
Federated Dynamic Sparse Training:
Computing Less, Communicating Less, Yet Learning Better

Sameer Bibikar, Haris Vikalo, Zhangyang Wang, Xiaohan Chen*

Department of Electrical and Computer Engineering, The University of Texas at Austin
{bibikar,hvikalo,atlaswang,xiaohan.chen}@utexas.edu

Abstract

Federated learning (FL) enables distribution of machine
learning workloads from the cloud to resource-limited edge
devices. Unfortunately, current deep networks remain not
only too compute-heavy for inference and training on edge
devices, but also too large for communicating updates over
bandwidth-constrained networks. In this paper, we develop,
implement, and experimentally validate a novel FL frame-
work termed Federated Dynamic Sparse Training (FedDST)
by which complex neural networks can be deployed and
trained with substantially improved efficiency in both on-
device computation and in-network communication. At
the core of FedDST is a dynamic process that extracts and
trains sparse sub-networks from the target full network. With
this scheme, “two birds are killed with one stone:” instead
of full models, each client performs efficient training of its
own sparse networks, and only sparse networks are trans-
mitted between devices and the cloud. Furthermore, our re-
sults reveal that the dynamic sparsity during FL training more
flexibly accommodates local heterogeneity in FL agents than
the fixed, shared sparse masks. Moreover, dynamic sparsity
naturally introduces an “in-time self-ensembling effect” into
the training dynamics, and improves the FL performance
even over dense training. In a realistic and challenging non
i.i.d. FL setting, FedDST consistently outperforms compet-
ing algorithms in our experiments: for instance, at any fixed
upload data cap on non-iid CIFAR-10, it gains an impres-
sive accuracy advantage of 10% over FedAvgM when given
the same upload data cap; the accuracy gap remains 3%
even when FedAvgM is given 2× the upload data cap, fur-
ther demonstrating efficacy of FedDST. Code is available at:
https://github.com/bibikar/feddst.

Introduction
Driven by the desire to protect the privacy of personal data
and enable machine learning (ML) at the edge, Federated
Learning (FL) (McMahan et al. 2017; Kairouz et al. 2019)
has recently emerged as the de facto paradigm enabling dis-
tributed ML on a large number of client devices. In a FL
system, a central cloud server mediates information transfer
within a network of clients which must keep their local data

*Xiaohan Chen is the corresponding author, and one of the two
student authors who made major contributions in this work.
Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

private. Classical methods (McMahan et al. 2017) in FL in-
volve a number of synchronous rounds; in each round, FL
runs several local training epochs on a subset of devices us-
ing only data available locally on each device. After this lo-
cal training, the clients’ model updates, rather than the local
data, are sent over to the central server which then aggre-
gates them all to update a global model.

In FL systems, heavy computational workloads are dis-
patched from the cloud to resource-limited edge devices.
To enable usage at the edge, a FL system must optimize
both device-level local training efficiency and in-network
communication efficiency. Unfortunately, current ML mod-
els are typically too complex for inference at edge devices,
not to mention training. Besides model compactness, com-
munication efficiency between the cloud and devices is also
desirable. Client devices, such as mobile phones, often have
severe upload bandwidth limitations due to asymmetric in-
ternet connections, so reducing the upload cost of federated
learning algorithms is of paramount importance. Much prior
work in communication-efficient FL has focused on struc-
tured and sketched sparsity in FL updates (Konečný et al.
2017), optimal client sampling (Ribero and Vikalo 2020),
and other classical methods.

With the goal of producing lightweight models for infer-
ence on edge devices, significant efforts have been made
towards optimizing sparse neural networks (NNs) (Gale,
Elsen, and Hooker 2019; Chen et al. 2020, 2021; Ma et al.
2021). These methods significantly reduce inference la-
tency, but heavily impact compute and memory resources
needed for training. The lottery ticket hypothesis (Fran-
kle and Carbin 2018) demonstrated that dense NNs contain
sparse matching subnetworks that are capable of training in
isolation to full accuracy (Frankle et al. 2020). More works
show sparsity can emerge at initialization (Lee, Ajanthan,
and Torr 2019; Wang, Zhang, and Grosse 2020) or can be ex-
ploited in dynamic forms during training (Evci et al. 2020).

The overarching goal of this paper is to develop, imple-
ment, and experimentally validate a novel FL framework
termed Federated Dynamic Sparse Training (FedDST), by
which complex NNs can be deployed and trained with sub-
stantially improved efficiency of both on-device computa-
tion and in-network communication. At the core of Fed-
DST is a judiciously designed federated approach to dy-
namic sparse training (Evci et al. 2020). FedDST transmits

The Thirty-Sixth AAAI Conference on Artificial Intelligence (AAAI-22)

6080

clients’ highly sparse matching subnetworks instead of full
models, and allows each client to plug in efficient sparse dis-
tributed training - thus “killing two birds with one stone.”
More importantly, we discover that dynamic sparsity during
FL training accommodates local heterogeneity in FL more
robustly than state-of-the-art algorithms. Dynamic sparsity
itself leads to an in-time self-ensembling effect (Liu et al.
2021c) and improves the FL performance even over dense
training counterparts, which echoes observations in stan-
dalone training (Liu et al. 2021c). We summarize our contri-
butions as follows:

• For the first time, we introduce dynamic sparse train-
ing to federated learning and thus seamlessly integrate
sparse NNs and FL paradigms. Our framework, named
Federated Dynamic Sparse Training (FedDST), lever-
ages sparsity as the unifying tool to save both commu-
nication and local training costs.

• By using flexible aggregation methods, we deployed
FedDST on top of FedAvg (McMahan et al. 2017) with
no additional transmission overhead from clients. As a
general design principle, our method is readily extend-
able to other FL frameworks such as FedProx (Li et al.
2018). Furthermore, the notion of dynamic sparsity is
found to accommodate local heterogeneity, as well as
create the bonus effect of in-time self-ensembling, that
improve FL performance even over the dense baseline.

