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Abstract

We consider a distributed learning setting where strategic
users are incentivized by a fusion center, to train a learn-
ing model based on local data. The users are not obliged to
provide their true gradient updates and the fusion center is
not capable of validating the authenticity of reported updates.
Thus motivated, we formulate the interactions between the
fusion center and the users as repeated games, manifesting
an under-explored interplay between machine learning and
game theory. We then develop an incentive mechanism for
the fusion center based on a joint gradient estimation and user
action classification scheme, and study its impact on the con-
vergence performance of distributed learning. Further, we de-
vise adaptive zero-determinant (ZD) strategies, thereby gen-
eralizing the classical ZD strategies to the repeated games
with time-varying stochastic errors. Theoretical and empiri-
cal analysis show that the fusion center can incentivize the
strategic users to cooperate and report informative gradient
updates, thus ensuring the convergence.

Introduction
Distributed machine learning is becoming increasingly im-
portant in large-scale problems with data-intensive appli-
cations (Jordan, Lee, and Yang 2019; Li et al. 2014; Low
et al. 2012; Xing et al. 2016). Notably, federated learning
has emerged as an attractive distributed computing paradigm
that aims to learn an accurate model without collecting data
from the owners and storing it in the cloud: The training
data is kept locally on the computing devices which partici-
pate in the model training and report gradient updates (or its
variants) based on local data (Konečný et al. 2016).

We study a distributed learning scheme in which privacy-
aware users train a global model with a fusion center. The
users to be rational, self-interested and risk-neutral. They are
not compelled to contribute their resources unconditionally
and the system may reach a non-cooperative Nash equilib-
rium where the users do not participate in training. This de-
parts from conventional distributed learning schemes where
the agents directly follow the lead of the fusion center (FC)1

and send their gradients. Our main objectives are to design

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.
1We refer to the fusion center as “she” and a user as “he”.

of an effective reward mechanism for the FC and to ana-
lyze how the strategic actions of the users impact the perfor-
mance of the learning efforts.

There are a number of challenges in distributed learning
with strategic users. Firstly, the users are not obliged to ded-
icate their resources and they may not fulfill their roles in
the training of the algorithm if it is not in their own interest.
Secondly, the FC cannot directly validate data driven gradi-
ent updates due to their unknown stochastic nature. Further-
more, the interactions among users and the FC are repeated,
and each user is capable of devising intricate strategies based
on the past interactions. The quality of the updates may vary
over time and across the users. On the other hand, the FC’s
ability to reciprocate against non-cooperation is significantly
restricted since she cannot directly observe the user actions.
Finally, the FC is not allowed to impose penalties on the
users and positive rewards are the only options at her dis-
posal to incentivize user participation. To the best of our
knowledge, our study is the first distributed learning frame-
work to consider these challenges.

In this study, we model the interactions (in terms of gra-
dient reporting and reward) between the FC and the users
as repeated games, which intertwine with the updates in dis-
tributed learning. We propose a reward mechanism for the
fusion center, based on adaptive zero-determinant strategies,
thereby generalizing the celebrated ZD strategies to the re-
peated games with time-varying stochastic errors. To tackle
the challenge that the FC cannot directly verify the received
reported gradients, we devise a gradient estimation and user
action classification. Our findings show that, by employing
adaptive ZD strategies, the FC can incentivize the strategic
users to cooperate and report informative gradient updates,
thus ensuing the convergence of distributed learning.

Distributed Learning as Repeated Games
We consider a distributed learning setting with K strategic
users K = {1, . . . ,K} and a fusion center (FC), and the
optimization problem is given as follows:

min
θ∈Rn

F (θ) :=
1

K

∑K

k=1
EZk∼D

[
L(θ;Zk)

]
, (1)

where L(·) is the loss function. In each iteration, each user
gets a mini-batch of s i.i.d. samples from an unknown dis-
tribution D, and computes the stochastic gradient signal as
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Figure 1: The fusion center (FC) trains the learning model with strategic users who are not obliged to report their gradients. (a)
The objective of the FC is to incentivize users to cooperate by giving rewards to train the model. (b) If the user is cooperative, he
reports a privacy-preserved version of his gradient signal. Otherwise, the user is defective and sends an arbitrary uninformative
signal. (c) The FC and the user each choose to cooperate or defect with respective payoffs as shown.

