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Abstract

Graph walking based on reinforcement learning (RL) has
shown great success in navigating an agent to automatically
complete various reasoning tasks over an incomplete knowl-
edge graph (KG) by exploring multi-hop relational paths. How-
ever, existing multi-hop reasoning approaches only work well
on short reasoning paths and tend to miss the target entity with
the increasing path length. This is undesirable for many reason-
ing tasks in real-world scenarios, where short paths connecting
the source and target entities are not available in incomplete
KGs, and thus the reasoning performances drop drastically un-
less the agent is able to seek out more clues from longer paths.
To address the above challenge, in this paper, we propose a
dual-agent reinforcement learning framework, which trains
two agents (GIANT and DWARF) to walk over a KG jointly and
search for the answer collaboratively. Our approach tackles
the reasoning challenge in long paths by assigning one of the
agents (GIANT) searching on cluster-level paths quickly and
providing stage-wise hints for another agent (DWARF). Finally,
experimental results on several KG reasoning benchmarks
show that our approach can search answers more accurately
and efficiently, and outperforms existing RL-based methods
for long path queries by a large margin.

Introduction

Knowledge graphs (KGs) have become an essential building
block of various knowledge-driven services, such as relation
extraction (Mintz et al. 2009), question answering (Cui et al.
2019), and recommender systems (Zhang et al. 2016). A KG
is usually defined as a directed graph G = (£, R), where & is
a collection of entity nodes, and R is a set of relation edges.
Due to the highly incomplete nature, in practice, KGs often
fail to include sufficient fact triples to satisfy the long-tail sce-
narios in various tasks. To this end, we focus our study in the
context of automatic KG reasoning, also known as knowledge
graph completion (KGC), i.e., constructing f(es, ¢, ?|G) or
f(?,rq,e:]G) to infer missing facts by synthesizing infor-
mation from multi-hop paths between the source and target
nodes. One example is illustrated in Figure 1, where no direct
link can be found on between the target node e; = ”U.S.”
and the source node e; = "Boston”. However, by leveraging
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existing indirect links and the query relation r, = "Locate-
dIn”, one is possible to infer the fact (BOSTON, LOCATEDIN,
U.S.).

In the past several years, extensive research has been con-
ducted on learning latent representations of entities (e € &)
and relations (r € R) for knowledge graph reasoning by us-
ing tensor factorization or neural networks (Wang et al. 2014;
Yang et al. 2014; Trouillon et al. 2016). Such embedding-
based approaches mainly focus on preserving the structural
information in the KG and are effective for single-hop rea-
soning. Also, recent works have considered exploiting re-
inforcement learning (RL) (Das et al. 2017; Xiong, Hoang,
and Wang 2017; Shen et al. 2018) for KGC reasoning tasks,
where a walking agent is leveraged over KG paths to com-
pose single-hop triplets into multi-hop reasoning chains. For
instance, MINERVA (Das et al. 2017) is an end-to-end model
that adopts REINFORCE algorithm (Sutton et al. 1999) to
train the RL agent to search over KGs starting from the source
and arrive at the candidate answers.

However, a noteworthy issue of these walking-based mod-
els is that they rely heavily on short reasoning chains (e.g.,
maximum_path_length=3 in MINERVA), where the perfor-
mance drops drastically if short indirect paths are also absent.
Indeed, such single-agent approaches often get stuck when
reasoning on a long path. The reasons are two-fold. First,
KGs consist of massive entities and relations, the dimension
of the discrete action space at each step is typically large
(Das et al. 2017). As a result, the difficulty of reasoning (i.e.,
making right decisions constantly) increases drastically with
the increasing number of reasoning steps. Without narrowing
down the scope of representative entities and relations, the
underlying agent may conduct unnecessary traverse among
similar objects, and thus has low efficiency for path finding.
Second, prior approaches train the agent with sparse rewards.
Specifically, they only return a positive reward when the
agent reaches the target entity by the end of a walking, and
penalizes all actions within the path otherwise. This may
result in false-negative rewards to the intermediate actions
which are reasonable, and hinders the policy network from
learning trustworthy long-term patterns.

To tackle the above problems, in this paper, we propose
a Collaborative Dual-agent Reinforcement Learning frame-
work, named CURL. Unlike existing walking-based RL mod-
els, which rely on one single agent to explore reasoning paths



