ∈ [M ].

Namely, the weight W (uk, vm,j) quantifies the marginal
utility contribution of play k for pulling arm m, when there
are already j − 1 plays pulling arm m. Formally, we denote
the complete weighted bipartite graph as

G = (U ∪ V ,U × V ,W ).

Due to page limit, we present illustrating examples in our
technical report (Chen and Xie 2021).

Connecting Action Profiles and Matchings
From action profiles to matchings. Let M ⊆ U × V
denote a matching in graph G, which is a set of pairwise
non-adjacent edges, i.e., |{u|(u, v) ∈ M}| = |{v|(u, v) ∈
M}| = |M|. In the following definition we define a class of
matchings, which has connection to the action profiles.

Definition 1 A matching M is U -saturated if it satisfies
{u|(u, v) ∈ M} = U . A matching M is V-monotone if
for all m ∈ [M ] it holds that(
{v|(u, v) ∈M} ∩ Vm

)
∈
{
{vm,1, . . . , vm,k}|k ∈ [K]

}
.

The property U -saturated means that each play node is
an endpoint of one of the edges in the matching M. The
V-monotone property means that end points of the match-
ing corresponding to arm m, i.e., {v|(u, v) ∈ M} ∩
Vm, forms an increasing set, i.e., it can be expressed as
{vm,1, . . . , vm,k}, where k = |{v|(u, v) ∈ M} ∩ Vm| de-
notes the number of plays who pull arm m. Due to page
limit, we present illustrating examples on our technical re-
port (Chen and Xie 2021).

In the following lemma, we states how an action profile
can be mapped to a U -saturated and V-monotone matching.

Lemma 2 Action profile a∈A can be mapped into a U -
saturated and V-monotone matching denoted by M̃(a) as:

M̃(a) ,
{

(uk, vak,rk(a))|k ∈ [K]
}
,

where rk(a) is defined as:

rk(a) , |{j|j ∈ [K], j ≤ k, aj = ak}|.

Furthermore, it holds that

U(a,µ,P ) =
∑

(u,v)∈M̃(a)

W (u, v),

and M̃(a) 6= M̃(a′) for any a 6= a′.

Lemma 2 states that each action profile can be mapped
into a U -saturated and V-monotone matching. It also derive
a closed-form formula for the U -saturated and V-monotone
matching that corresponds to the action profile a. In Lemma
2, the rk(a) is the rank of plays k among all plays who pull
the same arm as play k, and the rank is calculated according

6234



to their indexes in ascending order. Due to page limit, we
present illustrating examples on our technical report (Chen
and Xie 2021).

From matchings to action profiles. In the following
lemma, we states how a U -saturated and V-monotone match-
ing can be mapped into an action profile.

Lemma 3 Suppose a matching M is U -saturated and V-
monotone. It can be mapped into action profile denoted by
ã(M) , (ãk(M) : ∀k ∈ [K]), where

ãk(M) = arg
m∈[M ]

(
{(uk, v)|v∈Vm} ∩M 6= ∅

)
.

Furthermore, it holds that

U(ã(M),µ,P ) =
∑

(u,v)∈M

W (u, v).

Lemma 3 states that each U -saturated and V-monotone
matching can be mapped into an action profile. It also de-
rives a closed-form formula for the action profile that corre-
sponds to the U -saturated and V-monotone matching. Lastly,
the action profile ã(M) corresponding to matchingM has
the nice property that its utility equal the total weights of
M. Due to page limit, we present illustrating examples in
our technical report (Chen and Xie 2021).

Locating the Optimal Action Profile
Lemma 2 and 3 imply that locating the action profile with
the highest total utility can be boiled down to searching the
U -saturated and V-monotone matching with the maximum
weights. Lemma 2 implies that the number of U -saturated
and V-monotone matchings is no less than the total num-
ber of action profiles, i.e., MK . In other words, exhaustive
searching over the space of U -saturated and V-monotone
matchings is computationally expensive. Furthermore, iden-
tify all U -saturated and V-monotone matchings is also not
a computationally easy problem. We next state a lemma,
which is useful for us to address these challenge.