Xk,t := 1
s

∑s
i=1∇θL

(
θt; z

i
k,t

)
, where zik,t is the ith sam-

pled data of user k at time t.
Stage Game Formulation: Actions and Payoffs. The ac-

tion of user k in iteration t is denoted with Bk,t∈{c, d}. As
depicted in Fig. 1, a user is cooperative (Bk,t = c) if he is
sending the privacy-preserved version of his gradient Xk,t.
Otherwise the user is defective. More specifically, the re-
ported gradient signal of user k, Yk,t, is given by

Yk,t=

{
Xk,t +Nk,t, if Bk,t = c (cooperative);
Υk,t, if Bk,t = d (defective).

(2a)

Note that Nk,t and Υk,t are independent noise vectors with2

Nk,t ∼ N (0, ν2t I) and Υk,t ∼ N (0,Ξt). (2b)

The payoff structure of a single interplay between the fu-
sion center and a user is depicted in Fig 1b. In iteration t,
when a user cooperates, he provides an information gain
R to the FC at his privacy cost VUR with 0 < VU ≤ 1.
When a user defects, he does not provide any information
gain and does not incur any privacy cost. The FC may dis-
tribute rewards at the end of each iteration to incentivize
the users. We denote the action of the FC toward user k
as Ak,t ∈ {C,D}. The FC is cooperative (Ak,t = C) if
she makes a payment r to the user at her cost rVFC with
0 < VFC ≤ 1. The FC is defective (Ak,t= D), if she does
not make any payment to the user. The factor VFC captures
the difference in the valuation of the reward between the
FC and the user; for instance, the reward can be a coupon
which may be redeemed in the future. Denote the FC’s pay-
off vector by SFC = [R− rVFC,−rVFC, R, 0] and that of
the users by SU = [r−VUR, r,−VUR, 0], in the order of
(C, c), (C, d), (D, c) and (D, d). In this paper, we only ana-
lyze the case where R>rVFC and r > VUR. Otherwise, the
FC or users do not have any incentive to cooperate.

The FC cannot observe the actions of the users and her
realized payoffs. We assume that users do not communicate
or collude with each other. They cannot observe the actions

2The multivariate Gaussian distribution is denoted by N (µ,Σ)
with µ is the mean vector and Σ is the covariance matrix.

of other users and the actions of the FC toward other users.
Next, we will discuss how to devise effective strategies for
the FC to incentivize cooperative user action for the repeated
game in a cost-effective manner.

Repeated Games between Users and Fusion Center. A
salient feature of 2 × 2 repeated games is that players with
longer memories of the history of the game have no advan-
tage over those with shorter ones when each stage game is
identically repeated (Press and Dyson 2012). Thus, without
loss of generality, we assume the user strategies only de-
pend on the outcomes of the last iteration. Let q1, q2, q3 and
q4 denote the probabilities of cooperation for the user con-
ditioned on the joint action pair of the previous iteration,
that is (Ak,t−1, Bk,t−1), in the order of (C, c), (C, d), (D, c)
and (D, d). The user’s strategy vector is defined as q =
[q1, q2, q3, q4].

Analogous to the user strategies, let p1, p2, p3 and p4 de-
note the probabilities of cooperation for the FC conditioned
on (Ak,t−1, Bk,t), in the order of (C, c), (C, d), (D, c) and
(D, d). The fusion center’s strategy vector is defined as
p = [p1, p2, p3, p4]. The joint action pair of the user and
the FC is considered as the state of the game in iteration t:
(Ak,t, Bk,t). The strategy vectors p and q imply a Markov
state transition matrix as follows:

Ω=

q1p1 (1−q1)p2 q1(1−p1) (1−q1)(1−p2)
q2p1 (1−q2)p2 q2(1−p1) (1−q2)(1−p2)
q3p3 (1−q3)p4 q3(1−p3) (1−q3)(1−p4)
q4p3 (1−q4)p4 q4(1−p3) (1−q4)(1−p4)

(3)

Let Λ∗ be the stationary vector of the transition matrix Ω,
i.e., Λ∗ = Λ∗Ω. We can find the expected payoffs of the FC
and the user in the stationary state as s∗FC = Λ∗S>FC and
s∗U = Λ∗S>U . The FC sets her strategy p satisfying, for some
real values ϕ0, ϕ1 and ϕ2, the equation

[p1 − 1, p2 − 1, p3, p4] = ϕ0SFC + ϕ1SU + ϕ21. (4)

This class of strategies are called zero-determinant (ZD)
strategies, which enforce a linear relation between the ex-
pected payoffs, given by ϕ0s

∗
FC+ϕ1s

∗
U+ϕ2 =0, regardless

of the user strategy (Press and Dyson 2012).
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Remark 1. The ZD strategies are powerful tools to incen-
tivize the users because the FC can unilaterally set s∗U or
establish an linear relation between s∗U and s∗FC. Against
such a strategy, the user’s best response which maximizes
his payoff is full cooperation, q∗ = [1 1 1 1]. Full details
are provided in the appendix.