over entities and relations in KGs, we design two agents,
GIANT agent and DWARF agent, to perform reasoning at dif-
ferent granularities and search for the answer collaboratively.
Specifically, GIANT performs coarse-grained reasoning by
walking rapidly over pre-defined abstractive KG clusters,
while DWARF carefully traverses entities within each cluster
to perform fine-grained reasoning. By leveraging a Collabo-
rative Policy Network, two agents can share historical path
information with each other to enhance their state representa-
tions. Moreover, we propose a Mutual Reinforcement Reward
System to overcome the sparse reward issue. Instead of using
a static final reward, we allow DWARF to borrow weighted
reward from GIANT for its intermediate steps and vice versa.
Intuitively, GIANT provides abstract and milestone-like hints
to guide DWARF’s behavior and reduce the search space. On
the other hand, DWARF provides regularization over GIANT’s
behavior to help avoid less informative cluster-level reason-
ing chains. By training two agents jointly, our framework
exploits the KG structure more thoroughly, i.e., from both
global and local views, long and short reasoning paths, macro
and micro trajectories, to improve the effectiveness of KG
reasoning tasks. We conduct extensive experimental studies
on three real-world KG datasets. The results demonstrate
that our approach can search answers more accurately and
efficiently than existing embedding-based approaches as well
as traditional RL-based methods, and outperforms them on
long path queries significantly.

Methodology

In this section, we first review the formal problem defini-
tion of knowledge graph reasoning and the single-agent re-
inforcement learning approach by (Das et al. 2017). Then
we introduce our dual-agent based approach that explores
path patterns at two granularity levels to tackle the long-path
challenge and sparse reward problem.

Problem Definition

Formally, a knowledge graph G is represented as a directed
graph: G = {(es, 7, €5), 5,60 € E,7 € R}, where £ is the
set of entities and R is the set of relations. Each directed link
in the knowledge graph | = (es,7,€,) € G corresponds to
a real-world fact tuple, e.g., (JOE BIDEN, PRESIDENT_OF,
UNITED STATES). For the knowledge graph reasoning task,
we follow the definition in prior graph walking literature,
a.k.a, query answering task (Das et al. 2017). Specifically,
given a query (es, 74, 7), where e is the source entity and r,
is the relation of interest, the goal of query answering is to
perform efficient search over G and find the possible answers
(i.e., correct target entities) E, = {e,} where (es, 74, €,) ¢
G due to incompleteness of KG.

Although being a promising way to discover new fact
knowledge, this task is challenging as it requires an algorithm
to be capable of sophisticated multi-hop reasoning over the
incomplete KG. Note that we follow the end-to-end walking
for reasoning paradigm as in MINERVA, to avoid undesirable
requirements such as agent pre-training, path features pre-
computing, and all entities ranking in the graph.
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Previous Single-Agent Reinforcement Walking

The process of walking (searching) on KG can be viewed as
a Markov Decision Process (MDP) (Sutton and Barto 2018):
given the query entity e, and relation r, the agent departs
from e, sequentially selects an outgoing edge [ and traverses
to a new entity until it arrives at a target answer or reaches
maximum path length. The MDP can be expressed by the
following essential components (we eliminate OBSERVATION
part in MINERVA (Das et al. 2017) for simplicity, yet the
formulation is equivalent).

State, Action, Transition, Reward Each state s;
(et, (es,7q)) € S is a tuple where e; is the entity visited
at step ¢ and (es,r,) are the source entity and query rela-
tion. e; can be viewed as state-dependent information while
(es,7q) are the global context shared by all states. The set of
possible actions A; € A of at step ¢ consists of the outgoing
edges of e; in G. Concretely, A; = {(+’,¢')|(es, 7', €¢’) € G}.
To grant the agent an option to terminate a search, a self-
loop edge is added to every A;. Because search is unrolled
for a fixed number of steps 7, the self-loop acts similarly
to a “stop” action. A transition functiond : S x A — S
is defined by (s, Ay) = 0(es, (es,74), A¢). Action proba-
bility is predicted by a policy network 7y, which takes as
input the state information. Popular choices for my includes
simple models like MLP and sequence-aware models like
RNN. In the default formulation, the agent receives a termi-
nal reward of 1 if it arrives at a correct target entity at the end
of search (i.e., within maximal steps) and O otherwise, i.e.,
Ry(s7) = 1{(es,rq,e7) € G}.

Our Dual-Agent Reinforcement Walking

The above single-agent approach can effectively explore short
paths on KG and discover short chains of reasoning. How-
ever, when the path length increases, the agent tends to miss
the target entity and fails to catch meaningful long chains
of reasoning. Contrarily, our approach launches two agents:
GIANT AGENT and DWARF AGENT (short as GIANT and
DWARF respectively), to collaboratively explore paths at dif-
ferent granularity levels and search for the answer. GTANT
walks rapidly over inner clusters of the KG, DWARF slowly
traverses by entities inside the clusters, while meantime, they
share essential path and reward information to each other,
taking advantage of a more comprehensive view (i.e., both
cluster/global view and entity/local view) of KG to enhance
reasoning. Figure 1 presents a concise illustration of our
approach CURL.

Mapping KG to Clusters We first divide an original KG
into N clusters of nodes using K-means (MacQueen et al.
1967) on the pre-trained entity embeddings!. Based on these
clusters, we also build a cluster-wise connection graph G¢,
where two clusters will be connected if there is at least one
entity-level edge between them. It can be viewed as a denser
mapping of the original KG. GIANT aims to walk over G to
reach a “fuzzy answer”, i.e., the target cluster in which the
end entity lies.