• Extensive experiments demonstrate that FedDST dra-
matically improves communication efficiency on diffi-
cult problems with pathologically non-iid data distribu-
tions. Even in these non-iid settings, FedDST provides a
3% accuracy improvement over FedAvgM (Hsu, Qi, and
Brown 2019) on CIFAR-10, while requiring only half
the upload bandwidth. We also provide extensive abla-
tion studies showing robustness of FedDST to reasonable
variations of its parameters. These results suggest sparse
training as the future “go-to” option for FL.

Related Work
Federated Learning
In federated learning (Kairouz et al. 2019), a set of clients
j ∈ [N] collaborate to learn one or multiple models with
the involvement of a central coordinating server. Each client
has a small set of training data Dj for local training, but to
preserve user privacy, clients do not share their local training
data. In this work, we attempt to learn a global model θ, and
aim to minimize the global loss

min
θ

∑
j∈[N]

∑
z∈Dj

`(θ; z). (1)

In the FedAvg (McMahan et al. 2017; Hsu, Qi, and Brown
2019) family of algorithms, training proceeds in communi-
cation rounds. To start each round i, the server selects a set
of clients Ci and sends the current server model parameters
θi to the clients. Each client j ∈ Ci performs E epochs of
training on the received model using its local training set to
produce parameters θij , which it uploads to the server; in Fe-
dAvg, client-local training is performed via SGD. The server

then updates the global model with a weighted average of the
sampled clients’ parameters. Reddi et al. (Reddi et al. 2021)
argue that the updates produced by clients can be interpreted
and used as pseudo-gradients. They thus generalize FedAvg
into the FedOpt framework, which allows “plugging in” dif-
ferent client and server optimizers.

Real-world FL settings present many challenges due to
non-iid data distributions, client heterogeneity, and limited
compute, memory, and bandwidth at the edge (Kairouz et al.
2019; Hong et al. 2021). Heterogeneity in the compute capa-
bilities of clients causes the so-called straggler problem, in
which certain clients take “too long” to form model updates
and the server must proceed without them. Hsu et al (Hsu,
Qi, and Brown 2019), in FedAvgM, demonstrate that adding
a momentum term to the client optimizer consistently im-
proves performance in non-iid settings. Li et al. (Li et al.
2018) propose FedProx which adds a proximal penalty to
FedAvg and allows stragglers to submit partial updates.

For communication-efficient FL, Konecny et al. (Konečný
et al. 2017) distinguish between sketched updates, in which
model updates are compressed during communication but
not during local training; and structured updates, in which
local training is performed directly on a compressed rep-
resentation. Relatively little prior art discusses pruning or
weight readjustment throughout the entire FL process.

Network Pruning
Model pruning aims to select a sparse subnetwork from a
larger NN by removing connections. Traditionally, prun-
ing methods start from a highly overparameterized trained
model, remove connections, and fine-tune the pruned model.
Common goals of pruning include saving compute, mem-
ory, communication, or other resources. Many selection cri-
teria are possible, including weight magnitude (Han, Mao,
and Dally 2015), optimal brain damage (LeCun, Denker,
and Solla 1990; Hassibi et al. 1993; Dong, Chen, and Pan
2017), zero activations (Hu et al. 2016), and Taylor expan-
sions (Molchanov et al. 2017).

Other recent studies have proposed a variety of algorithms
to perform “single-shot” pruning at initialization. Lee et
al. (Lee, Ajanthan, and Torr 2019) select connections at ini-
tialization by sampling a minibatch and sorting connections
by their sensitivity. Wang et al. (Wang, Zhang, and Grosse
2020) similarly sample a minibatch at initialization but in-
stead attempt to preserve gradient flow after pruning.

Dynamic Sparse Training
Dynamic sparse training (DST) shifts the selected subnet-
work regularly throughout the training process, maintain-
ing a constant number of parameters throughout. The semi-
nal work (Mocanu et al. 2018) proposed the SET algorithm
which iteratively prunes the smallest magnitude weights and
grows random connections. SET also maintains a partic-
ular distribution of model density by layer, following the
Erdős-Rényi random graph topology which scales the den-
sity of a layer with the number of input and output con-
nections. In RigL (Evci et al. 2020), the authors initialize
the sparsity mask randomly and perform layer-wise mag-
nitude pruning and gradient-magnitude weight growth. As

6081

in (Mocanu et al. 2018), they follow particular layer-wise
sparsity distributions and introduce the ERK sparsity dis-
tribution for convolutional layers, thus scaling their density
by both number of connections and kernel size. Liu et al.
(2021c) demonstrate the benefits that DST gains from pa-
rameter exploration; specifically, by exploring a number of
possible sparse networks, DST is able to effectively perform
“temporal self-ensembling,” allowing for performance ad-
vantages even over dense networks (Liu et al. 2021a,b).

Pruning in Federated Learning
To our knowledge, there are only two works that address
pruning throughout the FL process. PruneFL (Jiang et al.
2020) relies on an initial mask selected at a particular client,
followed by a FedAvg-like algorithm that performs mask
readjustment every ∆R rounds. Training is then performed
via sparse matrix operations. On mask readjustment rounds,
clients are required to upload full dense gradients which the
server uses to form the aggregate gradient g. When select-
ing a mask, the indices j corresponding to prunable weights
are sorted by g2

j /tj , where tj is an estimate of the time cost
of retaining connection j in the network. The estimates tj
are determined experimentally by measuring the time cost
of one round of FL with various sparsities.

LotteryFL (Li et al. 2020) takes inspiration from LG-
FedAvg (Liang et al. 2020) and allows clients to maintain
local representations by selecting a local subset of the global
network. It can also be described as an extension of Fe-
dAvg in which each client c maintains a separate mask mc.
At each round r, selected clients evaluate their subnetworks
θr � mr

c using local validation sets. If the validation accu-
racy exceeds a predefined threshold and the client’s current
sparsity ‖mr

c‖0 is less than the target sparsity, then magni-
tude pruning is performed to produce a new mask mr+1

c and
the corresponding weights are reset to their initial values.