Against the FC who is equipped with the ZD strategies,
the user can increase his expected payoff only by cooperat-
ing more often, and consequently his best response is full
cooperation. Assuming that there are sufficiently many par-
ticipating users, the FC has the absolute leverage against any
single user who tries to negotiate with her. Nevertheless, the
FC cannot directly employ the ZD strategy since she the true
actions of the users is not observable. In the next section, we
will study how the use of ZD strategies can be extended in
the scope of distributed learning.

Distributed Stochastic Gradient Descent
Algorithm with Strategic Users

For the ease of exposition, in this paper we focus on an inter-
esting variant of the classical stochastic gradient descent al-
gorithm using the gradient signals reported by strategic users
(SGD-SU). In each iteration, the FC collects the reported
gradients of the users and update the model as follows:

θt+1 = θt − η · m̂t(Yt), (5)

where Yt = [Y1,t . . . YK,t], η is the step size and m̂t is the
gradient estimator. The FC cannot directly observe user ac-
tions and verify the reported gradients. This gives rise to two
coupled challenges:
• The gradient estimator m̂t should be resilient against the

uninformative reports of defective users.
• Although the ZD strategies are powerful tools to incen-

tivize user cooperation, the FC cannot directly employ a
ZD strategy because she cannot observe the users’ actions.
To tackle these difficulties, we will first introduce a gra-

dient estimation and user classification scheme, and discuss
the impact of user action classification errors on the dynam-
ics of repeated games. As outlined in Algorithm 1, we will
develop adaptive FC strategies which generalize the classi-
cal ZD strategies to the repeated games with time-varying
stochastic errors.

Joint Gradient Estimation and User Action
Classification
The stochastic gradients can be decomposed as Xk,t =
mt+Wk,t where mt :=∇θF (θt) is the population gradient
and Wk,t is the zero-mean noise term (Polyak and Juditsky
1992). The unknown parameter mt is the mean of the re-
ported gradient Yk,t when the user is cooperative (Bk,t = c).
The defective users send zero-mean random noise as their
reported gradients. The FC needs to classify the reported
gradients and obtain an estimate of mt for the SGD-SU up-
date in (5). These two problems are coupled with each other,
and the joint scheme is, therefore, comprised of a gradient
estimator m̂t, and a classification rule B̂k,t. To tackle this
difficult problem, we first investigate gradient estimation.

Algorithm 1: Stochastic Gradient Descent with Strategic
Users (SGD-SU)

1: for t = 1, 2, . . . , T do
2: Fusion Center: broadcast the iterate θt to the users
3: for k ∈ {1, 2, . . . ,K} do
4: User k: compute the stochastic gradient Xk,t

5: Yk,t ←
{
Xk,t +Nk,t (cooperative action)
Υk,t (defective action)

6: end for
7: Fusion Center: Form the gradient estimate m̂t(Yt)

m̂t(Yt)←
1

K(Λ1Ωt−1)q>

∑K
k=1 Yk,t

8: update model parameter θt+1 ← θt − ηm̂t(Yt)
9: classify the users

B̂k,t (m̂t, Yk,t)←

{
ĉ if Y >k,tm̂t>‖ 12m̂t‖22
d̂ else

(7)

10: compute the false alarm rate and the detection proba-
bility, Ψt and Φt, using (8) and (10)

11: compute the adaptive strategies, πt, using (9)
12: reward the users according to the adaptive strategies
13: end for

Let Λ1 be the initial state distribution of the games be-
tween the users and the FC. A modified empirical mean
based gradient estimator can be employed as follows:

m̂t(Yt) :=
1

K(Λ1Ωt−1)q>

∑K

k=1
Yk,t. (6)

It is easy to verify that m̂t(·) is an unbiased estimator if the
FC strategy p is employed without any errors and the state
distribution of the repeated games are governed by the state
transition matrix Ω as in (3) without any perturbations.