"We apply TransE (Bordes et al. 2013) for its efficiency in en-
coding the structural closeness information of KG.
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Figure 1: An illustrative diagram of the dual-agent reinforcement walking approach. Two agents work collaboratively to find the
target answer (GIANT walks by clusters, DWARF walks by entities).

GIANT AGENT: Cluster-Level Exploration Following
the RL paradigm, GIANT makes moves based on the state.
Each state s§ = (c¢t, ¢5) € S is a tuple where ¢; € G rep-
resents the cluster visited at step ¢ and c; is the start cluster
which the source entity belongs to. Specifically, ¢; contains
state-dependent information while ¢, are the global context
shared by all states. At each step ¢, the possible actions for
GIANT consists of neighbor clusters of ¢; in G¢. Concretely,
A = {c|(et, ¢") € G°}. In other words, it traverses the KG
in a fashion of cluster by cluster. Since cluster-level paths
are normally shorter than entity-level paths (e.g., in Figure
1, length ;. cr :'3, length,, 1, = 7}, GIANT shpuld be
allowed to ”stay” in some clusters during walking in order
to synchronize with DWARF. To fulfill this purpose, a special
action, i.e., STOP, is also added into every action space A{.
Each action af € A7 is made based on the prediction of
the policy network of GIANT: 7g. After walking multiple
required steps, GIANT receives a terminal reward of 1 if it
arrives at the cluster c; where a correct entity answer lies in
et € cr, and 0 otherwise.

DWARF AGENT: Entity-Level Exploration Similar to the
single-agent approach, DWARF agent walks over the original
KG G to reach an accurate answer, i.e., a target entity. Specif-
ically, each state sy = (e, (es, 7)) is a tuple consisting of
the current entity being visited e;, and the query entity, re-
lation, e, and r,. At each step ¢, to make an action, DWARF
selects one from all the outgoing edges of the current entity,
A¢ = {(r',¢')|(et,r’,€e’) € G}. The selection is predicted
by its own policy network 7r5. Within a maximum number
of steps, if the agent arrives at a correct target entity, it will
receive a final reward of 1 and O otherwise.

Collaborative Graph Walking: Jointly Train 7 and 7§
Under the framework of dual-agent, to maximize the benefit
of both sides, i.e., cluster-level and entity-level exploration,
we propose two advances to tame the two distinct agents
to walk in a mutually beneficial way, namely, Collaborative
Policy Networks and Mutual Reinforcement Rewards.

Collaborative Policy Networks Agents make moves
based on the output of policy network, we use two sepa-
rate networks 7§ and 7§ respectively® to model the action
selection of GTANT and DWARF. Specifically, every entity,

>The superscript ¢, e stands for cluster/entity.
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relation in G, as well as cluster in G is assigned a dense
vector embedding e € R?, r € R?, ¢ € R??. We use these
embeddings to represent RL actions and states of two agents.
For DWAREF, each action af = (r;,e;) € A¢ consisting of
the next outgoing relation and entity, is represented as the
concatenation of the relation embedding and the end node
embedding a¢ = [r;; e;] € R?4. For GIANT, the action cor-
responds to the next outgoing cluster and we directly use
the cluster embedding to represent it, i.e., af = ¢; € R?%.
For both 77 and wf, we first use two separate LSTMs
to encode their search history h§ = (¢1,...,¢:) € HE,

¢ = (es,71,€1,...,7,€r) € HE according to the recur-
rent dynamics,

6 = LSTM.(0,cp), h§ = LSTM, (0, [ro;es]), (1)
hf = LSTMc(WC[ g—l; 5—1}7 a§—1)7 t> 07 (2)
hf = LSTME(We[ gfl’ ;71], afil), t> O, (3)

where we modify their internal structures to allow state
sharing between LSTM,. of GTANT and LSTM, of DWARF.
Specifically, at each step ¢ > 0, we calculate the concatena-
tion of the two raw states h{, h{ € R2? as the new states
[h¢: h¢], [he;h¢] € RAZ. In addition, we apply two trans-
forming matrices W¢, W¢ € R24*44 (o reduce the dimen-
sion of the new states, otherwise, their dimension will in-
crease exponentially w.r.t the number of steps. With the mod-
ification, each hidden state h{ (h{) of an agent is conditioned
on: its own previous state hy_; (h{_,), the other agent’s pre-
vious state h{_; (h{_,), its previous action ag_, (a§_,). This
ensures sharing essential path information between GTIANT
and DWARF, as to some extent, cluster-level are complemen-
tary to entity-level paths, it can consequently enable more
robust action selection for both of them.