Comparing FedDST to prior pruning works in FL.
First, unlike LotteryFL, which produces a system of sparse
models that only perform well on local datasets, FedDST
produces one global sparse model, dynamic over time, that
performs well everywhere. FedDST performs mask read-
justments on both clients and server but these are relatively
low-overhead operations (layer-wise magnitude pruning and
gradient-magnitude growth). Moreover, FedDST transmits
neither dense models nor gradients, and does not train a
dense model even at the very beginning: this is in sharp con-
trast to LotteryFL and makes FedDST significantly lighter.

Second, unlike PruneFL, FedDST is designed for a chal-
lenging, realistic non-iid FL setting. For this reason, Fed-
DST’s aggregation and dynamic sparse training, which al-
low mask readjustments at the client, provide resilience to
non-iid data in a way that PruneFL’s adaptive pruning crite-
ria cannot achieve. In particular, PruneFL’s clients do not
readjust masks after the first round; they instead transmit
gradients to the server on certain rounds, and the server uses
gradient magnitudes and layer times to decide the mask for
the next round. Since data heterogeneity means that gradient
magnitudes cannot be directly compared between clients,
gradient aggregation is inherently unstable. FedDST pro-
vides stable updates by deciding on the mask at the server

Algorithm 1: Overview of the proposed Federated
Dynamic Sparse Training (FedDST).

Input: Clients [N] with local datasets Di
Sparsities by layer S = {s1, . . . , sL}
Update schedule ∆R,Rend , α

r

Initialize server model (θ1,m1) at sparsity∥∥m1
∥∥

0
= S;

for each round r ∈ [R] do
Sample clients Cr ⊂ [N];
Transmit the server model (θr,mr) to all clients
c ∈ Cr;

for each client c ∈ Cr do in parallel
Receive (θrc ,m

r
c)← (θr,mr) from the

server;
for each epoch e ∈ [E] do

Sample a minibatch B from Dc;
Perform one step of local training of local
sparse network θrc �mr

c on B;
if r mod ∆R = 0 and e = Ep and
r < Rend then

Perform layer-wise magnitude
pruning
(θrc ,m

r
c)← prune(θrc ; S1−αr) to

attain sparsity distribution S1−αr ;
Perform layer-wise gradient
magnitude growth
(θrc ,m

r
c)← grow(θrc , g

r
c ; S) to attain

sparsity distribution S;
end

end
Transmit the new (θ

′r
c ,m

′r
c) to the server (do

not transmit the mask if it has not changed);
endfor
Receive the updated client-local networks and
masks (θ

′r
c ,m

′r
c) from clients c ∈ Cr;

Aggregate networks
θr+1/2 ← A({θr+1

c ,mr+1
c }c∈Cr);

Perform layer-wise magnitude pruning
(θr+1,mr+1)← prune(θr+1/2; S) to attain
sparsity distribution S;

end

using only weight magnitudes and mask “votes” submitted
by the clients. Our experiments demonstrate advantage of
FedDST vs. PruneFL in terms of the generalization power.

Thanks to the fixed sparsity budget throughout training,
FedDST updates require very little network bandwidth, even
in the worst case. Though PruneFL also transmits sparse up-
dates for most of the rounds, it transmits full dense gradi-
ents to the server every few rounds to facilitate mask read-
justments. LotteryFL requires clients to transmit dense mod-
els unless their accuracy meets a certain threshold, so dense
transmissions happen even more frequently.

6082

Methodology
FedDST provides a fully federated approach to dynamic
sparse training of NNs. In this method, we aim to learn a sin-
gle model that provides good accuracy to all clients, while
also consuming minimal compute, memory, and communi-
cation resources. Our method is designed to perform well
even in pathologically non-iid settings.

FedDST: Overview of the General Framework
We begin on the server by initializing a server network θ1

and a sparse maskm1, following the layer-wise sparsity dis-
tribution described in (Evci et al. 2020). At each round r, the
server samples clients Cr. The server network and mask are
sent to clients c ∈ Cr. Each client performs E epochs of lo-
cal training. After the Ep-th epoch of local training, clients
perform a mask readjustment, which reallocates αr of the
model mass to different connections. Readjustment is only
performed on certain rounds, and the frequency of readjust-
ment is specified by ∆R.

The selected clients upload their new sparse network and
mask (if needed) to the server, and the server aggregates
the received information to produce new global parameters
and mask (θr+1,mr+1). Server-side aggregation methods
are discussed later in this section.

The client-side mask readjustment procedure is familiar
and takes inspiration from RigL (Evci et al. 2020). The goal
of the mask readjustment is to reallocate αr of the model
mass in order to seek a more effective subnetwork. We first
prune the network to an even higher sparsity S+ (1−S)αr,
while maintaining the same distribution of weights. Then,
we regrow the same number of weights that were pruned, via
gradients grc , returning to the same original sparsity. Because
different clients in a round may produce different masks, the
server has to aggregate multiple sparse networks that may
have explored the mask space in completely different di-
rections. As in (Evci et al. 2020; Dettmers and Zettlemoyer
2019), we use a cosine decay update schedule for αr,

αr =
α

2

(
1 + cos

(
(r − 1)π

Rend

))
. (2)

On the first round, we have α1 = α, and the propor-
tion of weights reallocated each time decays to 0 at round
Rend . The parameter α controls the tradeoff between explo-
ration of the mask space and agreement between clients on
mask decisions. Larger values of α encourage moving more
quickly around the mask space, whereas smaller values en-
courage agreement and incremental adjustment of the mask.
We explore the effect of α in the experiments.