Using the gradient estimator m̂t(·), the FC can form the
user action classification rule as

B̂k,t (m̂t(Yt), Yk,t) =

{
ĉ if Y >k,tm̂t >

1

2
‖m̂t‖2,

d̂ else;
(7)

where d̂ (or ĉ) is the defective (or cooperative) label. The
noise in the stochastic gradients, Wk,t, can be approxi-
mated as a zero mean Gaussian r.v. (Jastrzkebski et al. 2017;
Lin et al. 2020; Mandt, Hoffman, and Blei 2016; Xing
et al. 2018). Recall from (2) that cooperative users send
the privacy-preserved versions of their gradient. This im-
plies Yk,t ∼ N (mt,Σt), if the user is cooperative, where
Σt := cov[Wk,t]+ν

2
t I. Thus, the detection and false alarm

probabilities of the classifier, denoted by Φt and Ψt respec-
tively, can be found as3

Φt=1−Q

(
m>t m̂t−

1
2
‖m̂t‖2√

m̂>t Σtm̂t

)
,Ψt=Q

(
1
2
‖m̂t‖2√
m̂>t Ξtm̂t

)
. (8)

Remark 2. The linear classifier (7) is an effective tool under
the homoscedasticity assumption. If that is violated, the FC

3Q-function is the tail distribution function of the standard Gaus-
sian distribution: Q(x) = 1√

2π

∫∞
x

exp−u
2/2 du.

5978



can employ different classifiers. Full details are provided in
the appendix.

In the next subsection, we discuss how the FC can devise
her strategies building on the joint gradient estimation and
user action classification scheme.

Adaptive Strategies for Fusion Center
Although the ZD strategies, p, are powerful to encourage
the user’s cooperation; the FC cannot directly use p since
they are conditioned on the user’s action, Bk,t, which is not
observable to her. Alternatively, the FC can use the classifi-
cation results after carefully adapting her strategies to mit-
igate the adverse effects of inevitable classification errors.
Let πt,1, πt,2, πt,3 and πt,4 denote the probabilities of co-
operation for the FC conditioned on (Ak,t−1, B̂k,t), in the
order of (C, ĉ), (C, d̂), (D, ĉ) and (D, d̂). These are referred
to as adaptive strategies and the FC sets these probabilities
satisfying the following system of equations:

p1 = πt,1Φt + πt,2(1− Φt), p2 = πt,1Ψt + πt,2(1−Ψt),

p3 = πt,3Φt + πt,4(1− Φt), p4 = πt,3Ψt + πt,4(1−Ψt).

Suppose
Φt

Ψt
≥ p1

p2
and

Φt

Ψt
≥ p3

p4
. Then the unique solution

to the system above is given by

πt,1 =
p1(1−Ψt)−p2(1−Φt)

Φt−Ψt
, πt,2 =

p2Φt − p1Ψt

Φt −Ψt
, (9a)

πt,3 =
p3(1−Ψt)−p4(1−Φt)

Φt −Ψt
, πt,4 =

p4Φt−p3Ψt

Φt −Ψt
. (9b)

Remark 3. If the FC directly employs the ZD strategies
without any adaptation, i.e., she cooperates with probability
pi conditioned on classification output, then the classifica-
tion errors yield a time-varying additive disturbance term

−(p1−p2)
{
q>[1−Φt 0 1−Φt 0]+(1−q)>[0 Ψt 0 Ψt]

}
on the state transition matrix. In this case, the repeated
games may not converge to the stationary state Λ∗ and a
linear relation between the expected payoffs (4) may not be
enforced. Adaptive strategies (9) are proposed to cancel out
this adverse disturbance term.

In the absence of classification errors (Φt=1 and Ψt=0),
the adaptive strategies reduce to the ZD strategies, i.e., πt =
p. Classification errors force the FC to be more retaliatory
than dictated by the ZD strategy p, i.e., πt,1>p1, πt,3>p3,
πt,2<p2 and πt,4<p4. In general, detection and false alarm
probabilities, Φt and Ψt, are time-varying; thus the adaptive
strategies also change over time.

The Impact of Estimation Errors on Repeated
Game Dynamics
The proposed adaptive strategies (9) require the knowledge
of detection probability, Φt. However, the FC cannot exactly
compute Φt using (8) since she does not have the knowledge
of mt. Instead, she can form her estimate Φ̂t using m̂t:

Φ̂t = 1−Q

(
1
2
‖m̂t‖2√
m̂>t Σtm̂t

)
(10)

Due to gradient estimation errors, in general, we have Φ̂t 6=
Φt. As a result, the FC cannot exactly employ the adap-
tive FC strategies dictated by Eq. 9. After several steps of
variable substitutions, we can observe that this discrepancy
yields an additive perturbation on the state transition matrix:

Ω̃t = Ω + VtΩ
⊥ with Vt :=

Φ̂t − Φt

Φ̂t −Ψt
(11)

and Ω⊥ := (p1 − p2)q>[−1 0 1 0].