Lemma 4 The ∆m(k, j) satisfies ∆m(k, j + 1) ≤
∆m(k, j), ∀j = 0, . . . ,K − 1.

Lemma 4 states that the marginal reward gain function
∆m(k, j) is non-increasing in j. In other words, there is
a diminishing return effect in the marginal contribution by
adding plays to pull an arm. Lemma 4 implies the following
characterization of U -saturated matching.

Lemma 5 Consider a U -saturated M. If it is not
V-monotone, there exists a U -saturated and V-
monotone matching M′ such that

∑
(u,v)∈MW (u, v) ≤∑

(u,v)∈M′ W (u, v).

Lemma 5 states that the maximum weight of U -saturated
matchings equals the maximum weight of U -saturated and
V-monotone matchings. Locating the maximum weight
matching from a space of all U -saturated matchings is a well
studied problem. The Hungarian algorithm and its variants
such as Crouse et al. (Crouse 2016) provide computation-
ally efficient algorithms for this problem. One problem is

Algorithm 1: OffOptActPrf (µ,P , C)

1: Pm,j ←
∑dmax

d=j pm,d, ∀m ∈ [M ], j ∈ [1, . . . ,K]

2: ∆m(k, j) ← µm(Pm,j+1) − ck,m, ∀k ∈ [K],m ∈
[M ], j ∈ [0, . . . ,K − 1]

3: W (uk, vm,j)← ∆m(k, j−1), ∀k ∈ [K],m ∈ [M ], j ∈
[1, . . . ,K]

4: G← (U ∪ V ,U × V ,W )
5: M← MaximumWeightedMatching(G)
6: M′ ← ∅, K ′ ← K
7: for m ∈ [M ] do
8: if K ′ == 0 then
9: break loop

10: end if
11: Em ← {(u, v)|(u, v) ∈M, v ∈ Vm}
12: Km ← {k|k ∈ [K], ({uk} × Vm) ∩ Em 6= ∅}
13: K ′ ← K ′ − |Km|
14: M′ ←M′ ∪ {(ukm,l

, vm,l)|∀l ∈ [|Km|]}
15: end for
16: ãk(M′)← arg

m∈[M ]

({(uk, v)|v ∈ Vm}∩M′ 6=∅), ∀k∈[K]

17: return ã(M′) = [ãk(M′) : k ∈ [K]]

that there are some maximum weighted U -saturated match-
ing may not be V-monotone. Due to page limit, we present
illustrating examples on our technical report (Chen and Xie
2021).

We need and algorithm to transform a non U -saturated
and V-monotone matching into a U -saturated and V-
monotone one. Our idea is as follows. We rearrange the
edges with end points associated with the same arm to
make them monotone, while keeping the end points corre-
sponds to plays unchanged. We do this rearrangement for
each arm respectively. To illustrate, let us consider arm m.
We denote a subset of edges in matching M that with end
points associated with arm m as Em = {(u, v)|(u, v) ∈
M, v ∈ Vm}. Then, we select out the corresponding plays:
Km , {k|k ∈ [K], ({uk} × Vm) ∩ Em 6= ∅} Finally,
we rearrange the edges of Em to the following set of edges
Mm = {(ukm,1

, vm,1), . . . , (ukm,|Km| , vm,|Km|)}, where
km,j ∈ Km and km,1 < km,2 < . . . < km,|Km|. Due to
page limit, we present illustrating examples on our technical
report (Chen and Xie 2021).

Algorithm 1 combines the above elements to locate the
optimal action profile for the offline optimization prob-
lem. In particular, Algorithm 1 first construct a complete
weighted bipartite graph (line 1-4). Then it locates a U -
saturated maximum weighted matching, and this can be
achieved by a variant Hungarian algorithm David et al.
(Crouse 2016) (line 5). Then it transform the matching to
be a U -saturated and V-monotone one (line 6-15). Finally, it
maps the matching to an action profile (line 16-17).