Server Aggregation with Robustness to Heterogeneity
Because the server does not directly receive gradients from
clients, it must decide on the mask for the next round us-
ing only the parameters and masks received from the clients.
From this, we define the sparse weighted average:

θr+1/2[i]←
∑
c∈Cr

ncθ
′r
c [i]m

′r
c [i]∑

c∈Cr
ncm

′r
c [i]

. (3)

This method takes inspiration from the weighted averages
used in FedAvg (McMahan et al. 2017), in which the effect

of a particular client on a particular parameter is weighted by
the dataset size at that client. However, the sparse weighted
average also ignores parameter values from clients that did
not provide any value. In particular, if a client has pruned
out a weight, that client is ignored for the purposes of ag-
gregation of that weight. Especially in pathologically non-
iid FL settings, we find FedDST to benefit greatly from
this mask aggregation method. Magnitudes of stochastic
gradients cannot be directly compared between clients be-
cause data distribution varies greatly between clients. For
this reason, methods such as PruneFL exhibit mask instabil-
ity problems in the same setting. FedDST uses magnitudes
of weights and “votes” from clients to solve this problem.

Accuracy Gains from Dynamic Sparsity: A Spatial-
Temporal Ensembling Effect. Our experiments show
that FedDST gains not only communication/computational
savings, but also performance improvements: this is par-
ticularly notable in highly non i.i.d. settings. We attribute
the “less is more” phenomenon to an underlying spatial-
temporal “ensembling effect” allowed uniquely by FedDST.

On the “spatial” side, we refer to the fact that in FedDST,
one mask is sent from the cloud to all clients, yet each client
can re-adjust their mask and re-sample the weights accord-
ing to its non i.i.d. local data. These new sparse masks and
weights are periodically re-assembled in the cloud, reminis-
cent of the famous model sub-sampling and ensembling ef-
fect of “dropout” (Hinton et al. 2012), now along FL’s spa-
tial dimension (across clients). That is, each client can be
viewed as a differently sampled subnetwork of the dense
cloud model (not random, but “learned dropout”), and such
can provide a regularization effect on training more robust
weights for the cloud model by ensembling those subnet-
work weights. Note that this similar effect does not take
place in PruneFL, where all clients share one mask at each
time. While LotteryFL also allows each client to have its
own mask, it comes with heavy local computational over-
head. On the “temporal” side, FedDST explores the mask
space through time while also learning weights θr. Taken
together, it allows for a continuous parameter exploration
across training, taming a space-time over-parameterization
(Liu et al. 2021c), which can significantly improve the ex-
pressibility and generalizability of sparse training.

Extending FedDST to Other FL Frameworks From the
basic example above, FedDST can easily accommodate dif-
ferent local and global optimizers, as described in (Reddi
et al. 2021). Algorithm 1 shows a general outline of Fed-
DST, where local training can use any optimizer as needed.
For example, we use SGD with momentum as described in
(Hsu, Qi, and Brown 2019) as the local optimizer in our ex-
periments. The pseudo-gradient generated by the aggregated
sparse updates can also be used with other global optimizers.

FedDST is also compatible with FedProx (Li et al.
2018) and its proximal penalty ‖θrc − θr‖2. However, if this
penalty is directly used for mask readjustment, the penalty
will act as a weight decay term on weights that have been
pruned out. These weights will thus be less likely to be se-
lected for regrowth. Therefore, in client growth, we use gra-
dients corresponding to the loss without the proximal term.

6083

Communication and Local Training Savings

Communication Analysis: FedDST provides significant
competitive bandwidth savings at both uploading and down-
loading links. Let n denote the number of parameters in the
network. In FedDST, the same sparsity S is maintained at
each round and masks are only uploaded and downloaded
a maximum of once every ∆R rounds, so FedDST has an
average upload and download cost of

(
32(1− S) + 1

∆R

)
n

bits per client per round before Rend , and a cost of 32(1 −
S)n after Rend . Furthermore, the maximum upload or
download cost at any client is (32(1− S) + 1)n bits, so
FedDST successfully avoids placing the burden of large up-
loads on any one client for any round. We believe that these
upload cost savings should also help significantly to combat
the straggler problem (Li et al. 2018; Kairouz et al. 2019) in
practice, as clients with much slower connections will never
be forced to upload full models or gradients. Furthermore, in
commercial FL systems with a large number of clients, it is
likely that a particular client will only be selected once. With
this upper limit on bandwidth costs, FedDST also makes it
practical to learn models via FL, even on cellular networks.

This is in contrast to PruneFL, which requires clients
to send full gradients to the server every ∆R rounds,
leading to an average upload cost of

(
32(1− S) + 32

∆R

)
n

bits per client per round, and a maximum upload cost
of (32(1− S) + 32)n. Thus FedDST is no worse than
PruneFL during normal rounds, and at sparsity S = 0.8,
FedDST is 5× cheaper than PruneFL per round with re-
spect to upload cost during mask readjustment rounds. Fi-
nally, PruneFL relies on a single client to provide an initial
sparsity pattern. Because of local client heterogeneity in FL,
the mask produced by one client tends to reflect the local
data distribution of that client. For the same reason, later up-
dates to the sparsity pattern exhibit instability. FedDST com-
pletely bypasses these problems by starting with a random
mask followed by the sparse weighted average aggregation.

Computation Analysis: FedDST also saves considerable
local computational workloads in FL by maintaining sparse
networks throughout the FL process. No part of FedDST re-
quires dense training. In terms of FLOP savings, this allows
us to skip most of the FLOPs in both training and inference,
proportional to the sparsity of the model. For example, at
80% sparsity, for forward computation on the network we
use on CIFAR-10, only 0.8 MFLOPs are required, while 4.6
MFLOPs are required for the dense network. For the same
reason, the experiments against cumulative upload data caps
also roughly reflect the accuracy at different FLOP limits.

Note that following the convention of (Mocanu et al.
2018; Evci et al. 2020; Liu et al. 2021c), FedDST so far
only considers element-wise unstructured sparsity. Unstruc-
tured sparsity was traditionally considered less translatable
into real hardware benefits due to irregular access (Wen
et al. 2016). However, at 70%-90% unstructured sparsity,
XNNPack (Elsen et al. 2020) recently showed significant
speedups over dense baselines on smartphones, motivating
our future work to optimize practical local training speedups
on a FL hardware platform, and to incorporate structured
sparsity in dynamic sparse training (You et al. 2020).