Let Λ̃t be the probability distribution over the state space
of the repeated games {Cc,Cd,Dc,Dd} at the start of it-
eration t. According to (11), the state distributions follow a
transition rule such that

Λ̃t+1 = Λ̃tΩ̃t = Λ̃t
(
Ω + VtΩ

⊥) , (12)

= Λ1(Ω + V1Ω⊥)(Ω + V2Ω⊥) . . . (Ω + VtΩ
⊥).

In comparison to the disturbance term in Remark 3, the
perturbation term in (11) is less severe: The adverse effects
of the misclassification of the user actions is mitigated if
the estimated detection probability is “sufficiently” accu-
rate. Nevertheless, these additive perturbations appear in the
state transition rules. In general, an exact characterization of
the state distributions (12) is intractable. To tackle this chal-
lenge, next, we study the time-varying perturbation terms.
Using (8) and (10), after some algebra, Vt can be found as4:

Vt=
Φ̂t−Φt

Φ̂t−Ψt

=

Q
(

m̂t(mt−̂mt)
‖mt‖

+ 1
2
‖m̂t‖√

Ray(Σt, m̂t)

)
−Q

(
1
2
‖m̂t‖√

Ray(Σt, m̂t)

)
1−Q

(
1
2
‖m̂t‖√

Ray(Σt, m̂t)

)
−Q

(
1
2
‖m̂t‖√

Ray(Ξt, m̂t)

) .

To establish stability guarantees on the dynamics of the re-
peated games, we impose the following assumption on the
norm of the gradient estimator.

Assumption 1. Assume ‖m̂t‖ ≥ max
{

2
√

Ray(Σt, m̂t),
2
√

Ray(Ξt, m̂t),
√
|m̂>t (mt−m̂t)|

}
.

This condition is primarily associated to the accuracy of
the classifier (7) which operates effectively and accurately
when the norm of the gradient estimator, ‖m̂t‖, is suffi-
ciently large, i.e., the mean vectors of the cooperative and
defective hypotheses are sufficiently separated.
Lemma 1. Let Λ1 denote the initial state distributions of the
games between the FC and the users. Under Assumption 1,
we have that

Λ̃t=Λt+Λ1

∑t−1

i=1
ViΩ

i−1Ω⊥Ωt−1−i, Λt=Λ1Ωt. (13)

Note that Λt is the designed state distribution of the re-
peated games in which the ZD strategy of the FC dominates
against any user strategy. Lemma 1 indicates that, due to the
perturbations on the state transition matrix, the real state dis-
tribution Λ̃t is a noisy version of Λt. This noise on the state
distributions will manifest as a novel bias term in the gradi-
ent estimation. In the next subsection, we will provide the
convergence analysis of SGD-SU which will mainly focus
on the characterization of this bias term.
4The Rayleigh’s quotient for a symmetric matrix M and nonzero
vector x is defined as Ray(M,x) = (x>Mx)/(x>x)
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Convergence Results
In this section, we provide the convergence guarantees for
SGD-SU (5). Let Ft denote the σ-algebra, generated by
{θ1,Yi, i < t}. In particular,Ft should be interpreted as the
history of SGD-SU up to iteration t, just before Yt is gener-
ated. Thus, conditioning on Ft can be thought of as condi-
tioning on {θ1, Λ̃1,Y1, . . . , θt−1, Λ̃t−1,Yt−1, θt, Λ̃t}. For
convenience, denote Et[·] := E[·|Ft]. Observe that, we can
decompose the gradient estimator m̂t as follows:

m̂t(·) = mt(1 + ζt) + Et, (14)

where ζt is the estimation bias term due to the perturbations
on the state transition matrix, given by

ζt =
1

mt
(Et[m̂t]−mt) =

∑K
k=1 P(Bk,t = c|Ft)

K(Λtq>)
− 1

and Et is the estimation noise term, given by Et = m̂t−
Et[m̂t]. Conditioned on Ft, the probability of a user taking
the cooperative action, in iteration t, is given by P(Bk,t =

c|Ft)=Λ̃tq
>. The bias term, ζt, can be found as follows:

ζt =
Λ̃tq>

Λtq>
− 1. (15)

From Lemma 1 and (15), it is clear that the perturbations on
the state transition matrix (11), directly translates into a bias
in the gradient estimation rule.