Due to page limit, we state the optimality and complexity
of Algorithm 1 in our technical report (Chen and Xie 2021).

6235



The Online Learning Problem
Parameter estimation
Note that in time slot t + 1, the decision maker has ac-
cess to the historical feedbacks up to time slot t: Ht ,
(D1,X1,a1 . . . ,Dt,Xt,at). From theHt, we estimate the
probability mass function via the empirical average:

p̂
(t)
m,d ,

∑t
s=1 I{Ds,m=d}

t
.

We denote the probability mass matrix estimated fromHt as
P̂ (t) , [p̂

(t)
m,d : m ∈ [M ], d ∈ [dmax]]. We also estimate the

reward mean fromHt via the empirical average:

µ̂(t)
m ,

∑t
s=1

∑K
k=1 I{Xs,k 6=null}Xs,kI{as,k=m}∑t

s=1

∑K
k=1 I{Xs,k 6=null}I{as,k=m}

.

We denote the mean vector estimated from Ht as µ̂(t) ,
[µ̂

(t)
m : ∀m ∈ [M ]] The following lemma states a confidence

interval sequence for the estimator µ̂(t)
m .

Lemma 6 For eachm, we have P
[
∀t, µm − µ̂(t)

m ≥ ε(t)m
]
≤

δ, where δ ∈ (0, 1) and

ε(t)m =


√

2σ2(t′m + 1) ln(
√
t′m + 1/δ)/t′m, if t′m ≥ 1,

+∞, if t′m = 0,

t′m=
∑t

s=1

∑K

k=1
I{Xs,k 6=null}I{as,k=m}.

For simplicity, we denote ε(t) = [ε
(t)
m : ∀m ∈ [M ]].

Online Learning Algorithm
Note that we have expert feedback on the stochastic resource
or the probability mass matrix, i.e., in each round the number
of units of resource in each arm is revealed to the decision
maker. However, we only have bandit feedback on reward,
i.e., we only obtain the reward of a unit of resource when it
is assigned by a play, otherwise, its reward is not revealed.
Thus we define a quasi-UCB index for each action profile as
follows:

Quasi-UCBt(a) = max
µm≤µ̂(t)

m +ε
(t)
m ,∀m∈[M ]

U(a,µ, P̂ (t)).

The rationality of Quasi-UCB(a) is that: (1) we input the P̂
as we have expert feedback on P and there is no need to do
exploration for P ; (2) we search over the confidence set of
mean vector, i.e., µm ≤ µ̂

(t)
m + ε

(t)
m , ∀m ∈ [M ], to enable

exploration as we only have bandit feedback on rewards. In
each time slot we select the action profile with the largest
index, i.e.,

at+1 ∈ arg max
a∈A

Quasi-UCBt(a). (4)

We next state a lemma to facilitate the computing of at+1 in
Equation (4).

Algorithm 2: OnLinActPrf (Ht)

1: p̂(t)m,d ← 0, ∀m ∈ [M ], d ∈ [dmax]

2: µ̂(t)
m ← 0, ∀m ∈ [M ], t′m ← 0, ∀m ∈ [M ]

3: ε(t)m ← +∞, ∀m ∈ [M ]

4: p̂(t)m,d ←
∑t
s=1 I{Ds,m=d}/t, ∀m ∈ [M ], d ∈ [D]

5: t′m ←
∑t
s=1

∑K
k=1 I{Xs,k 6=null}I{as,k=m}, ∀m ∈ [M ]

6: µ̂(t)
m ←

∑t
s=1

∑K
k=1 I{Xs,k 6=null}Xs,kI{as,k=m}

t′m
, ∀m ∈ [M ]

7: for m ∈ [M ] do
8: if t′m 6= 0 then
9: ε

(t)
m ←

√
2σ2(t′m + 1) ln(

√
t′m + 1/δ)/t′m

10: end if
11: end for
12: at+1 ← OffOptActPrf(µ̂(t) + ε(t), P̂ (t),C)
13: return at+1

Lemma 7 The Quasi-UCBt(a) can be derived as
Quasi-UCBt(a) = U(a, µ̂(t) + ε(t), P̂ (t)).