Best accuracy encountered at
cumulative upload capacity [GiB]

Method 1 2 3 4

FedAvgM 85.25 96.32 97.16 97.53
FedProx (µ = 1) 82.34 95.84 97.16 97.54

FedAvgM bfloat16 77.41 90.13 96.88 97.46
RandomMask 93.61 96.89 97.5 97.72

GraSP 61.95 86.06 94.15 96.29
PruneFL 78.12 89.29 91.65 93.26
FedDST 96.10 97.35 97.67 97.83

FedDST+FedProx 95.35 96.97 97.26 97.81

Table 1: Accuracy of FedDST and other methods given cu-
mulative upload bandwidth limits, on non-iid MNIST. We
fix S = 0.8 for sparse methods, α = 0.05 for DST methods,
and µ = 1 for the proximal penalty.

Best accuracy encountered at
cumulative upload capacity [GiB]

Method 4 8 12 16

FedAvgM 24.43 33.87 37.07 40.52
FedProx (µ = 1) 23.54 34.01 39.08 42.56

FedAvgM bfloat16 22.58 34.05 37.10 41.65
RandomMask 33.98 41.86 45.99 48.01

GraSP 15.68 29.5 39.7 44.85
PruneFL 17.37 25.3 30.88 35.29
FedDST 35.41 42.27 46.72 50.67

FedDST+FedProx 33.03 43.18 46.66 49.69

Table 2: Accuracy of FedDST and other methods given cu-
mulative upload bandwidth limits, on non-iid CIFAR-10. We
fix S = 0.8 for sparse methods, α = 0.001 for FedDST
alone, α = 0.01 for FedDST with the proximal penalty, and
µ = 1 for the proximal penalty.

Best accuracy encountered at
cumulative upload capacity [GiB]

Method 8 16 24 32

FedAvgM 6.66 9.29 10.13 10.94
FedProx (µ = 1) 2.74 3.87 4.42 5.12

FedAvgM bfloat16 7.78 9.92 10.92 12.02
RandomMask 7.15 8.65 9.41 9.69

GraSP 4.45 6.61 7.78 8.37
PruneFL 5.78 8.10 9.44 10.02
FedDST 9.14 11.30 13.18 13.96

FedDST+FedProx 9.40 11.29 13.46 14.57

Table 3: Accuracy of FedDST and other methods given cu-
mulative upload bandwidth limits, on non-iid CIFAR-100.
We fix S = 0.5 for sparse methods, α = 0.01 for FedDST,
and µ = 1 for the proximal penalty.

Experiments
We use MNIST (LeCun, Cortes, and Burges 2010)
and CIFAR-10 (Krizhevsky 2009) datasets distributed

6084

among clients in a “pathologically non-iid” setting, similar
to (McMahan et al. 2017) and matching the datasets used
in (Li et al. 2020). We assume a total pool of 400 clients.
Each client is assigned 2 classes and given 20 training im-
ages from each class. To distribute CIFAR-100 (Krizhevsky
2009) in a non-iid fashion, we use a Dirichlet(0.1) distri-
bution for each class to distribute its samples among 400
clients, as in (Wang et al. 2020; Li, He, and Song 2021;
Wang et al. 2021). These distributions represent a challeng-
ing and realistic training environment, with only a fraction
of the training data available and distributed in a severely
non-iid fashion among clients. We provide more details for
all datasets in the appendix.

Main Results

We compare FedDST to competitive state-of-the-art base-
lines. Both FedAvgM (Hsu, Qi, and Brown 2019) and Fed-
Prox (Li et al. 2018) are designed for non-iid settings. We
include PruneFL (Jiang et al. 2020) as the other method
involving dynamic sparsity in FL. As mentioned before,
PruneFL relies on stochastic gradients uploaded by clients,
so its masks exhibit instability between reconfigurations. In
the cases where PruneFL converged, it selected an all-ones
mask, recovering plain FedAvg. Note that because FedDST
aims to produce a single model in each round that performs
well on all clients, we do not compare to algorithms pro-
ducing separate models for each client, such as LG-FedAvg
(Liang et al. 2020) and LotteryFL (Li et al. 2020).

For RandomMask, we randomly sample weights at the
server, then perform layer-wise magnitude pruning, follow-
ing the ERK sparsity distribution (Evci et al. 2020), before
the first round, and perform FedAvgM on this sparse net-
work. The random mask selected is held constant as the
global and local sparsity mask throughout training. Random-
Mask represents a strong communication-efficient baseline
for this non-iid setting, in which the noisy magnitudes of
stochastic gradients cause methods that rely on gradient ag-
gregation, such as PruneFL, to fail. Furthermore, the data
heterogeneity in this environment causes GraSP to select a
mask that works well for the initially chosen client but does
not work well as a global mask. Despite this challenging en-
vironment, FedDST still produces significant accuracy im-
provements over the strong RandomMask baseline.

Tables 1, 2, and 3 provide accuracies achieved by FedDST
and other algorithms given certain upload bandwidth limits.
We report the best test accuracy seen before each limit, aver-
aged across 10 runs. FedDST consistently provides the best
performance at any upload limit, halving upload cost with
respect to FedAvgM in all settings we tested.