To establish convergence guarantees for the SGD-SU in
(5), Λtq

> and Λ̃tq
> must meet the following criteria during

the course of the algorithm:

Assumption 2. We assume that Λtq
> > 1

2 and Λ̃tq
> > 0,

for all t ∈ {1, 2, . . . , T}.
The first condition Λtq

> ≥ 0.5 is very mild in the sense
that it merely requires that the probability of user cooper-
ation dictated by the memory-1 strategies p and q (1 × 4

vectors) is larger than 0.5. The second condition Λ̃tq
> > 0

states that, in the presence of perturbations, the probability
of user cooperation is always positive5. By Assumption 2,
there exists a positive constant HT such that

0 < |ζt| < HT < 1, ∀t ∈ {1, . . . , T}. (16)

Further, we have the following lemma characterizing the
properties of estimation noise.

Lemma 2. Conditioned on Ft, the estimation noise in iter-
ation t, denoted Et, is a zero-mean random vector with the
mean square error given by

Et[‖Et‖2] =
(ζt + 1)Tr (Σt − Ξt) +

1

Λtq>
Tr (Ξt)

K
(
Λtq>

) . (17)

By (16) and (17), we have that

Et
[
‖Et‖2

]
≤ ET

K
(18)

5A sufficient condition for this requirement is that user strategies
are forgiving in nature, i.e., q1, q2, q3, q4 > 0.

with

ET :=
1

Λtq>

[(
HT + 1

)
tr(Σt − Ξt) +

1

Λtq>
tr(Ξt)

]
.

We impose the following assumption on the objective
function, which is standard for performance analysis of
stochastic gradient-based methods (Bottou, Curtis, and No-
cedal 2018; Nemirovski et al. 2009).
Assumption 3. The objective function F and the SGD-SU
satisfy the following:
(i) F is L−smooth, that is, F is differentiable and its gradi-

ent is L−Lipschitz:

‖∇F (θ)−∇F (θ′)‖ ≤ L‖θ − θ‖, ∀θ, θ′ ∈ Rn.
(ii) The sequence of iterates {θt} is contained in an open set

over which F is bounded below by a scalar Finf .
Our next result describes the behavior of the sequence of

gradients of F when fixed step sizes are employed.
Theorem 1. Under Assumptions 2 and 3, suppose that the
SGD-SU (5) is run for T iterations with a fixed step-size η
satisfying

0 < η ≤ 1

L(1 +HT )
. (19)

Then, the SGD algorithm with strategic users satisfies that

E
[

1

T

∑T

t=1
‖∇F (θt)‖2

]
≤ LET

K(1−HT )
+

2(F (θ1)− Finf )

β̄T (1−HT )
.

Theorem 1 illustrates the impact of additive perturbations
(11) on the convergence rate of SGD-SU. When HT is close
to 0 (very small estimation bias), SGD-SU performs simi-
lar to the basic minibatch SGD. On the other hand, if HT is
close to 1, the optimality gap may be large. Our next result
will characterize the gradient estimation bias term ζt. First,
we have the following assumption on the state transition ma-
trix Ω.
Assumption 4. The state transition matrix Ω can be diago-
nalized as Ω = ΓUΓ−1 with U has the eigenvalues of Ω in
descending order of magnitude: 1≥|u2| ≥ |u3| ≥ |u4| ≥ 0.

Denote the element of Γ−1 in the ith row and jth column
as Γ−1ij . Denote the four rows of Γ−1 by ~γ1, . . . , ~γ4. Next,
we define δ as

δ :=

(
max

j∈{2,3,4}

∣∣Γ3j − Γ1j

∣∣)( max
j∈{2,3,4}

∣∣~γjq>∣∣2).
Further, the first order Taylor approximation of the scalar
variable Vt can be found as follows:

Vt=
m>t (m̂t−mt)

‖mt‖2
ht(mt) (20)

with

ht(mt) :=

‖mt‖√
2πRay(Σt,mt)

exp

(
−

1

8

‖mt‖2

Ray(Σt,mt)

)

1−Q
(

‖mt‖
2
√

Ray(Σt,mt)

)
−Q

(
‖mt‖

2
√

Ray(Ξt,mt)

) .
Define hmax

t := maxi∈{1,...,t} hi(mi). Our next result in-
dicates that, the estimation bias term ζt can be found in terms
of the past gradient estimation errors.
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Theorem 2. Under Assumptions 1, 2, 3 and 4, the gradient
estimation bias term ζt, can be found as

ζt = (p1 − p2)
∑t−1

i=1

Λiq
>

Λtq>
m>i Ei
‖mi‖2

hi(mi)∆i,t (21a)

with

|∆i,t| ≤ δ|u2|t−1−i + δ2hmax
t−1 |u2|t−2−i(t− i− 1). (21b)