To predict the next action (i.e., the next cluster for GIANT
and next relation-entity edge for DWARF), we further apply a
two-layer feedforward network with ReLU nonlinearity on
the concatenation of their last LSTM states and current RL
state embeddings,

mg(ag|si) = o(Af x W5 ReLU(Wf[cy; hil)), “4)
mg(aglsy) = o(A7 x W5 ReLU(Wfler; rg; hil)),  (5)
where W§, W§ € R4 ' W¢ W§ € R64*0 are the ma-

trices of learnable weights, A{ € RIAtlx4d Af e R/ALI>6d
represent the embeddings of all next possible actions for
GIANT and DWARF. o denotes the softmax operator.



Mutual Reinforcement Rewards The default rewards for
GIANT and DWAREF only consider whether their own agent
arrives at the target cluster or entity, leaving two problems
limiting the dual agent to collaborate effectively: (i) As GI-
ANT walks over the cluster graph which is more densely
connected, it leads to more diverse trajectories and hard to be
consistent with entity-level paths. (ii) DWARF does not learn
any stage-wise knowledge from GIANT explicitly. To allevi-
ate the issue, we provide a new mutual reinforcement reward
system, which can (1) constrain GIANT to generate cluster tra-
jectories consistent with entity-level paths; (2) allow GIANT
to provide stage-wise hints for DWARF to follow. Specifically,
both agents’ final reward consists of two parts, i.e., their own
default reward and an auxiliary weighted reward borrowed
from their partner,

Re(sf) = re(s5) +O(sf,s7) re(s7), te[1,T], (6)
—— —_—

default reward

RE(S§> = T‘e(S%) + q)(Sf, S?) . TC(S%)v t € [17T]7 (7)
—— —_—

default reward

partner reward

partner reward

where 7.(s5) and r.(s5) denote the default final rewards
for GIANT and DWARFT, defined as 7.(s5) = 1{3e, €
er, (es,rq,€q) € G, re(s5) = 1{(es, ¢, er) € G}. More-
over, ®(s¢, s7) is an evaluation function measuring the con-
sistency of each action made by two agents. In practice, it is
calculated as the cosine similarity between the pre-trained
embeddings3 of the current traversed cluster and entity, i.e.,
T
D(sf,5F) = [feT5enrs - For GIANT, its partner reward will
be valid only if DWARF reaches the target entity by the end,
and meantime, the current cluster visited must be close to the
corresponding entity at step ¢ so that the weight is sufficient.
Similarly, for DWAREF, the partner reward will be valid only
if GIANT reaches the target cluster by the end and the consis-
tency weight is sufficient. This ensures that both agents learn
knowledge from partner only at the right time, i.e., when their
partner succeeds to reach the correct target. The measuring
coefficient ®(s¢, s¢) controls the strength of partner reward
based on the path consistency, i.e., the overlap between the
cluster-level path and entity-level path.

The detailed training procedure of CURL is described in
Algorithm 1. During inference, we use the same procedure
of lines 3-7 below to calculate the action probabilities at each
step. To find the target answer, we do a beam search with a
beam width of 50 on DWARF agent and rank entities by the
probabilities of the trajectory that DWARF took to reach the
entity, all other unreachable entities get a rank of oo.

Experiments
Experiment Setup

We evaluate the effectiveness of CURL* by performing
two fundamental tasks using three real-world KG datasets,
i.e., FB15K-237, WN18RR, and NELL-995. The WN18RR
(Dettmers et al. 2018) and FB15K-237 (Toutanova et al. 2015)

3Each cluster embedding is obtained by averaging all entity
embeddings within it.
*Source code: https://github.com/RutgersDM/DKGR/tree/master

Algorithm 1: CURL Training Algorithm
1: Input: KG G; Initial entity and cluster nodes es, cs; Entity-level
query rq; Target entity and cluster nodes e,, ¢,; Maximum path

length 7T'; Episode size P, Rollout size L

2: Output:Well-trained policy networks 75, 75

3: for episode pin {1,..., P} do

4:  Set current entity and cluster nodes eg = e, co = Cs

50 fort=0,...,7—1do

6: Predict the next cluster c¢+1 for GIANT and next relation-
entity edge (r¢+1, e++1) for DWARF based on Eq. (4) -
(5)

7:  end for

8:  Set default cluster-level reward 7. = 1 if the end of the path

¢ = ¢, otherwise r. = 0

9:  Set default entity-level reward r. = 1 if the end of the path
er = e, otherwise r. = 0

10:  Repeat lines 5 - 9 for running L rollouts (see the expectation
in Eq. (8) - (9)) to update the cluster-level and entity-level
policies

11:  Compute the mutual reinforcement rewards Re(s7), Rec(sf)
based on Eq. (6) - (7)

12:  Update the model parameters with REINFORCE:

T-1
0° 0+ - VoeEae,  ac g Z[Rc(si)ISS} ®)
=0
T-1

13: end for
14: return 7§, 75

datasets are separately created from the original WN18 and
FB15K datasets by removing various sources of test leak-
age, making the datasets more realistic and challenging. The
NELL-995 dataset released by (Xiong, Hoang, and Wang
2017) contains separate graphs for each query relation. We
compare against two classes of state-of-the-art KG reason-
ing baselines: KG representation learning methods (TransE
(Wang et al. 2014), TransR (Lin et al. 2015b), DistMult (Yang
et al. 2014), ComplEx (Trouillon et al. 2016)) and multi-hop
neural approaches (NeuralLP (Yang, Yang, and Cohen 2017),
PRA (Lao, Mitchell, and Cohen 2011), DeepPath (Xiong,
Hoang, and Wang 2017), MINERVA (Das et al. 2017), M-
Walk (Shen et al. 2018)). For reproducing all baseline results,
we used the implementation released by authors on the best
hyperparameter settings reported by them >. CURL and all
baselines are implemented with Pytorch framework (Paszke
et al. 2019) and run on a single 2080 Ti GPU. More ex-
perimental details and hyperparameters of our model are
illustrated in Appendix A. According to (Shen et al. 2018),
KG reasoning can be divided into the following tasks:

Link Prediction (Query Answering) Given an incom-
plete KG, the link prediction task aims to predict the missing
entities in the unknown links. In our settings, for a query
(e1,7,7) or (7,7, e3), we run multiple rollouts to search for
answer node based on query relation and source entity, and

>We obtain and report the best results using the code and hyper-
parameters released by the authors of the baseline models.
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Figure 2: The positive reward rate on three NELL-995 relation tasks (a - ¢) and all tasks (d), and our agent is consistently better
than MINERVA.

Model

FB15K-237

WN18RR

NELL-995

@] @3 @10 MRR

@] @3 @10 MRR

@] @3 @10 MRR

TransE
DistMult
ComplEx

24.8 40.1 45.0 36.1
27.541.7 56.8 37.0
30.3 43.4 57.2 39.4

28.9 46.4 53.4 35.9
41.044.1 47.5 433
38.243.348.0 41.5

51.4 67.875.1 45.6
61.0 73.379.5 68.0
61.2 76.1 82.1 68.4

NeuralLP
MINERVA
M-Walk
CURL

16.6 24.8 34.8 22.7
19.2 30.7 42.6 27.1
16.8 24.5 40.3 23.4
22.4 34.1 47.0 30.6

37.6 46.8 65.7 45.9
41.345.651.3 44.8
41.544.754.3 43.7
42.9 47.1 52.3 46.0

58.8 74.6 81.3 67.5
63.275.7 81.9 70.7
66.7 78.6 84.3 73.8

Table 1: Query answering performance compared to state-of-
the-art embedding based approaches (top part) and multi-hop
reasoning approaches (bottom part). The Hits@1, 3, 10 and
MRR metrics were multiplied by 100. We highlight the best
approach in each category.

Task TransR TransE[PRA DeepPath MINERVA M-Walk CURL
AthletePlaysInLeague 912 773 |84.1 96.0 94.0 96.1 971
AthletePlaysForTeam 67.3 62.7 (547 750 80.0 84.7 829
AthleteHomeStadium 722 71.8 (859 89.0 89.8 91.9 943
TeamPlaysSports 814 76.1 |79.1 73.8 88.0 884 887
AthletePlaysSport 963 87.6 |47.4 957 98.0 983 984
OrganizationHiredPerson| 73.7 719 |59.9 74.2 85.6 888 87.6
PersonBornInLocation 81.2 712 |66.8 757 78.0 81.2 821
WorksFor 69.2 677 |68.1 71.1 81.0 832 82.1
OrgHeadquarteredInCity | 65.7 62.0 |81.1  79.0 94.0 943 948
PersonLeadsOrganization| 77.2  75.1 |70.0 79.5 87.7 88.3  88.9

Table 2: Performance on fact prediction, MAP scores for
different relation tasks in NELL-995 dataset.

then do a beam search with a beam width of 50 to rank the
entities by the probability of their trajectories reaching the
correct entity. Here, we use Hits@1, 3, 10 and Mean Recip-
rocal Ranking (MRR) as standard ranking metrics (Xiong,
Hoang, and Wang 2017; Sutton and Barto 2018).

Fact Prediction Subtly different from link prediction, fact
prediction task targets at inferring whether an unknown fact
(triple) holds or not. According to (Xiong, Hoang, and Wang
2017), the true test triples are ranked with some generated
false triples. In the experiments, we first remove all links of
groundtruth relations in the raw KG. Then the dual agents
try to infer and walk through the KG to reach the target
entity. Since we share a similar query-answering mechanism
as MINERVA (Das et al. 2017), CURL can directly locate the
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correct entity node for a given query, and eliminate the need
to evaluate negative samples any particular relation. Note that
if CURL fails to reach any of the entities in the set of correct
and negative entities, it then falls back to a random ordering of
the entities. Here, we report Mean Average Precision (MAP)
scores for various relation tasks of NELL-995 (corresponding
to different subsets).