Compatibility with FedProx Our experimental results
also confirm that FedDST is compatible with other FL
frameworks, including FedProx. For this experiment, we add
FedProx’s proximal term and adjust FedDST’s growth crite-
rion as described in the overview. Figure 1 shows that ap-
plying FedDST to FedProx consistently improves its perfor-
mance across datasets. FedDST is therefore a general frame-
work that can be applied to various FL optimizers.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Cumulative upload cost [GiB]

0.90

0.92

0.94

0.96

0.98

1.00

Be
st

 a
cc

ur
ac

y
se

en

FedDST, S= 0.8, compatibility with FedProx
MNIST, 20 clients/round, 10 epochs/round, = 0.01

FedAvg
FedProx(= 1)
FedDST = 0.05,Radj= 10
FedDST = 0.05,Radj= 10, = 1

(a) FedDST+FedProx on non-iid MNIST

0 2 4 6 8 10 12 14 16
Cumulative upload cost [GiB]

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

Be
st

 a
cc

ur
ac

y
se

en

FedDST, S= 0.8, compatibility with FedProx
CIFAR-10, 20 clients/round, 10 epochs/round, = 0.01

FedAvg
FedProx(= 1)
FedDST = 0.01,Radj= 15
FedDST = 0.01,Radj= 15, = 1

(b) FedDST+FedProx on non-iid CIFAR-10

0 5 10 15 20 25 30
Cumulative upload cost [GiB]

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

Be
st

 a
cc

ur
ac

y
se

en

FedDST, S= 0.5, compatibility with FedProx
CIFAR-100, 20 clients/round, 10 epochs/round, = 0.01

FedAvg
FedProx(= 1)
FedDST = 0.01,Radj= 10
FedDST = 0.01,Radj= 10, = 1

(c) FedDST+FedProx on non-iid CIFAR-100

Figure 1: FedDST is compatible with other popular FL
frameworks, such as FedProx. This shows that FedDST is
a general framework that can also apply to other optimizers.

Insensitivity to Variations in α
In Figure 2, we show that FedDST performs well with any
reasonable value of α, even in the non-iid setting we ex-
plore in this paper. The non-iid distribution targeted by Fed-
DST leads to noisy stochastic gradients produced by clients.
Thus, directly using the magnitudes of gradients to produce
mask readjustments causes large variations in the mask. Fed-
DST effectively sidesteps this problem by only using the top
local stochastic gradients to “vote” for particular weight in-

6085

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Cumulative upload cost [GiB]

0.90

0.92

0.94

0.96

0.98

1.00
Be

st
 a

cc
ur

ac
y

se
en

FedDST, S= 0.8, effect of
MNIST, 20 clients/round, 10 epochs/round, = 0.01

FedAvg
FedProx(= 1)
FedDST = 0.05,Radj= 10
FedDST = 0.01,Radj= 10

(a) FedDST on non-iid MNIST

0 2 4 6 8 10 12 14 16
Cumulative upload cost [GiB]

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

Be
st

 a
cc

ur
ac

y
se

en

FedDST, S= 0.8, effect of
CIFAR-10, 20 clients/round, 10 epochs/round, = 0.01

FedAvg
FedProx(= 1)
FedDST = 0.01,Radj= 15
FedDST = 0.001,Radj= 10

(b) FedDST on non-iid CIFAR-10

Figure 2: FedDST is insensitive to certain variations in α.

dices. The parameter α specifies how many of these “votes”
should be submitted to the server. However, suitable values
for α are still smaller than in RigL; for α ∈ [0.001, 0.05],
FedDST significantly outperforms other methods.

Performance at Different Sparsity Levels
In Figure 3, we show that FedDST’s performance is ro-
bust to variations in sparsity. As sparsity directly leads to
communication savings, FedDST performs best at relatively
high sparsities, even on the lightweight NNs we test here.
However, even at untuned sparsity levels, FedDST performs
reasonably well and converges much more quickly than
FedAvgM, especially at the beginning of the FL process.
Hence we run all FedDST experiments at sparsity 0.5 or 0.8.

Conclusion and Broader Impacts
We introduce Federated Dynamic Sparse Training (Fed-
DST), a powerful framework for communication-efficient
federated learning via dynamic sparse training, which works
well even on pathologically non-iid datasets. We show ex-
perimentally that FedDST consistently outperforms compet-
ing algorithms, producing up to 3% better accuracy than Fe-
dAvgM with half the upload bandwidth on non-iid CIFAR-
10. We further demonstrate that FedDST is compatible with
other popular federated optimization frameworks such as

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Cumulative upload cost [GiB]

0.90

0.92

0.94

0.96

0.98

1.00

Be
st

 a
cc

ur
ac

y
se

en

FedDST, = 0.05,Radj= 10, variations in sparsity
MNIST, 20 clients/round, 10 epochs/round, = 0.01

FedAvg
FedProx(= 1)
FedDST S= 0.6
FedDST S= 0.7
FedDST S= 0.8

(a) FedDST with varying sparsity on non-iid MNIST

0 2 4 6 8 10 12 14 16
Cumulative upload cost [GiB]

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

Be
st

 a
cc

ur
ac

y
se

en

FedDST, = 0.01,Radj= 15, variations in sparsity
CIFAR-10, 20 clients/round, 10 epochs/round, = 0.01

FedAvg
FedProx(= 1)
FedDST S= 0.6
FedDST S= 0.7
FedDST S= 0.8

(b) FedDST with varying sparsity on non-iid CIFAR-10

0 5 10 15 20 25 30
Cumulative upload cost [GiB]

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

Be
st

 a
cc

ur
ac

y
se

en

FedDST, = 0.01,Radj= 10, variations in sparsity
CIFAR-100, 20 clients/round, 10 epochs/round, = 0.01

FedAvg
FedProx(= 1)
FedDST S= 0.5
FedDST S= 0.6

(c) FedDST with varying sparsity on non-iid CIFAR-100

Figure 3: FedDST is robust to sparsity variations, and per-
forms the best at reasonable sparsities.

FedProx. Our results indicate a bright future for sparsity in
even the most difficult FL settings.

FL has the potential to enable learning NNs in situations
in which privacy of user data is of paramount importance.
For example, medical datasets are bound by strong legal re-
strictions and cannot be exchanged between clients. Further-
more, FL can provide stronger privacy guarantees in existing
machine learning settings involving user data. With its focus
on improving communication efficiency and performance,
FedDST makes more FL settings practical in the wild.

6086

Acknowledgements
The authors would like to recognize that the corresponding
author, Xiaohan Chen, was the other student author driving
the idea and experimental design in this paper.