Further, for some 0 < η < 1 we have

P (|ζt| < η|α1, . . . , αt−1) > 1−
∑t−1
i=1 α

2
i

Kη2
(22a)

with

α2
i =

2

∣∣∣∣(ν2
i − ξ2

i )+
m>i Σimi

‖mi‖2

∣∣∣∣+ ξ2i

Λiq>

‖mi‖2
(
Λiq>

) [
Λiq

>

Λtq>

]2
h2i∆

2
i,t. (22b)

This result indicates that, the estimation bias term ζt can
be expanded in terms of past gradient estimation errors. We
prove that the absolute values of the coefficients, |∆i,t|’s, are
bounded as

|∆i,t| ≤ δ|u2|t−1−i + δ2hmax
t−1 |u2|t−2−i(t− i− 1),

where u2 is the eigenvalue of Ω with the second highest ab-
solute value. Since Ω is a row stochastic matrix, |u2| ≤ 1.
When |u2| is strictly less than 1, ∆i,t’s decay fast as t − i
grows. This can also be interpreted as the impact of past gra-
dient estimation errors fades away quickly. Using this result,
in Eq.(22), we derive a high probability upper bound on the
estimation bias term ζt.

Experiments
In this section, we evaluate the performance of SGD-SU (5)
using real-life datasets. All the results in the preceding sec-
tion assert convergence for the SG method (5) under the as-
sumption that the FC can access Σt and Ξt. In a real-life
machine learning setting with strategic users, this informa-
tion may not be available to the FC. Define K̂ct and K̂dt as the
sets of users who are classified as cooperative (ĉ) and defec-
tive (d̂ ) at iteration t. Based on the user action classification,
the FC can form her estimates for the covariance matrices
under the cooperative and defective actions as follows:

Σ̂t =
1

|K̂c
t |

∑
k∈K̂c

t

(
Yk,t−Ȳ c

t

) (
Yk,t−Ȳ c

t

)>
(23a)

Ξ̂t =
1

|K̂d
t |

∑
k∈K̂d

t

(
Yk,t − Ȳ d

t

)(
Yk,t − Ȳ d

t

)>
, (23b)

where Ȳ c
t = 1

|K̂c
t |

∑
k∈K̂c

t
Yk,t and Ȳ d

t = 1
|K̂d

t |

∑
k∈K̂c

t
Yk,t.

In our first set of experiments, we consider a binary logis-
tic classification problem and use the KDD-Cup 04 dataset
(Caruana, Joachims, and Backstrom 2004). The goal of bi-
nary logistic classification experiments is to learn a classi-
fication rule that differentiates between two types of par-
ticles generated in high energy collider experiments based
on 78 attributes (Caruana, Joachims, and Backstrom 2004).

In our second set of experiments, we consider a neural net-
work trained on the MNIST dataset (Lecun et al. 1998). The
number of users is chosen as K = 50 and mini-batch size
is s = 10. In the experiments, we have tested the perfor-
mance of an equalizer strategy p = [0.8 0.5 0.4 0.1] and
an extortioner strategy p = [0.95 0.75 0.2 0]. We con-
sider how the ZD strategies fare against the stochastic ver-
sions of some of the most important memory-one strategies:
q = [0.9 0.15 0.9 0.15] (stubborn), q = [0.9 0.9 0.15 0.15]
(tit-for-tat), q = [0.9 0.15 0.15 0.9] (Pavlov) and q = [0.9
0.9 0.9 0.9] (full cooperation).

For the logistic classification problem, Fig. 2a and 2b,
depict the optimality gap across iterations. For the full co-
operation, coin toss, tit-for-tat and stubborn user strategies,
SGD-SU converges quickly. For Pavlov user strategies, the
algorithm eventually approaches to the optimal solution, al-
beit more slowly than other cases. Fig 2c and 2d illustrate
the probability of user cooperation, Λ̃tq

>, across different
user strategies. The experimental results validate Lemma 1:
The empirical user cooperation probabilities match the the-
oretical ones except when the users are Pavlov. For the full
cooperation, coin toss, stubborn and tit-for-tat strategy sce-
narios, the games quickly converge to the steady state distri-
bution. Interestingly, with the Pavlov users, the probability
of user cooperation decreases over time.