Overall Performance

As demonstrated in Table 1, we first report the performances
of CURL and all baselines on the link prediction task. The
results of NeuralLLP are not included on NELL-995 because
it can not scale to the size larger dataset. We observe that on
FB15K-237, the embedding based methods dominate over
several neural multi-hop reasoning approaches. With deeper
investigation, we discover that the structural characteristics
of FB15K-237 differ significantly from WN18RR and NELL-
995, since it contains much larger number of 1-to-M than the
M-to-1 relation instances (Wan et al. 2020). This indicates
that the search process of multi-hop reasoning methods is
prone to be stuck in the local nodes with high-degree cen-
trality, renders it hard to reach the correct entity. Note that
on WN18RR, neural symbolic methods (MINERVA, Neu-
ralLP, M-Walk) generally beat embedding based methods,
with CURL achieving the highest score on Hits@1, 3 and
MRR metrics. On NELL-995, our approach delivers com-
parable performance to embedding based methods, further
outperforms MINERVA by a clear margin on all metrics.
After averaging results on three datasets, we find that our
dual-agent based approach leads to overall improvements rel-
ative to the single-agent approach with similar settings (MIN-
ERVA) by 3.1%,2.1%, 1.7%, 2.3%, in terms of Hits@]1, 3,
10 and MRR.

Table 2 reports the performance of fact prediction on 10
relation tasks of NELL-995. Our approach produces an en-
couraging result in most tasks, contributing an average gain
of 7.8% relative to the multi-hop neural methods (PRA, Deep-
Path, MINERVA, and M-walk) and 14.8% gain compared to
the embedding-based approaches (TransR and TransE).

Analysis of CURL and Case Studies

Based on the above results, we conducted the analysis to
discuss the superiority of our dual-agent framework on KG
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AgentParticipatedIn !
—

Crime Charge
"Women of MORE Magazine”

AgentParticipatedIn
-~

OrgHiredPerson
_—>

Adolescent MusicArtists

Event Outcome

?

AgentParticipatedIn
—— Event Outcome
AgentParticipatedIn ! AgentParticipatedIn !

Government Law Ryan Whitney

Table 3: A few examples of paths found bv CURL on NELL-995.
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Figure 3: The effect of different cluster numbers used by GIANT. We present the link prediction performance on three relation
tasks on NELL-995. Lines in different colors indicate results by different cluster numbers.

reasoning. First, the above quantitative results show that our
dual-agent design contributes significant gains relative to the
DWARF-solely method (i.e., MINERVA) on all datasets, con-
firming the effectiveness of our high-level motivation that
using cluster-level reasoning to guide entity-level reasoning
can alleviate the long path challenge and sparse reward issue.
To further examine this, in Figure 2, we show the positive
reward rate (i.e., the percentage of trajectories with positive
reward during training) on the NELL-995 tasks. Compared
to MINERVA under the same training and testing procedure,
CURL is capable of generating trajectories with more positive
rewards, and this continues to improve as training progresses.
Additionally, in Figure 5 (in Appendix B.1), we show the
Hits@1 performance change w.r.t the increasing path length,
where we find that CURL maintains a relatively stable result
or slower ratio of performance degradation. These two evi-
dences prove that introducing GIANT agent by our Collabora-
tive Walking and Mutual Reinforcement Reward can indeed
benefit the entity-level KG reasoning. Finally, we present
some illustrative examples of paths found by CURL in Table
3. Example (i) and (ii) illustrate that CURL is capable of
capturing both short and long reasoning chains for diverse
tasks. Example (iii) displays the ability to correct a previously
taken decision even in the long paths, where our model took
an incorrect decision at the first step but was able to revert
the decision because of the presence of inverted edges. This
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property is similar to MINERVA, which however cannot well
handle the long-path reasoning compared to us.

Long Path Reasoning Performance

While short chains (length< 3) can partially support KG
reasoning and navigate the agent to find target answers (Das
et al. 2017), we consider a more practical and rigorous sce-
nario in real-world KGs, where short paths are mostly absent
from incomplete KGs. For effective evaluation, we compare
our model with MINERVA in NELL-995 dataset, where we
remove the most frequently-visited short paths found by the
bi-directional search (BiS) (Xiong, Hoang, and Wang 2017)
inside KG. In particular, given a triplet (es, 7, e,) in the train-
ing or testing set, we sample an intermediate entity node e;
and use the breadth-first search algorithm (Bundy and Wallen
1984) to verify the traversability from e to e; and from e;
to e, inside KG. After conducting the BiS on each task 50
times, we choose the walkable paths with a length smaller
than 3 (self-included), and eliminate their traversed edges
inside original KGs. Due to the space limit, we plot the MAP
scores on varying path lengths in various tasks in Figure 4
in Appendix B.2. As can be seen, CURL outperforms MIN-
ERVA across all three tasks with different path lengths, and
our gains are much more prominent when path length is 5.
This explains that the cluster-level exploration is essential to
lead entity-level agent rather than doing purely random walks



in the neighborhood of the source entity. Overall, CURL is
much more robust to queries where a longer reasoning path
is required, showing minimal degradation in performance
for even the longest path setting. Additional experiments
on FB15K-237, WN18RR, and NELL-995 can be found in
Appendix B.2 of the supplementary material.