Portions of this research (by S. Bibikar and H.
Vikalo) were sponsored by the Army Research Office and
were accomplished under Cooperative Agreement Number
W911NF-19-2-0333. The views and conclusions contained
in this document are those of the authors and should not
be interpreted as representing the official policies, either
expressed or implied, of the Army Research Office or the
U.S. Government. The U.S. Government is authorized to
reproduce and distribute reprints for Government purposes
notwithstanding any copyright notation herein.

X. Chen and Z. Wang’s research were supported in part
by the NSF Real-Time Machine Learning program (Award
Number: 2053279), and the NSF AI Institute for Founda-
tions of Machine Learning (IFML).

References
Chen, T.; Frankle, J.; Chang, S.; Liu, S.; Zhang, Y.; Carbin,
M.; and Wang, Z. 2021. The lottery tickets hypothesis for
supervised and self-supervised pre-training in computer vi-
sion models. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 16306–16316.
Chen, T.; Frankle, J.; Chang, S.; Liu, S.; Zhang, Y.; Wang,
Z.; and Carbin, M. 2020. The lottery ticket hypothesis for
pre-trained bert networks. Advances in Neural Information
Processing Systems (NeurIPS).
Dettmers, T.; and Zettlemoyer, L. 2019. Sparse Networks
from Scratch: Faster Training without Losing Performance.
arXiv:1907.04840.
Dong, X.; Chen, S.; and Pan, S. 2017. Learning to Prune
Deep Neural Networks via Layer-wise Optimal Brain Sur-
geon. In Guyon, I.; Luxburg, U. V.; Bengio, S.; Wallach,
H.; Fergus, R.; Vishwanathan, S.; and Garnett, R., eds.,
Advances in Neural Information Processing Systems, vol-
ume 30. Curran Associates, Inc.
Elsen, E.; Dukhan, M.; Gale, T.; and Simonyan, K. 2020.
Fast sparse convnets. In Proceedings of the IEEE/CVF con-
ference on computer vision and pattern recognition, 14629–
14638.
Evci, U.; Gale, T.; Menick, J.; Castro, P. S.; and Elsen, E.
2020. Rigging the lottery: Making all tickets winners. In In-
ternational Conference on Machine Learning, 2943–2952.
PMLR.
Frankle, J.; and Carbin, M. 2018. The Lottery Ticket Hy-
pothesis: Finding Sparse, Trainable Neural Networks. In In-
ternational Conference on Learning Representations.
Frankle, J.; Dziugaite, G. K.; Roy, D.; and Carbin, M. 2020.
Linear mode connectivity and the lottery ticket hypothesis.
In International Conference on Machine Learning, 3259–
3269. PMLR.
Gale, T.; Elsen, E.; and Hooker, S. 2019. The state of spar-
sity in deep neural networks. arXiv:1902.09574.

Han, S.; Mao, H.; and Dally, W. J. 2015. Deep compression:
Compressing deep neural networks with pruning, trained
quantization and huffman coding. In International Confer-
ence on Learning Representations.

Hassibi, B.; Stork, D. G.; Wolff, G.; and Watanabe, T. 1993.
Optimal Brain Surgeon: Extensions and Performance Com-
parisons. In Proceedings of the 6th International Confer-
ence on Neural Information Processing Systems, NIPS’93,
263–270. San Francisco, CA, USA: Morgan Kaufmann Pub-
lishers Inc.

Hinton, G. E.; Srivastava, N.; Krizhevsky, A.; Sutskever,
I.; and Salakhutdinov, R. R. 2012. Improving neural net-
works by preventing co-adaptation of feature detectors.
arXiv:1207.0580.

Hong, J.; Zhu, Z.; Yu, S.; Wang, Z.; Dodge, H. H.; and Zhou,
J. 2021. Federated Adversarial Debiasing for Fair and Trans-
ferable Representations. In Proceedings of the 27th ACM
SIGKDD Conference on Knowledge Discovery & Data Min-
ing, 617–627.

Hsu, T.-M. H.; Qi, H.; and Brown, M. 2019. Measuring
the Effects of Non-Identical Data Distribution for Federated
Visual Classification. arXiv:1909.06335.

Hu, H.; Peng, R.; Tai, Y.-W.; and Tang, C.-K. 2016. Net-
work Trimming: A Data-Driven Neuron Pruning Approach
towards Efficient Deep Architectures. arXiv:1607.03250.

Jiang, Y.; Wang, S.; Valls, V.; Ko, B. J.; Lee, W.-H.;
Leung, K. K.; and Tassiulas, L. 2020. Model Pruning
Enables Efficient Federated Learning on Edge Devices.
arXiv:1909.12326.

Kairouz, P.; McMahan, H. B.; Avent, B.; Bellet, A.; Bennis,
M.; Bhagoji, A. N.; Bonawitz, K.; Charles, Z.; Cormode,
G.; Cummings, R.; D’Oliveira, R. G. L.; Rouayheb, S. E.;
Evans, D.; Gardner, J.; Garrett, Z.; Gascón, A.; Ghazi, B.;
Gibbons, P. B.; Gruteser, M.; Harchaoui, Z.; He, C.; He,
L.; Huo, Z.; Hutchinson, B.; Hsu, J.; Jaggi, M.; Javidi, T.;
Joshi, G.; Khodak, M.; Konečný, J.; Korolova, A.; Koushan-
far, F.; Koyejo, S.; Lepoint, T.; Liu, Y.; Mittal, P.; Mohri,
M.; Nock, R.; Özgür, A.; Pagh, R.; Raykova, M.; Qi, H.;
Ramage, D.; Raskar, R.; Song, D.; Song, W.; Stich, S. U.;
Sun, Z.; Suresh, A. T.; Tramèr, F.; Vepakomma, P.; Wang,
J.; Xiong, L.; Xu, Z.; Yang, Q.; Yu, F. X.; Yu, H.; and Zhao,
S. 2019. Advances and Open Problems in Federated Learn-
ing. arXiv:1912.04977.