This discrepancy could be attributed to that Pavlov users
are very sensitive to both misdetection (B̂k,t = d̂ given that
Bk,t=c) and false alarm (B̂k,t= ĉ given thatBk,t=d) types
of classification errors. When the users employ the Pavlov
strategy, “they are trusting avengers who is exploiting yet re-
pentant” (Kraines and Kraines 2000), i.e., they cooperate if
rewarded for cooperating or punished for defecting. In con-
trast, stubborn users are not sensitive to the classification er-
rors and they repeat their last action with a high probability.
Tit-for-tat users are retaliatory players who cooperate if re-
warded and they are not sensitive to false alarm type classi-
fication errors.

For the image classification problem, Fig 2e-h depict the
training loss and testing accuracy across iterations for differ-
ent FC and user strategies. In all experiments, SGD-SU con-
verges in the presence of strategic users. Detailed discussion
on the experimental results are relegated to appendix.

Related Work
Repeated Games. The pioneering work of Press and Dyson
(2012) shows that it is possible for a player to unilaterally
impose a linear relationship between their and the oppo-
nent’s payoff by employing “zero-determinant” (ZD) strate-
gies in a 2x2 repeated game. In this study, both players can
observe the action of their opponent in a perfect environment
without any noise. In a later study, the ZD strategies in noisy
games is examined under the assumption that the players
know the time-invariant error distribution (Hao, Rong, and
Zhou 2015). In our paper, however, the FC cannot directly
receive any (noisy or noiseless) observation of the user ac-
tion. In order to address this key difficulty, using the col-
lected reported gradients of the users, she forms a user action
classifier, and assigns cooperative or defective labels to the
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Figure 2: Stochastic Descent Algorithm with Strategic Users

users. Due to the nature of the data driven gradient updates,
the user action classification incurs time-varying stochastic
errors, which adds another non-trivial complexity.

Game-Theoretical Approaches in Machine Learning.
There are several papers that study incentives in the con-
text of statistical inference and estimation from strategic data
sources (Cai, Daskalakis, and Papadimitriou 2015; Cara-
giannis, Procaccia, and Shah 2016; Chen et al. 2018a,b;
Cummings, Ioannidis, and Ligett 2015; Dekel, Fischer,
and Procaccia 2010; Kong et al. 2020; Liu and Wei
2020; Richardson, Filos-Ratsikas, and Faltings 2020). These
works focus on single-stage games where the center and
users interact only once. We consider a distributed learning
setting where the fusion center and users interact repeatedly,
and we aim to design a repeated game strategy, for the fu-
sion center, based on the ZD strategies. Unlike a mechanism
design approach, the fusion center is allowed to reciprocate
against non-cooperative users based on the history of the re-
peated game. Furthermore, while the users in our study are
also strategic data sources, they never provide a (noisy or
noiseless) copy of their raw data. The fusion center can only
collect the stochastic gradients with unknown prior distribu-
tion parameters. Finally, our analysis demonstrates that the
strategic actions of the users intertwine with the stochastic
gradient updates. Thus, one of our primary objectives is to
evaluate the impact of the user strategies on the convergence
performance of an SGD type algorithm, which is not consid-
ered in these studies.

Byzantine-Resilient Machine Learning. In the presence
of malicious agents, the robustness issues in distributed
learning has received much attention. In these studies, it
is assumed that good agents are in the majority and it is
proposed that fault-tolerant algorithms can trim the out-
liers from the candidates (Alistarh, Allen-Zhu, and Li 2018;
Blanchard et al. 2017; Chen, Su, and Xu 2017; Su and Xu
2019). The basic goal of these studies differs from ours,

since we consider a game-theoretic setting without any ma-
licious agents. In our work, all users are utility-driven and all
users have the ability to formulate their strategies to choose
their actions, cooperative or defective, which can depend on
the outcome of previous interactions with the FC.

Conclusions and Future Research
In this work, we study a distributed learning framework
where strategic users train a model with a fusion center. The
main objective of the FC is to encourage users to be coop-
erative by distributing rewards. Based on this, we devise a
reward mechanism for the FC based on the ZD-strategies.
Further, we examine the performance of SGD algorithm in
the presence of strategic users. Our findings reveal that the
algorithm has provable convergence and our empirical re-
sults verify our theoretical analysis.

The linear classifier (7) may be vulnerable to vanishing
gradients as the algorithm converges to the optimal point
θ∗. To address this issue, we also propose a modification of
the classifier to incorporate the information contained in the
norm of the reported gradients. Furthermore, we also dis-
cuss how to extend the convergence guarantees for SGD-SU
to allow heterogeneous user strategies. We are also working
on the development of robust estimation tools in distributed
learning with strategic users. Further details are provided in
the appendix.
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