Sensitivity Test on Cluster Size

Figure 3 shows the Hits@10 scores of CURL under different
cluster number N during training on three NELL-995 tasks.
We observe a performance improvement when we increase
N from 50 to 75 and performance degrade when we further
increase N from 75 to 500. These results illustrate 75 cluster
number is powerful enough to capture high-level semantic in-
formation. In other words, parametrized by a suitable /V, our
approach is generally stable when the path lengths increase,
indicating that proper clustering of KG entities does refine
a series of meaningful high-level semantics to facilitate the
low-level path searching.

Related Work

Knowledge Graph Representation Learning Represen-
tation learning has shown great success in a wide range
of fields (Zhang et al. 2019, 2017; Li et al. 2021; Yuan
et al. 2021) and KG reasoning is no exception. Recent ad-
vances in this area have proposed a variety of embedding-
based methods that project the entities and relations into
low-dimensional continuous vector space by exploiting entity
types (Guo et al. 2015; Ouyang et al. 2017), relation paths
(Lin et al. 2015a; Toutanova et al. 2016; Li et al. 2018a;
Zhang et al. 2018), textual descriptions (Zhong et al. 2015;
Xiao et al. 2017), and logical rules (Omran, Wang, and Wang
2018; Hamilton et al. 2018). For instance, TransE (Wang
et al. 2014) first encoded the entities and relations into la-
tent vectors by following translational principle in point-wise
Euclidean space. Besides, ComplEx (Trouillon et al. 2016)
introduced complex vector space to capture both symmetric
and anti-symmetric relations. However, such models ignored
the symbolic compositionality of KG relations, making them
unable to discover complex reasoning paths with one-hop
distance-based measure (Wang et al. 2017; Ji et al. 2021).
Furthermore, it is hard to interpret the traversal paths, and
these models can be computationally expensive to access the
entire graph in memory.

Deep Reinforcement Learning for KG Reasoning The
emergence of deep reinforcement learning (RL) enables many
path-based approaches to learn symbolic inference rules from
relational paths inside KG (Ji et al. 2021). By formulating
KG reasoning as a sequential decision problem and taking
multi-hop random walks, existing studies improve the empir-
ical performance of various tasks (Xiong, Hoang, and Wang
2017; Shen et al. 2018; Lin, Socher, and Xiong 2018; Das
et al. 2017; Wan et al. 2020; Hildebrandt et al. 2020) includ-
ing KG completion, fact prediction, and query answering.
Specifically, DeepPath (Xiong, Hoang, and Wang 2017) first
introduced RL to search for diversified representative paths
between entity pairs. M-Walk (Shen et al. 2018) further pro-
posed to solve the reward sparsity problem in MCTS-based
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query answering in an off-policy manner. Reward shaping
based approach (Lin, Socher, and Xiong 2018) leveraged pre-
trained embeddings to estimate the likelihood of unseen facts,
with the purpose of reducing the impact of false-negative
supervision as well as facilitating the path inference. Our
work aligns with the RL formulation of MINERVA (Das
et al. 2017), i.e., learning to walk and search for answer
entities of a particular KG query in an end-to-end fashion.
Note that MINERVA solely exploited the entity-level KG
information to update the policy network. In comparison, we
trained the entity-level policy of the DWARF AGENT using
the cluster-level semantics and trajectories generated by the
GIANT AGENT, such that the dual agents can collaborative
to reach the optimal answers given queries.

Regarding the dual-agent structure, our work is closely
related to the hierarchical RL (Barto and Mahadevan 2003;
Wang, Li, and He 2018; Li et al. 2018b; Wan et al. 2020;
Wang et al. 2020; Wen et al. 2020) in the sense of leveraging
both low-level and high-level policies to solve long-horizon
problems with sparse rewards. However, instead of requir-
ing high-level policy to specify subgoals for low-level skills,
CURL enables both policies to achieve the subgoals pos-
sessed by their counterparts. That is, with the faster conver-
gence in a reduced search space, GIANT AGENT can provide
high-level stepwise guidance for DWARF AGENT to follow,
while DWARF AGENT walks along the real-existing paths,
thus checking the correctness of abstractive cluster-level
paths found by GIANT AGENT. Such a learning scheme can
avoid extra design efforts for complex subgoal space, which
is not always trustworthy and tractable (Zhang, Yao, and
Chen 2019).