Konečný, J.; McMahan, H. B.; Yu, F. X.; Richtárik, P.;
Suresh, A. T.; and Bacon, D. 2017. Federated Learn-
ing: Strategies for Improving Communication Efficiency.
arXiv:1610.05492.

Krizhevsky, A. 2009. Learning multiple layers of features
from tiny images. Technical report, University of Toronto.

LeCun, Y.; Cortes, C.; and Burges, C. 2010. MNIST
handwritten digit database. ATT Labs [Online]. Available:
http://yann.lecun.com/exdb/mnist, 2.

LeCun, Y.; Denker, J.; and Solla, S. 1990. Optimal Brain
Damage. In Touretzky, D., ed., Advances in Neural Infor-
mation Processing Systems, volume 2. Morgan-Kaufmann.

6087

Lee, N.; Ajanthan, T.; and Torr, P. 2019. SNIP: Single-shot
network pruning based on connection sensitivity. In Inter-
national Conference on Learning Representations.

Li, A.; Sun, J.; Wang, B.; Duan, L.; Li, S.; Chen, Y.; and
Li, H. 2020. LotteryFL: Personalized and Communication-
Efficient Federated Learning with Lottery Ticket Hypothesis
on Non-IID Datasets. arXiv:2008.03371.

Li, Q.; He, B.; and Song, D. 2021. Model-Contrastive Feder-
ated Learning. In 2021 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), 10708–10717. Los
Alamitos, CA, USA: IEEE Computer Society.

Li, T.; Sahu, A. K.; Zaheer, M.; Sanjabi, M.; Talwalkar, A.;
and Smith, V. 2018. Federated optimization in heteroge-
neous networks. arXiv:1812.06127.

Liang, P. P.; Liu, T.; Ziyin, L.; Salakhutdinov, R.; and
Morency, L.-P. 2020. Think locally, act globally: Fed-
erated learning with local and global representations.
arXiv:2001.01523.

Liu, S.; Chen, T.; Atashgahi, Z.; Chen, X.; Sokar, G.; Mo-
canu, E.; Pechenizkiy, M.; Wang, Z.; and Mocanu, D. C.
2021a. Deep Ensembling with No Overhead for either Train-
ing or Testing: The All-Round Blessings of Dynamic Spar-
sity. arXiv:2106.14568.

Liu, S.; Chen, T.; Chen, X.; Atashgahi, Z.; Yin, L.; Kou,
H.; Shen, L.; Pechenizkiy, M.; Wang, Z.; and Mocanu, D. C.
2021b. Sparse Training via Boosting Pruning Plasticity with
Neuroregeneration. In Advances in Neural Information Pro-
cessing Systems (NeurIPS).

Liu, S.; Yin, L.; Mocanu, D. C.; and Pechenizkiy,
M. 2021c. Do We Actually Need Dense Over-
Parameterization? In-Time Over-Parameterization in Sparse
Training. arXiv:2102.02887.

Ma, X.; Yuan, G.; Shen, X.; Chen, T.; Chen, X.; Chen, X.;
Liu, N.; Qin, M.; Liu, S.; Wang, Z.; et al. 2021. Sanity
Checks for Lottery Tickets: Does Your Winning Ticket Re-
ally Win the Jackpot? Advances in Neural Information Pro-
cessing Systems, 34.

McMahan, B.; Moore, E.; Ramage, D.; Hampson, S.; and
y Arcas, B. A. 2017. Communication-Efficient Learning of
Deep Networks from Decentralized Data. In Singh, A.; and
Zhu, J., eds., Proceedings of the 20th International Con-
ference on Artificial Intelligence and Statistics, volume 54
of Proceedings of Machine Learning Research, 1273–1282.
Fort Lauderdale, FL, USA: PMLR.

Mocanu, D. C.; Mocanu, E.; Stone, P.; Nguyen, P. H.;
Gibescu, M.; and Liotta, A. 2018. Scalable training of ar-
tificial neural networks with adaptive sparse connectivity in-
spired by network science. Nature Communications, 9(1):
2383.

Molchanov, P.; Tyree, S.; Karras, T.; Aila, T.; and Kautz,
J. 2017. Pruning Convolutional Neural Networks for Re-
source Efficient Inference. In 5th International Conference
on Learning Representations, ICLR 2017, Toulon, France,
April 24-26, 2017, Conference Track Proceedings. OpenRe-
view.net.

Reddi, S. J.; Charles, Z.; Zaheer, M.; Garrett, Z.; Rush, K.;
Konečný, J.; Kumar, S.; and McMahan, H. B. 2021. Adap-
tive Federated Optimization. In International Conference on
Learning Representations.
Ribero, M.; and Vikalo, H. 2020. Communication-
efficient federated learning via optimal client sampling.
arXiv:2007.15197.
Wang, C.; Zhang, G.; and Grosse, R. 2020. Picking Winning
Tickets Before Training by Preserving Gradient Flow. In
International Conference on Learning Representations.
Wang, H.; Yurochkin, M.; Sun, Y.; Papailiopoulos, D.; and
Khazaeni, Y. 2020. Federated Learning with Matched Aver-
aging. In International Conference on Learning Represen-
tations.
Wang, L.; Xu, S.; Wang, X.; and Zhu, Q. 2021. Addressing
Class Imbalance in Federated Learning. Proceedings of the
AAAI Conference on Artificial Intelligence, 35(11): 10165–
10173.
Wen, W.; Wu, C.; Wang, Y.; Chen, Y.; and Li, H. 2016.
Learning structured sparsity in deep neural networks. In
Proceedings of the 30th International Conference on Neu-
ral Information Processing Systems, 2082–2090.
You, H.; Li, C.; Xu, P.; Fu, Y.; Wang, Y.; Chen, X.; Baraniuk,
R. G.; Wang, Z.; and Lin, Y. 2020. Drawing Early-Bird Tick-
ets: Toward More Efficient Training of Deep Networks. In
Int. Conf. on Learning Representations.

6088