Lemma 7 states a closed form formula for
Quasi-UCBt(a). Based on this formula, one can ob-
serve that the locating action profile at+1 in Equation (4) is
boiled down to:

at+1 ∈ arg max
a∈A

U(a, µ̂(t) + ε(t), P̂ (t)). (5)

From Equation (5), one can observe that Algorithm 1 can be
applied to searching the at+1. Summarize the above ideas
together, Algorithm 2 outlines an algorithm to selection ac-
tion profiles relying onHt.

Due to page limit, we state the regret upper bound of Al-
gorithm 2 in our technical report (Chen and Xie 2021).

Experiments
Experiment Setting
Parameter setting. We consider a generic sequential user-
centric selection problem characterized by M = 15 arms
and K = 30 plays by default. Note that we also vary M and
K to evaluate our proposed algorithm. We set the probability
mass function as:

pm,d =


αd, if d ≤ dm/2e,
α(m+ 1− d), if dm/2e < d ≤ m,
0, otherwise

where α = 1/(
∑dm/2e
d=1 d +

∑m
d=dm/2e+1m + 1 − d) is

the normalizing factor. This probability function has a nor-
mal distribution like shape. Roughly, the expected number of
units of resource of an arm increases in its index m, because
as the index m increases, more probability masses shift to
the larger value of d.

Each arm’s rewards are sampled from Guassian distribu-
tions. i.e.,Rm ∼ N(µm, σ

2), where µm ∈ [1, 2] and σ > 0.
We consider three cases of the reward mean. (1) Inc-Shape:
µm = 1 + m/M , i.e., reward mean increases in the index

6236



of arm m. (2) Dec-Shape: µm = 2 − m/M , i.e., the re-
ward mean decreases in the index of arm m. (3) U-Shape:
µm = 1 + |M/2 − m|/M , i.e., the reward mean first de-
crease and then increase in the index of arm m. For the stan-
dard deviation σ we consider two cases. (1) Exact σ, i.e.,
input the exact σ to the algorithm. This case reveals the best
possible learning speed of the algorithm. (2) Over specify-
ing σ, i.e., we input an upper bound of σ, in particular, 2σ
and 4σ to the algorithm. This case captures that in practice
the σ is unknown, and one needs to over specify it to avoid
divergence of the algorithm. We set the movement cost as
ck,m = η|(k mod M)−m|/max{K,M}, where η ∈ R+

is a hyper-parameter that controls the scale of the cost.
Unless we vary them explicitly, we consider the following

default parameters: T = 105, δ = 1/T , K = 30 plays,
M = 15 arms, η = 1, the exact σ case with σ = 0.2 and the
U-Shape reward.

Performance metric and baseline. To evaluate the ef-
ficiency of OnLinActPrf, we compare it with the fol-
lowing three baselines. (1) RequestProp, which assigns
each play to an arm with a probability proportional to em-
pirical average number of units of resources of an arm,
i.e., P[at+1,k = m] = D̄

(t)
m /(D̄

(t)
1 + · · · + D̄

(t)
M ), where

D̄
(t)
m =

∑dmax

d=1 dp̂
(t)
m,d. (2) NearestArm, which assigns a

play to the arm with at,k ∈ arg minm∈[M ] ck,m. (3) Re-
wardProp, which assigns each play to an arm with a prob-
ability proportional to empirical average reward of an arm,
i.e., P[at+1,k = m] = µ̂

(t)
m D̄

(t)
m /(µ̂

(t)
1 D̄

(t)
1 + · · ·+ µ̂

(t)
M D̄

(t)
M ).