Conclusion

We proposed a dual-agent framework (CURL) that learns to
walk over a KG for searching desired answer nodes given
query relation and source entity. Specifically, we first lever-
aged LSTM to project trajectory history into latent vectors of
different granularities and semantics. To facilitate the entity-
level exploration, CURL launched two agents: GIANT and
DWAREF to collaboratively explore paths at different granu-
larity levels and search for the answer. GIANT walks rapidly
over inner clusters of the KG, which can guide DWARF to
smoothly traverse through the entities inside the clusters. We
later developed the collaborative policy network for sharing
historical path information between two agents, and estab-
lished the mutual reinforcement reward system for handling
sparse reward issue. Experimental results on several knowl-
edge graph reasoning benchmarks show that our approach
can search for answers more accurately and efficiently. Fur-
thermore, we compared with the DWARF-solely MINERVA
in the long-path experiment. We found that our method is
more accurate in long path reasoning, which can be explained
by that the stage-wise signals provided by GIANT do play a
critical role in leading the DWARF towards the target node.



#degree

Dataset  #entities #relations #facts #queries .
mean median
WNI8RR 40,945 11 86,835 3,134 2.19 2
NELL-995 75,492 200 154,213 3,992 4.07 1
FB15K-237 14,505 237 272,115 20,466 19.74 14

Table 4: Statistics of three datasets used in our experiments.

Appendix

A. Experiment Details

A.1. Statistics of Datasets The NELL-995 knowledge
dataset contains 75,492 unique entities and 200 relations.
WNI18RR contains 93, 003 triples with 40, 943 entities and
11 relations. And FB15K-237, a subset of FB15K where in-
verse relations are removed, contains 14, 541 entities and 237
relations. The detailed statistics are shown in Table 4.

A.2. Optimal Hyperparameters To reproduce the results
of our model in Table 1 and Table 2, we report the empirically
optimal hyperparameters. Specifically, we set the entity em-
bedding dimension to 50 and relation embedding dimension
to 50. We use the K-means algorithm (MacQueen et al. 1967)
and the pre-trained entity embeddings to initialize 75 clusters
for WN18RR and NELL-995, and 50 clusters for FB15K-237,
respectively. After the maximum step 7" has been reached,
CURL evaluates the action sequence and assigns the mutual
rewards according to lines 10, 11 in Algorithm 1. The ac-
tion embedding is the concatenation of the entity embedding
vector and the relation embedding vector. We use two single-
layer LSTMs with hidden state size of 200 for GIANT and
DWARF, respectively. On all datasets, the quantities of path
rollouts in training and testing are 20 and 100, separately. We
use the Adam optimization (Kingma and Ba 2014) in REIN-
FORCE for model training with learning rate as 0.001, and
the best mini-batch size is 128. For the rest parameters, i.e.,
maximum path length 7', the entropy regularization constant
5, and the moving average constant \, the best combination
of them are {3,0.2,0.2} for FB15K-237, {3,0.06,0.00} for
WNISRR, {3,0.07,0.07} for NELL-995.
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Figure 4: The long-path performance: CURL significantly
outperforms MINERVA on NELL-995 tasks.
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Figure 5: The long-path experiments: we significantly outper-
form MINERVA in three large datasets.

B. Additional Experiments
B.1. Parameter Sensitivity on Beam Search Size

We also check the influence of different beam search size
during testing, as reported in Table 5. As can be seen, except
when beam size is 20, the performances of CURL are much
higher than MINERVA, and our gain is maximized at beam
search size 50. Moreover, the test accuracy doesn’t change
substantially with larger beam search sizes.

B.2. Long Path Recovery

We conduct further long-path experiments on three datasets,
including FB15K-237, WN18RR, and NELL-995. Here, we
investigate the ability of recovering from mistakes in the
long-path traversal. Unlike Section "Long Path Reasoning
Performance”, we retain their original KGs and set the walk-
able path length to be relatively larger (> 3), since short



Size MINERVA CURL

Hits@1 72.3 74.7

20 Hits@10 81.9 81.1
MRR 75.8 77.2

Hits@1 70.7 75.9

50 Hits@10 81.1 82.3
MRR 74.9 78.5

Hits@1 59.4 76.3

100 Hits@10 76.3 82.5
MRR 66.0 78.9

Hits@1 69.9 75.1

200 Hits@10 79.9 82.7
MRR 73.6 78.2

Hits@1 68.7 73.1

500 Hits@10 78.3 83.9
MRR 72.0 77.1

Table 5: Hits@1, 10 and MRR test accuracy (%) in task of
OrganizationHeadquarteredInCity, where “Size” denotes the
width of beam search.

chains in these datasets can usually produce good empirical
results (Das et al. 2017; Wan et al. 2020), and the longer ones
are more likely to walk through unnecessary or incorrect
links. As reported in Figure 5, CURL outperforms the other
DwARF-only method (i.e., MINERVA) in all datasets. This
observation demonstrates that dual-agent design is able to
stabilize the entity-level searching in long paths by utilizing
the cluster-level reasoning information. One possible reason
is that GIANT converges much faster in a reduced search
space, consistently providing high-level stage-wise guidance
for DWAREF to follow.
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