We use the regret as the performance metric. We use Monte
Carlo simulation to compute the average regret of each al-
gorithm with 120 rounds of simulation.

Experiment Results
Impact of resource-reward correlation. To study the im-
pact of resource-reward correlation, we fix the probability
mass function of resource and three cases of the reward
means, i.e., Inc-Shape (positive correlation), Dec-Shape
(negative correlation) and U-Shape (weak correlation). Fig-
ure 1(a) shows the corresponding regret of OnLinActPrf
and three comparison baselines. From Figure 1(a), one
can observe that the regret curves of OnLinActPrf un-
der three types of reward mean first increase sharply,
and then become flat. This validates that OnLinActPrf
has a sub-linear regret. Furthermore, the regret curve of
OnLinActPrf corresponds to the U-Shape reward mean
lie in the bottom. Namely, OnLinActPrf has the small-
est regret when the correlation between reward and resource
is not strong. From Figure 1(b), one can observe that under
the Inc-Shape (positive correlation) reward mean, the regret
curve corresponds to OnLinActPrf lies in the bottom.
Namely, OnLinActPrf has the smallest regret compared
to three baselines. This statement also holds when the re-
ward mean is of U-Shape (weak correlation) and Dec-Shape
(negative correlation) as shown in Figure 1(c) and 1(d).

Impact of standard deviation of reward, standard de-
viation, movement cost, number of arms and number
plays. We also conduct experiments to study the impact
standard deviation of reward, standard deviation, movement

(a) Regret of OnLinActPrf (b) Inc-Shape

(c) U-Shape (d) Dec-Shape

Figure 1: Impact of resource-reward correlation.

cost, number of arms and number plays. Experiment results
show similar conclusion as Figure 1 and they validates the
efficiency of our algorithm. Due to page limit, we present
them in our technical report (Chen and Xie 2021).

Conclusion
This paper formulates a new variant of multi-play MAB
model to capture important factors of the sequential user-
centric selection problem arise from mobile edge com-
puting systems and ride sharing applications, etc. We de-
sign OffOptActPrf algorithm to locate the optimal ac-
tion profile given model parameters. The OffOptActPrf
serves as a subroutine of our OnLinActPrf, which es-
timates the optimal action profile from historical feed-
backs when some model parameters are unknown. The
core idea of OffOptActPrf is that we formulate a com-
pleted weighted bipartite graph to capture factors of the of-
fline decision problem. We identify a dominance structure
of U -saturated matchings. This correspondence and dom-
inance structure enables us to design an algorithm named
OffOptActPrf to locate the optimal action. We design
estimators for model parameters and use these estimators
to design a Quasi-UCB index for each action profile. The
OnLinActPrf selects the action profile with the largest
Quasi-UCB index based on the OffOptActPrf. We con-
duct extensive experiments to validate the efficiency of
OnLinActPrf.

Acknowledgments
The work of Hong Xie was supported by National Natural
Science Foundation of China (61902042), Chongqing Nat-
ural Science Foundation (cstc2020jcyj-msxmX0652) and
Chongqing Talents: Exceptional Young Talents Project
(cstc2021ycjh-bgzxm0195) and the Fundamental Research
Funds for the Central Universities (2020CDJ-LHZZ-057).
Hong Xie is the corresponding author.

6237



References
Agrawal, R.; Hegde, M.; Teneketzis, D.; et al. 1990. Multi-
armed bandit problems with multiple plays and switching
cost. Stochastics and Stochastic reports, 29(4): 437–459.
Anantharam, V.; Varaiya, P.; and Walrand, J. 1987a. Asymp-
totically efficient allocation rules for the multiarmed bandit
problem with multiple plays-part i: Iid rewards. IEEE Trans-
actions on Automatic Control, 32(11): 968–976.
Anantharam, V.; Varaiya, P.; and Walrand, J. 1987b. Asymp-
totically efficient allocation rules for the multiarmed ban-
dit problem with multiple plays-Part II: Markovian rewards.
IEEE Transactions on Automatic Control, 32(11): 977–982.
Cesa-Bianchi, N.; and Lugosi, G. 2012. Combinatorial ban-
dits. Journal of Computer and System Sciences, 78(5):
1404–1422.
Chen, J.; and Xie, H. 2021. An Online Learning Ap-
proach to Sequential User-centric Selection Problems.
https://1drv.ms/b/s!AkqQNKuLPUbEi1V7tOKuSgaofsaC.
Chen, W.; Wang, Y.; and Yuan, Y. 2013. Combinatorial
multi-armed bandit: General framework and applications. In
International Conference on Machine Learning, 151–159.
PMLR.
Chen, W.; Wang, Y.; Yuan, Y.; and Wang, Q. 2016. Combi-
natorial multi-armed bandit and its extension to probabilis-
tically triggered arms. The Journal of Machine Learning
Research, 17(1): 1746–1778.
Combes, R.; Magureanu, S.; Proutiere, A.; and Laroche, C.
2015a. Learning to rank: Regret lower bounds and efficient
algorithms. In Proceedings of the 2015 ACM SIGMETRICS
International Conference on Measurement and Modeling of
Computer Systems, 231–244.
Combes, R.; Talebi, S.; Proutière, A.; and Lelarge, M.
2015b. Combinatorial Bandits Revisited. In NIPS 2015-
Twenty-ninth Conference on Neural Information Processing
Systems.
Crouse, D. F. 2016. On implementing 2D rectangular as-
signment algorithms. IEEE Transactions on Aerospace and
Electronic Systems, 52(4): 1679–1696.
Gai, Y.; Krishnamachari, B.; and Jain, R. 2012. Combinato-
rial Network Optimization With Unknown Variables: Multi-
Armed Bandits With Linear Rewards and Individual Ob-
servations. IEEE/ACM Transactions on Networking, 20(5):
1466–1478.
Jun, T. 2004. A survey on the bandit problem with switching
costs. de Economist, 152(4): 513–541.
Komiyama, J.; Honda, J.; and Nakagawa, H. 2015. Optimal
regret analysis of Thompson sampling in stochastic multi-
armed bandit problem with multiple plays. In International
Conference on Machine Learning, 1152–1161. PMLR.
Komiyama, J.; Honda, J.; and Takeda, A. 2017. Position-
based multiple-play bandit problem with unknown position
bias. In Proceedings of the 31st International Conference on
Neural Information Processing Systems, 5005–5015.
Kveton, B.; Wen, Z.; Ashkan, A.; Eydgahi, H.; and Eriksson,
B. 2014. Matroid bandits: fast combinatorial optimization

with learning. In Proceedings of the Thirtieth Conference
on Uncertainty in Artificial Intelligence, 420–429.
Kveton, B.; Wen, Z.; Ashkan, A.; and Szepesvári, C. 2015.
Combinatorial cascading bandits. In Proceedings of the 28th
International Conference on Neural Information Processing
Systems-Volume 1, 1450–1458.
Lagrée, P.; Vernade, C.; and Cappé, O. 2016. Multiple-play
bandits in the position-based model. In Proceedings of the
30th International Conference on Neural Information Pro-
cessing Systems, 1605–1613.
Lesage-Landry, A.; and Taylor, J. A. 2017. The multi-armed
bandit with stochastic plays. IEEE Transactions on Auto-
matic Control, 63(7): 2280–2286.
Wen, Z.; Kveton, B.; Valko, M.; and Vaswani, S. 2017.
Online influence maximization under independent cascade
model with semi-bandit feedback. In Neural Information
Processing Systems, 1–24.
Xia, Y.; Qin, T.; Ma, W.; Yu, N.; and Liu, T.-Y. 2016. Bud-
geted Multi-Armed Bandits with Multiple Plays. In IJCAI,
2210–2216.
Zhou, D.; and Tomlin, C. 2018. Budget-constrained multi-
armed bandits with multiple plays. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 32.

6238


